第8章第二节纳米粒子的制备方法

合集下载

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用

纳米粒子的制备方法及应用纳米粒子的制备方法分为物理方法和化学方法。

物理方法主要包括雾化法、机械合金法、燃烧法等,化学方法主要包括溶胀法、微乳液法、共沉淀法、水热法等。

以下是关于纳米粒子的常见制备方法及其应用的详细介绍。

1. 雾化法:将物质通过高温、高压的气体和固液混合物的喷雾,使其迅速冷却固化,形成纳米粒子。

这种方法的特点是造粒速度快、控制性好,应用广泛。

例如,铜纳米粒子制备后可以应用于导电涂料、导电油墨等领域。

2. 机械合金法:通过机械能强化作用,将材料在高能物理场中研磨、冲击或研磨脱臭,使其形成纳米粒子。

这种方法能够制备高纯度的纳米材料,并且可以控制纳米颗粒的形貌和粒度。

例如,铁-铁氧化物纳米复合粒子可以应用于催化剂、磁性材料等领域。

3. 燃烧法:通过在适当的氧气中燃烧金属颗粒或金属盐溶液,使其生成纳米颗粒。

这种方法具有操作简单、制备快速的优点。

例如,钛纳米颗粒可以应用于太阳能电池、生物材料等领域。

4. 溶胀法:利用高分子溶胀、凝胶与干燥法,通过控制溶胀度和架链密度,形成纳米颗粒。

这种方法制备的纳米粒子具有较大的比表面积和较高的孔隙度,适用于吸附、分离等领域。

5. 微乳液法:利用表面活性剂和油水体系,通过溶胶-凝胶转化或乳化反应制备纳米颗粒。

这种方法具有制备精密、单分散的纳米颗粒的优点,例如,二氧化钛纳米颗粒可以应用于催化剂、阳光防护剂等领域。

6. 共沉淀法:将溶液中的金属离子还原后,通过慢慢加热和搅拌,使其形成纳米颗粒。

这种方法的优点是制备过程简单、成本低廉,适用于大批量生产。

例如,氧化铁纳米颗粒可以应用于医学成像、磁性流体等领域。

7. 水热法:将溶液放入高温高压设备中,在水的超临界状态下进行溶解、析出和固化,形成纳米颗粒。

这种方法制备的纳米材料具有优异的结晶度和热稳定性,广泛应用于催化剂、电池材料等领域。

纳米粒子具有特殊的物理、化学和光学性质,因此在众多领域中有重要的应用。

以下是几个典型的应用领域:1. 生物医学:纳米粒子在生物医学领域中具有广泛的应用,如药物载体、分子成像、肿瘤治疗等。

材料科学中的纳米粒子制备方法

材料科学中的纳米粒子制备方法

材料科学中的纳米粒子制备方法纳米粒子是指直径在1 ~100纳米范围内的固体颗粒,其因具备独特的物理和化学特性被广泛应用于生物医学、光电信息、能源环保等领域。

然而,由于纳米粒子体积及表面积与其它材料相比很小,则制备上存在很多难点。

在本文中,我们将介绍一些常见的纳米粒子制备方法。

1. 物理制备物理制备法是利用物理原理实现纳米颗粒的制备,主要包括因缩小材料至纳米级别而可以获得新的物理和化学性质的光学,电化学,光电子和磁学制备方法。

其中,溅射、蒸汽沉积、气相沉积和机械合成法是比较常见的物理制备方法。

其中,溅射法和蒸汽沉积法通过溅射或升华材料的高能量粒子,在充气环境中使其沉积在基底上,由于粒子能量高、多孔,因此纳米材料制备效果好;而气相沉积法是利用高温作用下的化学反应合成纳米颗粒,比如有机金属气流能反应生成纳米颗粒;机械合成法是通过样品高速旋转或振动实现颗粒小化,比如超声波下机械合成,可实现纳米级别的颗粒制备。

