纳米粒子制备方法

合集下载

纳米粒子的合成方法

纳米粒子的合成方法

纳米粒子的合成方法纳米粒子是一种具有特殊尺寸和形态的微小颗粒,其尺寸通常在1到100纳米之间。

由于其独特的性质和广泛的应用前景,纳米粒子的合成方法成为了研究的热点之一。

下面将介绍几种常见的纳米粒子合成方法。

1. 化学合成法化学合成法是最常见也是最广泛使用的纳米粒子合成方法之一。

通过化学反应,在溶液中合成纳米粒子。

常见的化学合成方法包括溶胶-凝胶法、微乳液法、共沉淀法等。

其中,溶胶-凝胶法是通过溶胶和凝胶相互转化来合成纳米粒子,微乳液法是利用微乳液作为反应介质来合成纳米粒子,共沉淀法是通过共沉淀反应来合成纳米粒子。

2. 热分解法热分解法是一种通过高温热解反应来合成纳米粒子的方法。

通常是将金属有机化合物或金属盐在高温条件下分解,生成纳米粒子。

这种方法合成的纳米粒子尺寸均一、形态良好,常用于制备金属纳米粒子。

3. 水热合成法水热合成法是一种在高温高压水环境下合成纳米粒子的方法。

通过调控反应温度、压力和反应时间等条件,可以得到不同尺寸和形态的纳米粒子。

这种方法合成的纳米粒子具有较高的结晶度和较好的分散性,广泛应用于金属氧化物、碳纳米管等的合成。

4. 气相合成法气相合成法是一种通过气相反应来合成纳米粒子的方法。

通常是将金属有机化合物或金属气体在高温条件下分解或氧化,生成纳米粒子。

这种方法合成的纳米粒子具有较高的纯度和较好的控制性,常用于制备金属、合金、半导体等纳米粒子。

5. 生物合成法生物合成法是一种利用生物体或其代谢产物来合成纳米粒子的方法。

这种方法的优势在于可以利用生物体的特殊性质和调控机制来合成纳米粒子,如利用细菌的代谢产物来合成金属纳米粒子、利用植物的提取物来合成金属氧化物纳米粒子等。

生物合成法不仅环境友好,而且合成的纳米粒子具有生物相容性和生物活性,具有广泛的应用前景。

总结起来,纳米粒子的合成方法多种多样,选择合适的合成方法可以得到不同尺寸、形态和性质的纳米粒子。

不同的合成方法适用于不同的纳米材料,需要根据具体需求和研究目的选择合适的方法。

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用纳米粒子的制备方法分为物理方法和化学方法。

物理方法主要包括雾化法、机械合金法、燃烧法等,化学方法主要包括溶胀法、微乳液法、共沉淀法、水热法等。

以下是关于纳米粒子的常见制备方法及其应用的详细介绍。

1. 雾化法:将物质通过高温、高压的气体和固液混合物的喷雾,使其迅速冷却固化,形成纳米粒子。

这种方法的特点是造粒速度快、控制性好,应用广泛。

例如,铜纳米粒子制备后可以应用于导电涂料、导电油墨等领域。

2. 机械合金法:通过机械能强化作用,将材料在高能物理场中研磨、冲击或研磨脱臭,使其形成纳米粒子。

这种方法能够制备高纯度的纳米材料,并且可以控制纳米颗粒的形貌和粒度。

例如,铁-铁氧化物纳米复合粒子可以应用于催化剂、磁性材料等领域。

3. 燃烧法:通过在适当的氧气中燃烧金属颗粒或金属盐溶液,使其生成纳米颗粒。

这种方法具有操作简单、制备快速的优点。

例如,钛纳米颗粒可以应用于太阳能电池、生物材料等领域。

4. 溶胀法:利用高分子溶胀、凝胶与干燥法,通过控制溶胀度和架链密度,形成纳米颗粒。

这种方法制备的纳米粒子具有较大的比表面积和较高的孔隙度,适用于吸附、分离等领域。

5. 微乳液法:利用表面活性剂和油水体系,通过溶胶-凝胶转化或乳化反应制备纳米颗粒。

这种方法具有制备精密、单分散的纳米颗粒的优点,例如,二氧化钛纳米颗粒可以应用于催化剂、阳光防护剂等领域。

