数学建模插值法

合集下载

第3讲 数学建模的插值法

第3讲 数学建模的插值法
返回
8
分段线性插值
y o
Ln ( x ) y j l j ( x )
j 0 n


xj-1 xj xj+1 xn x
x0
x x j 1 , x j 1 x x j n越大,误差越小. x j x j 1 x x j 1 l j ( x) , x j x x j 1 lim Ln ( x) g ( x), x0 x x j x j 1 n 0, 其它 9
f (x, y) (ax b)(cy d)
其中有四个待定系数,利用该函数在矩形的四个顶 点(插值节点)的函数值,得到四个代数方程,正 好确定四个系数。 返回
23
用MATLAB作网格节点数据的插值
z=interp2(x0,y0,z0,x,y,’method’)
被插值点 的函数值
插值 节点
计算量与n无关;
xn

1 g ( x) , 6 x 6 2 1 x
用分段线性插值法求插值,并观察插值误差.
1.在[-6,6]中平均选取5个点作插值(xch11)
2.在[-6,6]中平均选取11个点作插值(xch12)
3.在[-6,6]中平均选取21个点作插值(xch13)
4.在[-6,6]中平均选取41个点作插值(xch14) To MATLAB xch11,xch12, xch13,xch14
被插值点
插值方法
要求x0,y0单调; x,y可取为矩阵, 或x取行向量,y取 为列向量,x,y的值 分别不能超出x0,y0 的范围。
‘nearest’ 最邻近插值 ‘linear’ 双线性插值 ‘cubic’ 双三次插值 缺省时, 双线性插值

数学建模数学实验插值及案例

数学建模数学实验插值及案例

数学建模数学实验插值及案例在科学研究和工程实践中,数学建模扮演着至关重要的角色。

通过建立数学模型,我们可以对现实世界的现象进行模拟和预测。

其中,插值方法是一种重要的数学建模工具,用于估计在给定数据点之间的未知值。

本文将探讨插值方法的基础理论以及一个具体的数学实验案例。

插值方法是一种数学技术,通过在给定的数据点之间估计未知的值。

最常用的插值方法包括线性插值、多项式插值和样条插值等。

线性插值是最简单的插值方法,它将数据点之间的变化视为线性的,即变化率保持恒定。

多项式插值方法则通过构建一个多项式函数来逼近数据点的变化趋势。

样条插值则通过将数据点连接成平滑的曲线来进行插值。

本案例将利用多项式插值方法对房价进行预测。

我们收集了一组房屋价格数据,包括房屋的面积、房龄、位置等信息。

然后,我们使用多项式插值方法构建一个函数来描述房价与这些因素之间的关系。

通过调整多项式的阶数,我们可以控制模型的复杂性。

我们使用该模型来预测新的房价。

在本案例中,我们使用了200个样本数据进行训练,并使用另外100个数据点进行测试。

我们发现,通过增加多项式的阶数,模型的预测精度可以得到提高。

然而,当阶数增加到一定程度后,模型的性能改善不再明显。

我们还发现模型的预测结果对训练数据的分布非常敏感,对于分布偏离较大的新数据点,预测结果可能会出现较大误差。

通过本次数学实验,我们深入了解了插值方法在数学建模中的应用。

在实际问题中,插值方法可以帮助我们更好地理解数据的变化趋势和预测未知的值。

然而,插值方法也存在一定的局限性,如本实验中模型对训练数据分布的敏感性。

未来工作中,我们可以尝试采用其他更加复杂的模型,如神经网络、支持向量机等来提高预测精度。

我们还应充分考虑数据的分布特性,以提高模型的泛化能力。

插值方法是数学建模中的重要工具之一,它可以让我们更好地理解和预测数据的趋势。

通过本次数学实验,我们深入了解了多项式插值方法的工作原理和实现过程,并成功地将其应用于房价预测问题中。

数学建模插值与拟合

数学建模插值与拟合

数学建模插值与拟合数据插值与拟合插值与插值函数:已知由(可能未知或⾮常复杂)产⽣的⼀批离散数据,且个互异插值节点,在插值区间内寻找⼀个相对简单的函数,使其满⾜下列插值条件:再利⽤已求得的计算任⼀⾮插值节点的近似值,这就是插值。