2. 化学制备化学制备法主要是通过化学反应制备纳米颗粒,比较常见的化学合成方法有沉淀法、微乳法、反相微乳法和凝胶溶胶法等。

沉淀法主要是利用不同物质的沉淀性不同,沉积出不同的沉淀物来制备纳米粒子。

常见的有氢氧化铜沉淀制备纳米铜颗粒、硝酸钴沉淀法制备纳米碳酸钴颗粒等。

微乳法是通过在水/油/表面活性剂/共溶剂四成分体系中形成微乳相,产生小泡沫,混合反应,实现纳米颗粒制备。

其优势是可控性高、颗粒分散性好、反应速度快等。

反相微乳法与微乳法相似,但需要共溶剂的存在,有更高的制备效率,也可制备出具有复合结构和核壳结构的暗红宝石纳米粒子、铂/多层硫化钴/镍薄膜的复合纳米准晶体颗粒等。

凝胶溶胶法是通过化学或物理手段获得溶胶或凝胶样品,再通过适当的处理使其纳米化。

经过控制,可制备出不同粒径的纳米管、纳米线、多晶颗粒等不同结构的纳米材料。

3. 环境友好型制备近年来,由于传统的纳米粒子制备方法产生的工艺污染和亲水性等缺点,人们提出了一些环境友好型的制备方法,如微波辅助制备法、超临界流体法、生物法等。