6. 共沉淀法:将溶液中的金属离子还原后,通过慢慢加热和搅拌,使其形成纳米颗粒。

这种方法的优点是制备过程简单、成本低廉,适用于大批量生产。

例如,氧化铁纳米颗粒可以应用于医学成像、磁性流体等领域。

7. 水热法:将溶液放入高温高压设备中,在水的超临界状态下进行溶解、析出和固化,形成纳米颗粒。

这种方法制备的纳米材料具有优异的结晶度和热稳定性,广泛应用于催化剂、电池材料等领域。

纳米粒子具有特殊的物理、化学和光学性质,因此在众多领域中有重要的应用。

以下是几个典型的应用领域:1. 生物医学:纳米粒子在生物医学领域中具有广泛的应用,如药物载体、分子成像、肿瘤治疗等。

材料科学中的纳米粒子制备方法

材料科学中的纳米粒子制备方法

材料科学中的纳米粒子制备方法纳米粒子是指直径在1 ~100纳米范围内的固体颗粒,其因具备独特的物理和化学特性被广泛应用于生物医学、光电信息、能源环保等领域。

然而,由于纳米粒子体积及表面积与其它材料相比很小,则制备上存在很多难点。

在本文中,我们将介绍一些常见的纳米粒子制备方法。

1. 物理制备物理制备法是利用物理原理实现纳米颗粒的制备,主要包括因缩小材料至纳米级别而可以获得新的物理和化学性质的光学,电化学,光电子和磁学制备方法。

其中,溅射、蒸汽沉积、气相沉积和机械合成法是比较常见的物理制备方法。

其中,溅射法和蒸汽沉积法通过溅射或升华材料的高能量粒子,在充气环境中使其沉积在基底上,由于粒子能量高、多孔,因此纳米材料制备效果好;而气相沉积法是利用高温作用下的化学反应合成纳米颗粒,比如有机金属气流能反应生成纳米颗粒;机械合成法是通过样品高速旋转或振动实现颗粒小化,比如超声波下机械合成,可实现纳米级别的颗粒制备。

2. 化学制备化学制备法主要是通过化学反应制备纳米颗粒,比较常见的化学合成方法有沉淀法、微乳法、反相微乳法和凝胶溶胶法等。

沉淀法主要是利用不同物质的沉淀性不同,沉积出不同的沉淀物来制备纳米粒子。

常见的有氢氧化铜沉淀制备纳米铜颗粒、硝酸钴沉淀法制备纳米碳酸钴颗粒等。

微乳法是通过在水/油/表面活性剂/共溶剂四成分体系中形成微乳相,产生小泡沫,混合反应,实现纳米颗粒制备。

其优势是可控性高、颗粒分散性好、反应速度快等。

反相微乳法与微乳法相似,但需要共溶剂的存在,有更高的制备效率,也可制备出具有复合结构和核壳结构的暗红宝石纳米粒子、铂/多层硫化钴/镍薄膜的复合纳米准晶体颗粒等。

凝胶溶胶法是通过化学或物理手段获得溶胶或凝胶样品,再通过适当的处理使其纳米化。

经过控制,可制备出不同粒径的纳米管、纳米线、多晶颗粒等不同结构的纳米材料。

3. 环境友好型制备近年来,由于传统的纳米粒子制备方法产生的工艺污染和亲水性等缺点,人们提出了一些环境友好型的制备方法,如微波辅助制备法、超临界流体法、生物法等。

纳米粒子的制备方法及其在化学催化中的应用

纳米粒子的制备方法及其在化学催化中的应用

纳米粒子的制备方法及其在化学催化中的应用一、引言纳米材料是一种具有特殊物理、化学和生物性质的材料,其尺寸在1到100纳米之间。

纳米粒子是纳米材料的基本单元,其小尺寸和高比表面积使其在化学催化中具有重要的应用潜力。

本文将介绍纳米粒子的制备方法以及其在化学催化中的应用。

二、纳米粒子的制备方法1. 物理方法物理方法是通过物理手段来制备纳米粒子,例如:(1)气相凝聚法:利用高温蒸发,然后在低温下凝聚来制备纳米粒子;(2)溅射法:利用离子束轰击靶材,使其表面原子脱落并沉积成纳米粒子;(3)磁控溅射法:在较高气压下,用磁控溅射设备将材料溅射成纳米态。