其中称为插值函数,称为被插函数。

最⼩⼆乘拟合:已知⼀批离散的数据,互不相同,寻求⼀个拟合函数,使与的误差平⽅和在最⼩⼆乘意义下最⼩。

在最⼩⼆乘意义下确定的称为最⼩⼆乘拟合函数。

1)Lagrange插值法a.待定系数法:假设插值多项式,利⽤待定系数法即可求得满⾜插值条件的插值函数。

关键在于确定待定系数。

b.利⽤基函数的构造⽅法⾸先构造个满⾜条件:的次插值基函数,再将其线性组合即可得如下的Lagrange插值多项式:其中c.Lagrange插值余项注:上述两种构造⽅法所得的Lagrange插值多项式是⼀样的,即满⾜插值条件的Lagrange插值多项式是唯⼀的。

2)分段线性插值作分段线性插值的⽬的在于克服Lagrange插值⽅法可能发⽣的不收敛性缺点。

所谓分段线性插值就是利⽤每两个相邻插值节点作线性插值,即可得如下分段线性插值函数:其中特点:插值函数序列具有⼀致收敛性,克服了⾼次Lagrange插值⽅法的缺点,故可通过增加插值节点的⽅法提⾼其插值精度。

但存在于节点处不光滑、插值精度低的缺点。

3)三次样条插值三次样条插值的⽬的在于克服Lagrange插值的不收敛性和提⾼分段线性插值函数在节点处的光滑性。

所谓三次样条插值⽅法就是在满⾜下列条件:a.b.在每个⼦区间上是三次多项式的三次样条函数中寻找满⾜如下插值条件:以及形如等边界条件的插值函数的⽅法。

特点:三次样条插值函数序列⼀致收敛于被插函数,因此可通过增加节点的⽅法提⾼插值的精度。

4)插值⽅法的Matlab实现⼀维数据插值MATLAB中⽤函数interp1来拟合⼀维数据,语法是YI = INTERP1(X,Y,XI,⽅法)其中(X,Y)是已给的数据点,XI 是插值点,其中⽅法主要有'linear' -线性插值,默认'pchip' -逐段三次Hermite插值'spline' -逐段三次样条函数插值其中最后⼀种插值的曲线⽐较平滑例:x=0:.12:1; x1=0:.02:1;y=(x.^2-3*x+5).*exp(-5*x).*sin(x);plot(x,y,'o'); hold on;y1=interp1(x,y,x1,'spline');plot(x1,y1,':')如果要根据样本点求函数的定积分,⽽函数⼜是⽐较光滑的,则可以⽤样条函数进⾏插值后再积分,在MATLAB 中可以编写如下程序:function y=quadspln(x0,y0,a,b)f=inline(‘interp1(x0,y0,x,’’spline’’)’,’x’,’x0’,’y0’);y=quadl(f,a,b,1e-8,[],x0,y0);现求six(x)在区间[0,pi]上的定积分,只取5点x0=[0,0.4,1,2,pi];y0=sin(x0);I=quadspln(x0,y0,0,pi)结果得到的值为 2.01905,精确值为2⼆元函数插值:MATLAB中⽤函数interp2来拟合⼆维⽹格(X,Y)上的数据Z,语法是YI = INTERP2(X,Y, Z,XI, YI,⽅法)其中(X,Y,Z)是已给的数据点,(XI,YI)是插值点坐标,其中⽅法主要有'linear' -线性插值,默认'pchip' -逐段三次Hermite插值'spline' -逐段三次样条函数插值其中最后⼀种插值的曲⾯⽐较平滑例:[x,y]=meshgrid(-3:.6:3,-2:.4:2);z=(x.^2-2*x).*exp(-x.^2-y.^2-x..*y);[x1,y1]=meshgrid(-3:.2:3,-2:.2:2);%⽣成⽹格,x1和y1均为同样size的矩阵z1=interp2(x,y,z,x1,y1,’spline’); %z1是矩阵,size 和x1,y1相同surf(x1,y1,z1);axis([-3,3,-2,2,-0.7,1.5]);-33如果数据不是在⽹格上取的,则可⽤函数griddata 来解决语法是YI = griddata(X,Y, Z ,XI, YI ,‘v4’)其中(X , Y ,Z )是已给的数据点,(XI ,YI )是插值点坐标,其中除了⽅法‘v4’外还有 'linear' -线性插值,默认 'cublc' -逐段三次Hermite 插值 'nearest' 其中‘v4’⽅法⽐较好例x=-3+6*rand(200,1); %⽣成随机点的x坐标向量xy=-2+4*rand(200,1); %⽣成随机点的y坐标向量yz=(x.^2-2*x).*exp(-x.^2-y.^2-x.*y); % 上述点的样本值向量z[x1,y1]=meshgrid(-3:.2:3,-2:.2:2); %⽣成⽹格,x1和y1均为同样size的矩阵z1=griddata(x,y,z,x1,y1,’v4’);surf(x1,y1,z1);axis([-3,3,-2,2,-0.7,1.5]);⽣成的图类似上图。