物理实验技术的纳米粒子制备方法

物理实验技术的纳米粒子制备方法

物理实验技术的纳米粒子制备方法纳米科技是当今科技领域中备受关注的热点之一。

纳米材料由于其特殊的物理、化学和生物学性质,展示出与其宏观物体截然不同的特性,被广泛应用于能源、环境、医学等多个领域。

在纳米科技的研究中,纳米粒子制备是一个关键步骤,而物理实验技术则成为纳米粒子制备的有效手段。

一、溶胶凝胶法溶胶凝胶法是纳米粒子制备中常用的一种方法。

这种方法主要通过溶胶的凝胶过程来制备纳米粒子。

在溶胶凝胶法中,首先需要选择合适的溶胶,如金属盐溶胶、金属氧化物溶胶等。

然后,在适当的条件下,通过调节溶胶中的物理和化学参数,使溶胶凝胶成粒子,并进行后续的处理和表征。

溶胶凝胶法制备纳米粒子的优势在于可以制备多种材料的纳米粒子,并且具有制备过程简单、操作灵活的特点。

例如,可以通过控制溶胶中金属离子的浓度、pH 值、温度等参数,来调控制备纳米粒子的尺寸、形貌和分散性。

二、热雾化法热雾化法是一种通过物理方法将材料转化为纳米粒子的技术。

这种方法通过将固体材料加热至熔点或沸点,并利用热膨胀效应,迅速将材料转变为微小颗粒。

热雾化法主要有热气胶凝法和电弧法两种。

在热气胶凝法中,首先将材料加热至高温区域,使其瞬间转化为气态,然后通过快速冷却将气态材料凝固为纳米粒子。

而电弧法则是利用高温电弧将金属材料蒸发,并在气相中形成纳米粒子。

热雾化法制备纳米粒子的优点是得到的纳米粒子尺寸均一、分散性好、纯度高,并且可以制备大量的纳米粒子。

缺点是制备过程中需要高温,可能会对材料的性质产生一定影响。

三、溅射法溅射法是一种将固态材料薄膜沉积到基底上并制备纳米粒子的方法。

在溅射法中,先将固体材料制备成靶材,然后使用高能粒子轰击靶材,通过溅射的方式将材料沉积到基底上形成薄膜。

接着,经过后续处理,将薄膜转变为纳米粒子。

溅射法制备纳米粒子的特点在于制备过程可控性强,可以通过调节工艺参数如靶材的成分、粒度、功率密度等来控制纳米粒子的尺寸和形貌。

此外,溅射法还具有制备材料纯度高、结晶性好等优点。

第二章 纳米粒子的制备方法

第二章 纳米粒子的制备方法

按振动方式分类:惯性式和偏旋式; 按简体数目分类:单筒式和多筒式; 按操作方式分类:间歇式和连续式。
选择适当研磨介质,振动磨可用于各种硬度物料的纳 米粉碎,相应产品的平均粒径可达1μm以下。
振动磨优点:在高频下工作,而高频振动易使物料生成裂 缝,且能在裂缝中产生相当高的应力集中,故它能有效地 进行超细磨。
两种办法来实现
提高气体的入口压力
气体喷嘴的气体动力学设计
通过这两种办法使喷嘴出口端的气体流速达超音速
气流粉碎方法制备超细WC 粉末. 中国钨业.孙亚丽.2006
2.2.1机械粉碎法
6.纳米气流粉碎气流磨
原理:利用高速气流(300—500m/s)或 热蒸气(300—450℃)的能量使粒子相 互产生冲击、碰撞、摩擦而被较快粉 碎。 在粉碎室中,粒子之间碰撞频率远高 于粒子与器壁之间的碰撞。 特点:产品的粒径下限可达到0.1μm 以下。除了产品粒度微细以外,气流 粉碎的产品还具有粒度分布窄、粒子 表面光滑、形状规则、纯度高、活性 大、分散性好等优点。
称为摩擦粉碎或表面粉碎。
另一种:由于球对颗粒或颗粒对颗粒的冲击、碰撞和剪切等 作用,从颗粒中近似等体积地分割出两个小颗粒,称为冲击压 缩粉碎或体积粉碎。
2.2.1机械粉碎法
粉碎过程的另一现象“逆粉碎现象”
物料在超细粉碎过程中,随着粉碎时间的延长,颗粒粒度
的减小,比表面积的增加,颗粒的表面能增大,颗粒之间
中国古代铜镜表面的防锈层经检
验也已证实为纳米SnO2颗粒构成 的薄膜。
人们自觉地将纳米微粒作为研究对象,而用人工
方法有意识地获得纳米粒子则是在20世纪60年代。
今天,在纳米世界里,人们可以完全按照自己的意愿, 合成具有特殊性能的新材料,如把优良的导体铜制作 成“纳米铜”,使之成为绝缘体; 把易碎的陶瓷制作为 “纳米陶瓷”,使之可以在室温下任意弯曲等等。人

制备纳米粒子的物理方法

制备纳米粒子的物理方法

气流粉碎是用高速气流来实现物料超微粉碎, 粉末在高速气流中相互撞击而被粉碎,其破碎工作 原理如图1 所示。经过净化、干燥的高压空气通过特 殊配置的几个超音速喷嘴向同一位置高速喷射,粉 末进入喷嘴交汇处反复被冲击、碰撞,达到粉碎细化
由于粉末颗粒的运动是从流态气体中获得的,因此, 提高颗粒的动能必须要提高载流气体的速度。
中南大学粉末冶金国家重点实验 室的吴恩熙等人的研究发现:
采用振动球磨对粗、中、细碳化钨粉均 有显著的细化效果。球磨60 h 时,粉末粒 度均可降至0. 6μm 以下,同时粉末粒度分 布变窄。 振动球磨制取超细碳化钨的最小粒度取 决于球磨强度、球磨时间和球料比

2.2.1机械粉碎法
3.振动磨
利用研磨介质可以在一定振幅振动的筒体内对物料进 行冲击、摩擦、剪切等作用而使物料粉碎。 与球磨机不同,振动磨是通过介质与物料一起振动将 物料进行粉碎的。
2.2.1机械粉碎法
原理: 压缩空气经喷嘴加速成超音速气 流后射入粉碎区使物料呈流化状态。 在粉碎区,被加速的物料在各喷 嘴的交汇点高速汇合。在此,颗粒 互相对撞粉碎。 粉碎后的物料被负压上升气流输 送至分级区,由内分级轮筛选出的
粒度即为所要求的细粉,未满足粒
度要求的粗粉返回粉碎区继续粉碎 (无大颗粒产生)。 合格细粉经分级轮随气流进入收 集系统进行收集,含尘气体经布袋 收尘器过滤净化后排入大气。
2)高能球磨制备大容量贮氢合金电极材料
环保意识增强呼唤电动汽车。电动汽车的关键之一是 要有大容量充电电池。本项目即针对电动汽车用电池负极 材料。 西安交通大学正在开发的高能球磨MgNi合金电池负极 材料,处于国内先进,可做为大容量充电电池的负极候选 材料,为进一步开发制备大容量合金负极,进而开发大容 量充电电池奠定基础。