2. 化学方法化学方法是通过化学反应来制备纳米粒子,例如:(1)溶胶-凝胶法:将溶胶转变为凝胶,然后进行热处理得到纳米粒子;(2)热分解法:通过热分解金属有机化合物来得到金属纳米粒子;(3)微乳液法:利用表面活性剂在非极性介质中形成微乳液,然后通过化学反应来制备纳米粒子。

3. 生物方法生物方法是利用生物体或其代谢产物来制备纳米粒子,例如:(1)生物还原法:利用细菌、真菌等生物体的代谢产物将金属离子还原成金属纳米粒子;(2)植物提取法:通过提取植物中的物质,并通过化学反应来制备纳米粒子。

三、纳米粒子在化学催化中的应用1. 催化剂载体由于纳米粒子具有高比表面积和更多的活性位点,因此可以用作催化剂的载体。

纳米粒子作为载体可以提供更多的活性位点,并且可以通过调控其尺寸和形貌来优化催化剂的性能。

2. 催化反应催化剂纳米粒子可以作为催化剂直接参与催化反应。

由于其小尺寸,纳米粒子具有更高的表面原子或分子数目,从而提高了催化反应的反应速率和选择性。

3. 纳米合金催化剂纳米合金催化剂是指由两种或多种金属纳米颗粒组成的催化剂。

通过调控合金的成分和结构,可以优化催化剂的活性和选择性。

此外,纳米合金催化剂还可以在反应过程中发生表面重构,从而提高催化剂的稳定性。

4. 纳米催化剂的应用案例纳米粒子在化学催化中的应用案例有很多,例如:(1)纳米金催化剂在氧化反应中显示出优异的活性和选择性;(2)纳米银催化剂在烯烃加氢反应中具有良好的催化活性;(3)纳米铜催化剂在甲醇重整反应中表现出出色的催化性能。