插值算法的介绍及其在数学建模中的应用

插值算法的介绍及其在数学建模中的应用

插值算法的介绍及其在数学建模中的应⽤⽬录插值算法的介绍及其在数学建模中的应⽤%本⽂根据清风数学建模课程插值算法及相关资料总结⽽成,仅供学习使⽤%本⽂参考了(),对介绍的顺序及内容进⾏了改进%由于本⽂仅仅是简要介绍插值算法在建模中的应⽤,因此样条插值的可微性证明等各种复杂繁琐的部分在本⽂中不再引⼊%本⽂仅介绍⼀维数据的插值,多维数据的插值⽅法与⼀维插值类似⼀、插值的介绍及其作⽤数模⽐赛中,常常需要根据已知的样本点进⾏数据的处理和分析,⽽有时候现有数据较少或数据不全,不⾜以⽀撑分析的进⾏,这时就需要使⽤插值法“模拟产⽣”⼀些新的但⼜⽐较靠谱的值来满⾜需求,这就是插值的作⽤。

%在直观上,插值就是找到⼀个连续函数使其经过每个样本点%插值法还可⽤于短期的预测问题(插值与拟合经常会被弄混,为了区分,这⾥简要介绍⼀下拟合:即找到⼀个函数,使得该函数在最⼩⼆乘的意义下与已知样本点的总体差别最⼩,该函数不⼀定要经过样本点。

通常情况下,拟合要求已知样本点的数据较多,当数据较少时不适⽤)⼆、插值法原理三、插值法的分类%注:下⾯的1、2、3、4 并⾮是并列关系,⼏个部分之间也有交叉,⽬的在于逐渐引出数学建模中最常⽤的两种插值⽅法:三次样条插值与三次埃尔⽶特插值。

1、普通多项式插值多项式插值中,拉格朗⽇插值与⽜顿插值是经典的插值⽅法,但它们存在明显的龙格现象(下⾯会解释龙格现象),且不能全⾯反映插值函数的特性(仅仅保证了插值多项式在插值节点处与被插函数有相等的函数值)。

然⽽在许多实际问题中,不仅要求插值函数与被插值函数在所有节点处有相同的函数值,它也需要在⼀个或全部节点上插值多项式与被插函数有相同的低阶甚⾄⾼阶的导数值。

对于这些情况,拉格朗⽇插值和⽜顿插值都不能满⾜。

因此,数学建模中⼀般不使⽤这两种⽅法进⾏插值,这⾥也不再介绍这两种⽅法。

龙格现象(Runge phenomenon): 1901年,Carl Runge 在他的关于⾼次多项式插值风险的研究中,发现⾼次插值函数可能会在两端处波动极⼤,产⽣明显的震荡,这种现象因此被称为龙格现象。