纳米颗粒的制备方法

纳米颗粒的制备方法
溶胶-凝胶法
通过控制溶液中的化学反应,使溶液中的组分形 成凝胶,再经过干燥和热处理制备出纳米颗粒。
3
微乳液法
利用两种互不相溶的溶剂在表面活性剂的作用下 形成微乳液,通过控制反应条件制备出纳米颗粒。
生物法制备纳米颗粒的应用
微生物合成法
利用微生物发酵或培养过程中产 生的代谢产物,通过控制代谢产 物中的化学反应制备出纳米颗粒。
基因工程法
通过基因工程技术,将所需的纳米颗 粒基因导入微生物或植物中,通过其 表达合成纳米颗粒。
基因工程法具有高选择性、可调控性 强等优点,但技术难度较高,成本也 较高。
05 应用实例
物理法制备纳米颗粒的应用
激光熔化法
利用高能激光束将金属或非金属 粉末熔化,通过控制熔化过程中 的物理和化学变化,制备出纳米
纳米颗粒的制备方法
contents
目录
• 引言 • 物理法 • 化学法 • 生物法 • 应用实例
01 引言
纳米颗粒的定义与重要性
定义
纳米颗粒是指尺寸在1-100纳米 的超微粒子,具有小尺寸效应、 表面效应和量子效应等特性。
重要性
纳米颗粒在材料科学、医学、能 源、环境等领域具有广泛的应用 前景,是当前研究的热点之一。
植物提取法
利用植物中的某些活性成分,通 过提取和纯化制备出具有特定功 能的纳米颗粒。
酶催化法
利用酶的催化作用,将底物转化 为纳米颗粒,该方法具有高选择 性、高效率和环保等优点。
THANKS FOR WATCHING
感谢您的观看
设备成本高,产量较低。
机械研磨法
优点
设备简单,成本低,可制备多种材料 。
缺点
粒径较大,分布不均匀,易引入杂质 。