物理实验技术的纳米粒子制备方法

物理实验技术的纳米粒子制备方法

物理实验技术的纳米粒子制备方法纳米科技是当今科技领域中备受关注的热点之一。

纳米材料由于其特殊的物理、化学和生物学性质,展示出与其宏观物体截然不同的特性,被广泛应用于能源、环境、医学等多个领域。

在纳米科技的研究中,纳米粒子制备是一个关键步骤,而物理实验技术则成为纳米粒子制备的有效手段。

一、溶胶凝胶法溶胶凝胶法是纳米粒子制备中常用的一种方法。

这种方法主要通过溶胶的凝胶过程来制备纳米粒子。

在溶胶凝胶法中,首先需要选择合适的溶胶,如金属盐溶胶、金属氧化物溶胶等。

然后,在适当的条件下,通过调节溶胶中的物理和化学参数,使溶胶凝胶成粒子,并进行后续的处理和表征。

溶胶凝胶法制备纳米粒子的优势在于可以制备多种材料的纳米粒子,并且具有制备过程简单、操作灵活的特点。

例如,可以通过控制溶胶中金属离子的浓度、pH 值、温度等参数,来调控制备纳米粒子的尺寸、形貌和分散性。

二、热雾化法热雾化法是一种通过物理方法将材料转化为纳米粒子的技术。

这种方法通过将固体材料加热至熔点或沸点,并利用热膨胀效应,迅速将材料转变为微小颗粒。

热雾化法主要有热气胶凝法和电弧法两种。

在热气胶凝法中,首先将材料加热至高温区域,使其瞬间转化为气态,然后通过快速冷却将气态材料凝固为纳米粒子。

而电弧法则是利用高温电弧将金属材料蒸发,并在气相中形成纳米粒子。

热雾化法制备纳米粒子的优点是得到的纳米粒子尺寸均一、分散性好、纯度高,并且可以制备大量的纳米粒子。

缺点是制备过程中需要高温,可能会对材料的性质产生一定影响。

三、溅射法溅射法是一种将固态材料薄膜沉积到基底上并制备纳米粒子的方法。

在溅射法中,先将固体材料制备成靶材,然后使用高能粒子轰击靶材,通过溅射的方式将材料沉积到基底上形成薄膜。

接着,经过后续处理,将薄膜转变为纳米粒子。

溅射法制备纳米粒子的特点在于制备过程可控性强,可以通过调节工艺参数如靶材的成分、粒度、功率密度等来控制纳米粒子的尺寸和形貌。

此外,溅射法还具有制备材料纯度高、结晶性好等优点。

纳米粒子的制备

纳米粒子的制备

三、老化
沉淀产品在母液中静置 , 由于Gibbs- Thomson效 应 , 将发生小粒子溶解消失和大粒子长大现象 , 即Ostwald熟化。另外, 在反应沉淀过程中 , 首先 析出的常是介稳的固体相态, 尔后介稳相才转化 为更稳定的固体相态, 发生二次相转化, 如由一种 晶型转化为另一晶型, 由一种水化物转化为另一 种水化物 , 或由无定形沉淀物转化为晶型产品等。
聚结生长:微小晶粒形成后 , 液相体系成为两相 混合系统, 固相将向表面能最小的方向发展, 发生 聚结( aggregation)生长 , 属于扩散控制生长机理, 特点为生长基元 ( 0. 01—0. 1μ m)远大于单个原子 或分子。包括三个步骤 [ 7 ] : 由于 Brownian 运动 和流体剪切, 粒子间发生碰撞;通过弱作用力 ( Van derWarrs力 、 溶剂化力等)相互粘附 ;通过晶体 生长产生化学键而固化。纳米粒子之间 , 通常溶 剂化力等短程作用力占据主导地位。
一、成核
过程特征
成核热力学:根据经典成核理论,在均相成核过 程中存在临界晶核,只有半径r大于临界晶核r*的 晶胚,才能继续生长,以降低自由能,并最终形 成稳定晶核;而r<r*的晶胚,则将溶解。 r*=2βaσV/(3βvkBTlnS) 式中βv为晶核体积因子;βa为晶核面积因子; V为晶胚分子体积;σ为比表面自由能;kB为 Boltamann常数;S为饱和度比。 可见,提高饱和度比和降低表面自由能,均 能使r*减小,有利于制得纳米粒子。
谢谢
2017/2/28
二、生长Байду номын сангаас
界面生长:晶体界面生长,是生长基元不断从流 体相通过界面进入晶格位置的过程, 也是晶体和 流体界面不断向流体中推移的过程 。界面的微观 结构决定了晶体的生长机制, 而晶体的生长机制 又决定了其遵循的动力学规律。

纳米粒子合成及制备方法详解

纳米粒子合成及制备方法详解引言:纳米科学与技术作为近年来迅速发展的一门跨学科前沿科技,已经在能源、信息、材料等诸多领域展示出巨大潜力和广阔前景。

纳米粒子作为纳米科学的基本研究对象和应用载体,在纳米技术的发展中发挥着重要的作用。

本文将详细介绍纳米粒子的合成及制备方法,希望能对相关领域的研究者和科技工作者有所帮助。

一、纳米粒子的概念和应用纳米粒子是指其尺寸在纳米尺度范围内的微观颗粒,一般指的是直径小于100纳米的粒子。

由于纳米颗粒具有较大的比表面积和特殊的物理、化学性质,因此在材料科学、生物医学、环境科学等领域具有广泛的应用潜力。

例如,纳米金属颗粒可用于催化、传感、光学等领域;纳米二氧化硅颗粒可应用于材料增强剂、药物传递等领域。

因此,精确控制纳米粒子的合成具有重要意义。

二、纳米粒子的合成方法纳米粒子的合成方法包括物理法、化学法和生物法三种。

下面将详细介绍各种方法的原理和应用。

1. 物理法物理法合成纳米粒子主要包括溅射、热蒸发、气相法等。

其中,溅射法是通过高能束流轰击目标材料,使其产生离子、激发原子等,然后粒子重新沉积到基底上形成纳米粒子。

热蒸发则是将目标材料加热蒸发,蒸发产生的蒸汽凝结成纳米粒子。

气相法是通过控制气体中原子或分子的浓度等条件,使其发生聚集形成纳米粒子。

2. 化学法化学法合成纳米粒子常用的方法有溶胶-凝胶法、沉积法、还原法等。

溶胶-凝胶法是将溶胶中的金属离子或化合物在合适的条件下凝胶成固体,然后通过烧结或后处理得到纳米粒子。

沉积法是通过在基底上沉积材料薄膜后,利用溶剂或气体处理得到纳米粒子。

还原法是通过还原剂将金属离子还原为金属纳米粒子的方法。

3. 生物法生物法合成纳米粒子是利用生物体内的生物酶、微生物、植物等作为催化剂,通过调控生物体内的酶活性和环境条件,合成纳米粒子。

生物法合成纳米粒子具有绿色、环保的特点,并且操作简便、成本低廉。

三、纳米粒子的制备方法纳米粒子的制备方法主要包括溶剂法、凝胶法、气相法等。

纳米粒子制备方法及材料调控性能

纳米粒子制备方法及材料调控性能纳米粒子是指直径在1-100纳米之间的颗粒,由于其特殊的尺寸效应和表面效应,具有许多独特的物理、化学和生物学性能,因此在许多领域都具有广阔的应用前景。