数学建模---插值法

数学建模---插值法

数学建模---插值法插值法
插值法定义
构造⼀个函数,需要这个函数完全过给定点
对于构造函数:
插值⽅法
拉格朗⽇插值法(插值多项式)
1.
三个点时
2.
n个点时
拉格朗⽇插值不⾜ — 龙格现象
当插值函数的阶数越⼤时,在两端的波动极⼤,会产⽣明显的震荡分段插值
n
1. 分段线性插值
每两个点之间分别构成⼀个线段,只⽤到了最近的两个点
2. 分段⼆次插值
选最近的n个已知点,构造n-1次函数
例如:选最近的3个点,构造⼀个⼆次函数
3.
⽜顿插值法例如:



点上两个⽜顿插值只有⼀项不想同,所以⽜顿插值法具有继承性
以上三种⽅法都没有反应被插值函数的导数
4. 埃尔⽶特(Hermite)插值法不但要求在节点的函数值相等,也要求对应的导数值也相等,甚⾄更⾼阶导数也相等分段三次埃尔⽶特插值运⽤了⼀阶导数相等
内置函数:
x ...x 0n −1x ...x 0n
5. 三次样条插值
运⽤了⼆阶连续可微 且 每个区间
是三次多项式
内置函数:
n
维数据插值[x ,x ]i i +1。

数学建模之Newton 插值法

数学建模之Newton 插值法
15h0称为步长此时可以使用差分来简化newton插值公式教材上简称为差分定义为一阶向前差分16高阶差分二阶向前差分规定17定义不变算子阶差分的具体表达式1822差分表matlab相关函数
计算方法
第二章
插值法
—— Newton 插值法
1
Newton 插值
为什么 Newton 插值
Lagrange 插值简单易用,但若要增加一个节点时,全部基函 数 lk(x) 都需重新计算,不太方便。
13
插值举例
可以看出,当增加一个节点时,牛顿插值公式只 需在原来的基础上增加一项,前面的计算结果仍 然可以使用。与拉格朗日插值相比,牛顿插值具 有灵活增加节点的优点!
注:增加插值节点时,须加在已有插值节点的后面!
14
向前差分
在实际应用中,通常采用等距节点: xi = x0 + i h ,i = 1, 2, …, n h>0,称为步长
Nn(x)
f [ x, x0 , ... , xn ]( x x0 )...(x xn1 )( x xn )
Rn(x)
10
Newton 插值公式
f (x) = Nn(x) + Rn(x)
N n ( x ) a0 a1 ( x x0 ) a2 ( x x0 )( x x1 ) an ( x xi )
f ( k ) ( ) f [ x0 , x1 , , xk ] k!
差商的等价定义:(教材上的所采用的定义) f [ x0 , , xk 2 , xk ] f [ x0 , , xk 1 ] f [ x0 , x1 , , xk ] xk xk 2 若 h(x) = c f(x),则 h[ x0 , x1 ,, xk ] c f [ x0 , x1 ,, xk ] 若 h(x) = f(x) + g(x),则 h[ x0 , x1 ,, xk ] f [ x0 , x1 ,, xk ] g[ x0 , x1 ,, xk ]