纳米粒子合成及制备方法详解

纳米粒子合成及制备方法详解

纳米粒子合成及制备方法详解引言:纳米科学与技术作为近年来迅速发展的一门跨学科前沿科技,已经在能源、信息、材料等诸多领域展示出巨大潜力和广阔前景。

纳米粒子作为纳米科学的基本研究对象和应用载体,在纳米技术的发展中发挥着重要的作用。

本文将详细介绍纳米粒子的合成及制备方法,希望能对相关领域的研究者和科技工作者有所帮助。

一、纳米粒子的概念和应用纳米粒子是指其尺寸在纳米尺度范围内的微观颗粒,一般指的是直径小于100纳米的粒子。

由于纳米颗粒具有较大的比表面积和特殊的物理、化学性质,因此在材料科学、生物医学、环境科学等领域具有广泛的应用潜力。

例如,纳米金属颗粒可用于催化、传感、光学等领域;纳米二氧化硅颗粒可应用于材料增强剂、药物传递等领域。

因此,精确控制纳米粒子的合成具有重要意义。

二、纳米粒子的合成方法纳米粒子的合成方法包括物理法、化学法和生物法三种。

下面将详细介绍各种方法的原理和应用。

1. 物理法物理法合成纳米粒子主要包括溅射、热蒸发、气相法等。

其中,溅射法是通过高能束流轰击目标材料,使其产生离子、激发原子等,然后粒子重新沉积到基底上形成纳米粒子。

热蒸发则是将目标材料加热蒸发,蒸发产生的蒸汽凝结成纳米粒子。

气相法是通过控制气体中原子或分子的浓度等条件,使其发生聚集形成纳米粒子。

2. 化学法化学法合成纳米粒子常用的方法有溶胶-凝胶法、沉积法、还原法等。

溶胶-凝胶法是将溶胶中的金属离子或化合物在合适的条件下凝胶成固体,然后通过烧结或后处理得到纳米粒子。

沉积法是通过在基底上沉积材料薄膜后,利用溶剂或气体处理得到纳米粒子。

还原法是通过还原剂将金属离子还原为金属纳米粒子的方法。

3. 生物法生物法合成纳米粒子是利用生物体内的生物酶、微生物、植物等作为催化剂,通过调控生物体内的酶活性和环境条件,合成纳米粒子。

生物法合成纳米粒子具有绿色、环保的特点,并且操作简便、成本低廉。

三、纳米粒子的制备方法纳米粒子的制备方法主要包括溶剂法、凝胶法、气相法等。

纳米粒子的常见制备方法讲课文档

纳米粒子的常见制备方法讲课文档

洗涤、脱水、防团聚
5. 煅烧
Zr(OH)4 + n Y(OH)3 煅烧
Zr1-xYxO2
第四页,共54页。
• 化学还原法
• 1.溶液还原法

利用还原剂与金属盐溶液发生氧化还原反应,而制得金属或非
晶合金。
• (1)水溶液还原法

采用水合肼、葡萄糖、硼氢化钠(钾)等还原剂,在水溶液中制
备超细金属粉末或非晶合金粉末,并利用高分子保护剂PVP (聚乙
1. 原料混合 ZrOCl2.8H2O
按比例混合 YCl3
2. 加沉淀剂
ZrOCl2.8H2O+YCl3 NH4OH
3. 沉淀反应控 ZrOCl2 + 2NH4OH + H2 Zr(OH)4 + 2NH4Cl
PH、浓度搅拌、促 进形核、控生长
YCl3
+
3NH4OH
Y(OH)3 + 2NH4Cl
4. 洗涤、脱水、防团聚
•水热脱水法
水热氧化法 例如: mM十nH2O MmOn+H2
其中M可为铬、铁及合金等
水热还原法 例如 MexOy+yH2 xMe+yH2O
其中Me可为铜、银等
•水热沉淀法 例如 KF+MnCl2 KMnF2
第十三页,共54页。
设备
第十四页,共54页。
溶剂热合成法
用有机溶剂(如:苯、醚)代替水作介质,采用 类似水热合成的原理制备纳米微粉。非水溶剂代替 水,不仅扩大了水热技术的应用范围,而且能够实 现通常条件下无法实现的反应,包括制备具有亚稳 态结构的材料。
于200℃的情况下,硝酸盐分解制备
10nm的Fe2O3,碳酸盐分解制备14nm的 ZrO2。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B:纳米铋粉的制备 在每个金属罐中加入无水乙醇100 ml、铋粒12.54 g、 PVP 6.27 g, 调整转速为400r/min, 时间设置为4h, 球磨。 结束后将产物取出封存静置, 得到黑色胶体溶液, 粉体在其 中分散均匀而稳定, 溶液长久不见澄清。
C:纳米铋粉的收集 该溶液中的粉体采用离心沉降收集很困难, 高速离 心也不能使溶液澄清, 分离出的粉体也很少, 将溶剂干 燥也不能析出纳米铋粉。 因此铋粉的收集采用电解质聚沉法, 每100 ml均相 溶液加入2 g硬脂酸, 用玻璃棒搅拌使其溶解, 封存静 置, 几天后黑色粉体沉降底部, 黑色溶液全部澄清, 无 色透明。去除上层清液, 加入无水乙醇清洗数次, 真空
1.1.1 球磨(Milling)
球磨机是目前广泛 采用的纳米磨碎设备。 1)可充入惰性气体进 行机械合金,机械复合, 纳米材料及复合材料的 合成。 2)材质可选择玛瑙, 氮化硅,氧化铝,氧化 锆,不锈钢,普通钢, 碳化钨,包裹塑料的不 锈钢。
它是利用介质和 物料之间的相互研磨 和冲击使物料粒子粉 碎,经几百小时的球 磨,可使小于lμm的 粒子达到20%。

按材质
纳米金属材料、纳米非金属材料、纳米高分子材料和 纳米复合材料。 按形态 纳米颗粒材料、纳米固体材料(也称纳米块体材料)、

纳米膜材料以及纳米液体材料。

按功能 纳米生物材料、纳米磁性材料、纳米药物材料、纳米 催化材料、纳米智能材料、纳米吸波材料、纳米热敏 材料以及纳米环保材料等。
发展历史
1.1.3 振动磨
利用研磨介质可以在一定振幅对物料进行冲击、摩擦、 剪切等作用而使物料粉碎。 与球磨机不同,振动磨是通过介质与物料一起振动将物 料进行粉碎的。
选择适当研磨介质,振动磨可用于各种硬度物料的纳米
粉碎,相应产品的平均粒径可达1μm以下。
振动磨优点:在高频下工作,而高频振动易使物 料生成裂缝,且能在裂缝中产生相当高的应力集中, 故它能有效地进行超细磨。
切等作用,从颗粒中近似等体积地分割出两个小颗粒 , 称为冲击压缩粉碎或体积粉碎。
粉碎过程的另一现象“逆粉碎现象” 物料在超细粉碎过程中,随着粉碎时间的延长, 颗粒粒度的减小,比表面积的增加,颗粒的表面 能增大,颗粒之间的相互作用增强,团聚现象增
加,达到一定时间后,粉碎
团聚
是各种粉碎存在最低粒度下限的主要原因; 是相似条件下湿法球磨比干法粒度下限低的原因 .
干燥, 得到黑色的纳米铋粉。
参考资料4
孔慧.高能球磨法制备高电位梯度的ZnO 压敏电阻.电子元 件与材料.2007,26(1):11-13 (华东师范大学)
ZnO 压敏电阻在工业生产中主要用低能球磨搅拌混合、 高温烧结的方法制备,烧结温度一般为1100-1350℃。 高能球磨是制备纳米级粉体的一种常见方法,可以提
蒸发法
机械粉碎法
搅拌磨及高速气流磨
粉碎极限一般为微米级 粒子的纯度、产率、 粒径分布、均匀性 及粒子的可控制性 等问题依然存在
物理方法与化学方法
制备方法的分类:

过去一般把超微粒子(包括1-100nm的纳米微粒)制 备方法分为两大类:物理方法和化学方法。

液相法和气相法被归为化学方法,机械粉碎法被划 为物理方法。
高粉体的活性,从而降低烧结温度。在制备ZnO 压敏电阻 方面,使用高能球磨的报道较少。
Fah:采用高能球磨法,将粉料细化至17nm左右,烧结温度 降至1100℃,但温度仍然较高,其等静压成型使成本增加。
孔慧等:高能球磨5h即可制备纯度较高、晶粒尺寸较小的以 ZnO为主的混合粉体,最佳烧结温度1000℃比一般的固相法烧 结温度降低了100-300℃,大大节省了生产成本。
随着烧结温度的升高,电位梯度显著变小。
C: 添加剂是否预处理的影响 粉体预处理后制得的样品的电位梯度更大。
1.1.2 振动球磨
以球或棒为介质,介质
在粉碎室内振动,冲击物料
使其粉碎,可获得小于 2μm 的粒子达 90 %,甚至可获得 0.5μm的纳米粒子。
振动球磨机结构示意图
振动球磨
参考资料1 高能振动球磨法制备纳米SiCp/Al复合材料的研究
的碳化钨粉,经300h的球磨后获得纳米碳化钨粉,且
干磨粉末粒度更为均匀(5~10nm),而湿磨粉末粒
度分布较宽(1~50nm)。
中南大学粉末冶金国家重点实验室的吴恩熙等人的 研究发现:

采用振动球磨对粗、中、细碳化钨粉均有显著的 细化效果。振动球磨制取超细碳化钨的最小粒度 取决于球磨强度、球磨时间和球料比。
滚筒式球磨
参考资料1
1)高能球磨制备ZnSe纳米晶粉体 车俊 姚熹 姜海青 汪敏强,西安交通大学,
《稀有金属材料与工程》-2006
将相同摩尔比的Zn粉和Se粉放在球磨罐(WC)中,选用球石 直径为10mm,原料:球石=1:20,干磨,在氮气保护下, 球磨60min即可获得纯立方闪锌矿结构,避免了ZnO相的出 现。晶粒的尺寸用Scherrer公式计算为5nm,用TEM直接观 察的尺寸为10nm左右。
参考资料3
周勇敏. 高能球磨法制备纳米铋粉的研究.润滑与密 封,2006.10 南京工业大学
纳米铋粉由于特殊的性能在冶金添加剂、润滑油添加剂、 催化剂、医药、半导体原料等具有广阔的应用前景, 但有关 制备纳米铋粉的报道并不多见。
A:实验原料和设备 原 无水乙醇、PVP、硬脂酸均为分析纯, 铋粒;国产高能 行星磨, 4个不锈钢金属罐中分别配有<2cm的金属球20枚, <1cm的金属球100枚。
1)安全性问题
对于易燃、易爆物料,其粉碎生产过程中还会伴随有燃 烧、爆炸的可能性。
2)纳米机械粉碎极限
在纳米粉碎中,随着粒子粒径的减小,被粉碎物料的结 晶均匀性增加,粒子强度增大,断裂能提高,粉碎所需的机 械应力也大大增加。因而粒度越细,粉碎的难度就越大。粉 碎到一定程度后,尽管继续施加机械应力,粉体物料的粒度 不再继续减小或减小的速率相当缓慢,这就是物料的粉碎极 限。
3) 对相变温度影响
摘要:为了探讨球磨作用对纳米Al2O3颗粒相变温度的影响, 利用高能振动球磨机分别对纳米Al2O3进行不同时间的球磨, 并将球磨作用后的Al2O3粉末在不同温度下进行退火处理。 结果:随着球磨时间的增长, Al2O3的相变温度降低,当球磨时 间达50h时,γ-Al2O3到θ-Al2O3相变以及θ-Al2O3到αAl2O3相变的温度均降低了100℃左右;球磨作用促进了Al2O3 的晶化,同时可以造成纳米氧化铝的晶格缺陷,是导致相变温 度降低的主要原因。
未被N2气保护的ZnSe样品
被N2气保护的ZnSe样品
参考资料2
高能球磨制备大容量贮氢合金电极材料 环保意识增强呼唤电动汽车。电动汽车的关键之一是 要有大容量充电电池。目的:针对电动汽车用电池负极材 料。 西安交通大学正在开发的高能球磨MgNi合金电池负极 材料,处于国内先进,可做为大容量充电电池的负极候选 材料,为进一步开发制备大容量合金负极,进而开发大容 量充电电池奠定基础。
第八章 第二节 纳米粒子的制备方法
纳米材料的主要形式
纳米粒子
纳米线
纳米带
纳米管
纳米膜
纳米固体材料
纳米材料的分类 按结构:
零维纳米材料:指空间三维尺度均在纳米尺度以内的 材料,如 纳米粒子、原子团簇等。 一维纳米材料:有两维处于纳米尺度的材料,如纳米 线 纳米管。 二维纳米材料:在三维空间有一维在纳米尺度的材料, 如超薄膜。 三维纳米材料(纳米固体材料):指由尺寸小于20nm 的超微颗粒在高压力下压制成型,或再经一定热处理 工序后所生成的致密性固体材料。纳米固体材料的主 要特征是具有巨大的颗粒间界面,如5 nm颗粒所构成 的固体每立方厘米将含1019个晶界,从而使得纳米材 料高韧性。