纳米粒子的制备方法和材料的调控性能是实现纳米技术应用的关键。

本文将介绍常见的纳米粒子制备方法以及材料调控性能的相关内容。

一、纳米粒子制备方法1. 化学合成法:化学合成法是最常用的纳米粒子制备方法之一。

通过控制反应条件、溶剂、催化剂等因素来合成所需尺寸和形状的纳米粒子。

常见的化学合成方法包括溶液法、沉淀法、气相法等。

其中,溶液法是最常用的方法之一,可以通过溶胶-凝胶、共沉淀等方式来制备纳米粒子,具有简单、灵活的优点。

2. 物理法:物理法是指通过物理手段制备纳米粒子的方法。

常见的物理法包括热蒸发法、气相凝聚法、溅射法等。

物理法制备的纳米粒子通常具有较高的纯度和均一性,但制备过程较为复杂,设备要求较高。

3. 生物合成法:生物合成法是利用生物体,如细菌、真菌、植物等来制备纳米粒子。

通过植物的吸收和叶绿体的光合作用,可以有效地实现对金属离子的还原和纳米粒子的形成。

生物合成法制备的纳米粒子具有环境友好、成本低廉等优点。

二、纳米材料的调控性能1. 形状调控:纳米粒子的形状对其性能具有重要影响。

通过调节合成方法、反应条件等可以控制纳米粒子的形状,如球形、棒状、片状等。

不同形状的纳米粒子具有不同的表面积和晶面结构,从而影响其光学、电学、催化等性能。

2. 尺寸调控:纳米粒子的尺寸对其性能同样具有重要影响。

尺寸的减小可以增加纳米粒子的比表面积,从而提高催化反应速率等。

通过调节合成条件和添加表面活性剂等手段,可以有效地调控纳米粒子的尺寸,从而实现对其性能的调控。

3. 表面调控:纳米粒子的表面是其与周围环境相互作用的重要界面,通过表面修饰和功能化可以调控纳米粒子的分散性、稳定性、吸附性等性能。

例如,通过聚合物包覆、功能化修饰等手段可以增加纳米粒子与基底的相容性,提高其分散性和稳定性。

制备纳米粒子的化学方法

制备纳米粒子的化学方法随着科技的不断发展,纳米技术已经成为了当今社会的一个热门话题。

在这一领域中,制备纳米粒子是最为基础和常见的操作之一。

本文将为大家介绍一些常用的制备纳米粒子的化学方法,以及其原理和应用。

1. 化学还原法化学还原法是制备纳米粒子的一种常见方法。

其原理是通过还原剂将金属离子还原成金属粒子。

其制备步骤如下:首先,将金属离子溶解在溶液中,加入适量的还原剂;其次,加热反应体系,这样可以加快反应速率;最后,洗涤、分离及干燥得到所需的纳米金属粉末。

化学还原法的优点是制备简单、工艺流程短,稳定性好。

另外,该方法适用于大部分金属离子,因此在制备纳米金属粉末时,可根据需求选择不同的金属离子。

2. 氧化物热分解法氧化物热分解法是利用金属氧化物在高温条件下分解生成金属粒子的方法。

通常将金属盐在空气中热处理。

其制备步骤如下:首先,将金属盐加入反应瓶中,调节反应体系的pH值;其次,在制备过程中,将盐加热至一定温度使其分解,气体产物通过冷凝管冷却后得到水,而生成的金属粉末在瓶底沉淀;最后,去除水,将金属粉末用洗涤剂和乙醇洗涤,使其纯化,获得所需的纳米金属粉末。

氧化物热分解法的优点是制备的纳米颗粒单分散性好。

此外,该方法应用与多种金属离子,且不需使用昂贵的还原剂,因此其成本较低。

3. 沉淀法沉淀法是将溶液中的金属阳离子通过定量沉淀生成金属粒子。

其步骤如下:首先将金属盐用水或有机溶剂溶解在溶液中,然后加入络合剂,将金属阳离子络合成配合物;其次,加入氢氧化钠等碱性沉淀剂,使配合物沉淀,生成纳米金属粉末;最后,沉淀后用水洗涤,将金属粉末纯化干燥,得到所需的纳米金属粉末。

沉淀法的优点是制备简单,并且适用于多种金属离子,但沉淀法存在着分散性差的问题,因此其分散效果并不理想。

结论通过本文的介绍,我们不难发现制备纳米粒子是一个较为复杂的过程,需要熟知各种方法的原理和应用。

在制备过程中,我们需要注意各种反应条件的调节,以达到最好的制备效果。

第二章纳米粒子的制备方法课件

2.振动球磨
2.2.1机械粉碎法
振动球磨
采用粒径为30nm的SiC和100μm左右的Al粉颗粒为初始原料,通过高能振动球磨的方法对体积分数﹪为5、10、20、30的SiCp/Al复合粉末进行了球磨处理. 复合粉体球磨30h后,可以将铝粉细化至70~100nm。
2.2.1机械粉碎法
1) 高能振动球磨法制备纳米SiCp/Al复合材料的研究
4.搅拌磨
2.2.1机械粉碎法
横臂均匀分布在不同高度上,并互成一定角度。球磨过程中,磨球与粉料一起呈螺旋方式上升,到了上端后在中心搅拌棒周围产生旋涡,然后沿轴线下降,如此循环往复。只要转速和装球量合适,在任何情况下磨筒底部都不会出现死角由于磨球的动能是由转轴横臂的搅动提供的,研磨时不会存在象滚筒球磨那样有临界转速的限制,因此,磨球的动能大大增加。同时还可以采用提高搅动转速。减小磨球直径的办法来提高磨球的总撞击几率而不减小研磨球的总动能,这样才符合了提高机械球磨效率的两个基本准则。
原理:利用高速气流(300—500m/s)或热蒸气(300—450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。 在粉碎室中,粒子之间碰撞频率远高于粒子与器壁之间的碰撞。 特点:产品的粒径下限可达到0.1μm以下。除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。
高能球磨5 h 即可制备纯度较高、晶粒尺寸较小的以ZnO 为主的混合粉体,最佳烧结温度1 000℃比一般的固相法烧结温度降低了100~300 ℃,大大节省了生产成本。
ZnO 压敏电阻在工业生产中主要用低能球磨搅拌混合、高温烧结的方法制备,烧结温度一般为1 100~1 350 ℃。
以球或棒为介质,介质在粉碎室内振动,冲击物料使其粉碎,可获得小于2μm的粒子达90%,甚至可获得0.5μm的纳米粒子。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、纳米粒子的物理制备方法
1.1 机械粉碎法
机械粉碎就是在粉碎力的作用下,固体料块或粒子发生变形进而破裂,产生更微细的颗粒。

物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。

一般的粉碎作用力都是这几种力的组合,如球磨机和振动磨是磨碎与冲击粉碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。