1963年,Ryozi Uyeda等人用气体蒸发(或“冷凝”) 法获得了较干净的超微粒,并对单个金属微粒的形貌和 晶体结构进行了电镜和电子衍射研究。
1984年,Gleiter等人
用同样的方法制备出了 纳米相材料TiO2。
纳米粒子制备方法评述
可以制备金属氧化物、 制备了各种金属及合 氮化物、碳化物、超导 金化合物等几乎所有 材料、磁性材料等几乎 物质的纳米粒子 所有物质的纳米粒子。 高能球磨、振动、
气相法笼统划为化学法不合适,
把粉碎法全归为物理方法也不合适。
将块状物质粉碎、细 化,从而得到不同粒 径范围的纳米粒子。 由小极限原子或 分子的集合体人 工合成超微粒子。
纳米微粒合成技术要求

纳米微粒的纯度及表面干净程度;
纳米微粒的平均粒径及粒度分布;
纳米微粒的晶型及晶相稳定度; 纳米粉体是否容易团聚; 能长时间运转、容易收集、安定而保存性良好; 生产成本符合商业化运转。
打破以上平衡,可采取的一个重要方法就是加 入助磨剂。助。磨剂: 助磨剂定义:在超细粉碎过程中,能够显著提高
粉碎效率或降低能耗的化学物质称为助磨剂。
例如:
A:在干法研磨水泥熟料时加入乙二醇作为助磨剂,产率 可提高25~50%;
B: 在湿法球磨锆英石时加入0.2%的三乙醇胺法需注意的问题:
1 制备纳米粒子的物理方法
1.1机械粉碎法 粉碎作用力的类型
粉碎定义:固体物料粒子 尺寸由大变小过程的总称, 它包括“破碎”和“粉 磨”。前者是由大料块变 成小料块的过程,后者是 由小料块变成粉体的过程。
基本粉碎方式:压碎、剪碎、冲击粉碎和磨碎。 种类:湿法粉碎
干法粉碎
一般的粉碎作用力都是几种力的组合,如球磨机
介质:一般使用球形研磨 介质,其平均直径小于 6mm 。 用 于 纳 米 粉 碎 时 , 一般小于3mm。
特点:不出现死角、临界转速的限制、 减小磨球直径的办法来提高磨球的总 撞击几率。
参考资料1
【关键词】搅拌磨; 超细SiO2粉; 操作参数; 助磨剂;
相关文档
最新文档