理论上,固体粉碎的最小粒径可达0.01~0.05 μ m。

然而,用目前的机械粉碎设备与工艺很难达到这一理想值。

粉碎极限取决于物料种类、机械应力施加方式、粉碎方法、粉碎工艺条件、粉碎环境等因素。

比较典型的纳米粉碎技术有:球磨、振动磨、搅拌磨、气流磨和胶体磨等。

其中,气流磨是利用高速气流(300~500m/s)或热蒸气(300~450℃)的能量使粒子相互产生冲击、碰撞、摩擦而被较快粉碎。

气流磨技术发展较快,20世纪80年代德国Alpine公司开发的流化床逆向气流磨可粉碎较高硬度的物料粒子,产品粒度达到了1~5μm。

降低入磨物粒度后,可得平均粒度1μm的产品,也就是说,产品的粒径下限可达到0.1μm以下。

除了产品粒度微细以外,气流粉碎的产品还具有粒度分布窄、粒子表面光滑、形状规则、纯度高、活性大、分散性好等优点。

因此,气流磨引起了人们的普遍重视,其在陶瓷、磁性材料、医药、化工颜料等领域有广阔的应用前景。

1.2 蒸发凝聚法
蒸发凝聚法是将纳米粒子的原料加热、蒸发,使之成为原子或分子;再使许多原子或分子凝聚,生成极微细的纳米粒子。

利用这种方法得到的粒子一般在5~100nm之间。

蒸发法制备纳米粒子大体上可分为:金属烟粒子结晶法、真空蒸发法、气体蒸发法等几类。

而按原料加热技术手段不同,又可分为电极蒸发、高频感应蒸发、电子束蒸发、等离子体蒸发、激光束蒸发等几类。

1.3 离子溅射法
用两块金属板分别作为阴极和阳极,阴极为蒸发用材料,在两电极间充入Ar(40~250Pa),两极间施加的电压范围为0.3~1.5kV。

由于两极间的辉光放电使Ar粒子形成,在电场作用下Ar离子冲击阳极靶材表面,使靶材原子从其表面蒸发出来形成超微粒子,并在附着面上沉积下来。

离子的大小及尺寸分布主要取决于两极间的电压、电流、气体压力。

靶材的表面积愈大,原子的蒸发速度愈高,超微粒的获得量愈大。

溅射法制备纳米微粒材料的优点是:(1)可以制备多种纳米金属,包括高熔点和低熔点金属。

常规的热蒸发法只能适用于低熔点金属;(2)能制备出多组元的化合物纳米微粒,如AlS2,Tl48,Cu91,Mn9,ZrO2等;通过加大被溅射阴极表面可加大纳米微粒的获得量。

采用磁控溅射与液氮冷凝方法可在表面沉积有方案膜的电镜载网上支撑制备纳米铜颗粒。

1.4 冷冻干燥法
先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,就可以得到相应物质的纳米粒子。

如果从水溶液出发制备纳米粒子,冻结后将冰升华除去,直接可获得纳米粒子。

如果从熔融盐出发,冻结后需要进行热分解,最后得到相应纳米粒子。

冷冻干燥法用途比较广泛,特别是以大规模成套设备来生产微细粉末时,其相应成本较低,具有实用性。

此外,还有火花放电法,是将电极插入金属粒子的堆积层,利用电极放电在金属粒子之间发生电火花,从而制备出相应的微粉。

爆炸烧结法,是利用炸药爆炸产生的巨大能量,以极强的载荷作用于金属套,使得套内的粉末得到压实烧结,通过爆炸法可以得到1μm以下的纳米粒子。

活化氢熔融金属反应法的主要特征是将氢气混入等离子体中,这种混合等离子体再加热,待加热物料蒸发,制得相应的纳米粒子。

二、制备纳米粒子的化学方法
2.1 气相化学反应法
气相化学反应法制备纳米粒子是利用挥发性的金属化合物的蒸气,通过化学反应生成所需要的化合物,在保护气体环境下快速冷凝,从而制备各类物质的纳米粒子。

气相反应法制备超微粒子具有很多优点,如粒子均匀、纯度高、粒度小、分散性好、化学反应性与活性高等。

气相化学反应法适合于制备各类金属、金属化合物以及非金属化合物纳米粒子,如各种金属、氮化合物、碳化物、硼化物等。

按体系反应类型可将气相化学反应法分为气相分解和气相合成两类方法。

气相分解是对待分解的或经前期预先处理的中间化合物进行加热、蒸发、分解,得到目标物质的纳米粒子;气相合成法通常是利用两种以上物质之间的气相化学反应,在高温下合成出相应的化合物,再经过快速冷凝,从而制备各种物质的纳米粒子。

2.2 沉淀法
沉淀法是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适当的沉淀剂制备纳米粒子的前驱体沉淀物,再将此沉淀物进行干燥或煅烧,从而制得相应的纳米粒子。

一般粒子在1μm左右时就可以发生沉淀,
从而产生沉淀物,生成粒子的粒径通常取决于沉淀物的溶解度,沉淀物的溶解度越小,相应粒径也越小。

而粒子的粒径随溶液的过饱和度减小呈增大趋势。

沉淀法制备纳米粒子的方法主要有:直接沉淀法、共沉淀法、均相沉淀法、化合物沉淀法、水解沉淀法等多种。

2.3 水热合成法
水热合成法是液相中制备纳米粒子的一种方法。

一般是在100~350℃温度下和高气压环境下使无机或有机化合物与水化合,通过对加速渗析反应和物理过程的控制,得到改进的无机物,再过滤、洗涤、干燥,从而得到高纯、超细的各类微粒子。

水热合成法可以采用两种不同的实验环境进行反应:其一为密闭静态,即将金属盐溶液或其沉淀物置入高压反应釜内,密闭后加以恒温,在静止状态下长时间保温;其二为密闭动态,即在高压釜内加磁性转子,密闭后将高压釜置于电磁搅拌器上,在动态的环境下保温。

一般动态反应条件下可以大大加快合成速率。

2.4 喷雾热解法
喷雾热解法的原理是将所需的某种金属盐的溶液喷成雾状,送入加热设定的反应室内,通过化学反应生成细微的粉末粒子。

根据对喷雾液滴热处理的方式不同,可以把喷雾热解法分为喷雾干燥、喷雾焙烧、喷雾燃烧和喷雾水解等四类。

喷雾干燥是将制成的溶液或微乳液靠喷嘴喷成雾状物来进行微粒化的一种方法。

将液滴进行干燥并随即捕集,捕集后直接或经过热处理后,就会得到各种化合物的纳米粒子。

利用这种方法可以制得Ni、Zn、Fe的铁氧体纳米粒子。

喷雾燃烧是将金属盐溶液用氧气 26北京石油化工学院学报2003年第11卷雾化后,在高温下燃烧分解而制得相应的纳米粒子。

喷雾水解法是利用醇盐喷雾,制成相应的气溶胶,再让这些气溶胶与水蒸气反应进行水解,从而制成单分散性的粒子,最后将这些粒子再焙烧,即可得到相应的纳米粒子。

喷雾热解法属于气—液反应一类的方法,因为其原料制备过程是液相法,而其部分化学反应又是气相法,因此,该方法集中了气、液法两者的优点。

这些优点表现为:可以方便地制备多种组元的复合物质粉末粒子;粒子分布均匀;粒子形状好,一般呈理想的球状;制备过程简单,从配制溶液到粒子形成,几乎是一步到位。

2.5溶胶—凝胶法
溶胶—凝胶法是制备纳米粒子的一种湿化学法。

它的基本原理是以液体的化学试剂配制成金属无机盐或金属醇盐前驱物,前驱物溶于溶剂中形成均匀的溶液,溶质与溶剂产生水解或醇解反应,反应生成物经聚集后,一般生成1nm左右的粒子并形成溶胶。

通常要求反应物在液相下均匀混合、均匀反应,反应生成物是稳定的溶胶体系。

在这段反应过程中不应该有沉淀发生。

经过长时间放置或干燥处理溶胶会转化为凝胶。

在凝胶中通常还含有大量的液相,需要借助萃取或蒸发除去液体介质,并在远低于传统的烧结温度下热处理,最后形成相应物质化合物微粒。

控制溶胶—凝胶化的参数很多,也比较复杂。

目前多数人认为有4个主要参数对溶胶—凝胶化过程有重要影响,即溶液的pH值、溶液的浓度、反应温度和反应时间。

三、制备纳米粒子的物理化学方法
3.1 激光诱导气相化学反应法
利用大功率激光器的激光束照射于反应气体,反应气体通过对入射激光光子的强吸收,气体分子或原子在瞬间得到加热、活化,在极短的时间内反应气体分子或原子获得的化学反应所需要的温度后,迅速完成反应、成核、凝聚、生长等过程,从而获得相应物质的纳米粒子。

通常,入射激光束垂直于反应气流照射,反应气分子或原子吸收激光光子后被迅速加热。

根据John.S.Haggerty的估算,激光加热速率为106~108℃/s,加热到反应最高温度的时间小于10-4s。

被加热的反应气流将在反应区域内形成稳定分布的火焰,火焰中心处的温度一般远高于相应化学反应所需的温度,因此反应在10-3s 内即可完成。

生成的核粒子在载气流的吹送下迅速脱离反应区,经短暂的生长过程到达收集室,如图1所示。

离子或电子以高速射到各种金属或化合物原料表面时,就会大量溶入原料中,使原料瞬间熔融,并伴有原料蒸发。

蒸发的原料与等离子体或反应性气体发生相应的化学反应,生成各类化合物的核粒子,核粒子脱离等离子体反应区后,就会形成相应化合物的纳米粒子。

相关文档
最新文档