数值分析在数学建模中的应用

数值分析在数学建模中的应用数值分析是数学中的一个重要分支,它主要研究用计算机计算方法解决数学问题的理论和方法。

在数学建模中,数值分析发挥着非常重要的作用,可以帮助我们更好地理解和解决实际问题。

本文将探讨数值分析在数学建模中的应用。

一、插值法插值法是数值分析中常用的一种方法,其基本思想是根据一些已知的数据点,推导出这些数据点之间的未知数值。

在数学建模中,我们常常需要根据给定的数据点去估计其他数据点的数值。

插值法可以帮助我们根据已知数据点推导出未知数据点,从而更好地分析和处理问题。

二、数值解微分方程微分方程在数学建模中是非常重要的,它描述了很多现实世界中的现象和规律。

但是有些微分方程很难或者无法通过解析方法求解,这时就需要借助数值分析的方法。

数值解微分方程可以帮助我们模拟和预测各种现象的发展趋势,为实际问题的研究和应用提供帮助。

三、最优化问题在数学建模中,有很多问题可以归结为最优化问题,即在一定条件下寻找使某个函数值达到最大或最小的变量取值。

数值分析中的最优化方法可以帮助我们求解各种最优化问题,例如线性规划、非线性规划等。

这些方法可以有效地提高问题的求解效率,为决策提供重要的参考依据。

四、线性代数问题线性代数在数学建模中也占据着重要地位,许多实际问题可以用线性代数的方法进行建模和求解。

在数值分析中,我们可以通过矩阵运算、线性方程组等方法解决各种线性代数问题,从而更好地理解和处理实际问题。

这些方法在计算机科学、金融工程、物理学等领域都得到了广泛的应用。

五、误差分析数值分析中的另一个重要问题是误差分析,即通过分析数值计算中的误差来源和传播规律,评估数值计算的可靠性和准确性。

误差分析可以帮助我们提高数值计算的精度和稳定性,避免因误差累积导致的计算结果不准确。

在数学建模中,误差分析是不可或缺的一部分,可以帮助我们更加准确地理解和解决实际问题。

综上所述,数值分析在数学建模中发挥着重要的作用,可以帮助我们更好地理解和解决各种实际问题。

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度.插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。

相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍.§1 数据插值方法及应用在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。

与此有关的一类问题是当原始数据),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。

1、分段线性插值这是最通俗的一种方法,直观上就是将各数据点用折线连接起来.如果b x x x a n =<<<= 10那么分段线性插值公式为n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11111 =≤<--+--=----- 可以证明,当分点足够细时,分段线性插值是收敛的。

其缺点是不能形成一条光滑曲线。

例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分mm ).根据地图的比例,18 mm 相当于40 km 。

根据测量数据,利用MATLAB 软件对上下边界进行线性多项式插值,分别求出上边界函数)(2x f ,下边界函数)(1x f ,利用求平面图形面积的数值积分方法—将该面积近似分成若干个小长方形,分别求出这些长方形的面积后相加即为该面积的近似解。

2021年数学建模插值及拟合详解

插值和拟合欧阳光明(2021.03.07)实验目的:了解数值分析建模的方法,掌握用Matlab进行曲线拟合的方法,理解用插值法建模的思想,运用Matlab一些命令及编程实现插值建模。

实验要求:理解曲线拟合和插值方法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。

实验内容:一、插值1.插值的基本思想·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数 y= f(x)产生;·构造一个相对简单的函数y=P(x);·使P通过全部节点,即 P (xk) = yk,k=0,1,…, n ;·用P (x)作为函数f ( x )的近似。

2.用MATLAB作一维插值计算yi=interp1(x,y,xi,'method')注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值方法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值)。

注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

练习1:机床加工问题机翼断面下的轮廓线上的数据如下表:x 0 3 5 7 9 11 12 13 14 15y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 用程控铣床加工机翼断面的下轮廓线时每一刀只能沿x方向和y方向走非常小的一步。

表3-1给出了下轮廓线上的部分数据但工艺要求铣床沿x方向每次只能移动0.1单位.这时需求出当x坐标每改变0.1单位时的y坐标。

试完成加工所需的数据,画出曲线.步骤1:用x0,y0两向量表示插值节点;步骤2:被插值点x=0:0.1:15; y=y=interp1(x0,y0,x,'spline');步骤3:plot(x0,y0,'k+',x,y,'r')grid on答:x0=[0 3 5 7 9 11 12 13 14 15 ];y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ];x=0:0.1:15;y=interp1(x0,y0,x,'spline');plot(x0,y0,'k+',x,y,'r')grid on3.用MATLAB作网格节点数据的插值(二维)z=interp2(x0,y0,z0,x,y,’method’)注:z—被插点值的函数值;x0,y0,z0—插值节点;x,y—被插值点;method—插值方法(‘nearest’:最邻近插值;‘linear’:双线性插值;‘cubic’:双三次插值;缺省时:双线性插值)。

数学建模插值算法

数学建模插值算法插值算法是数学建模中一种常用的技术,用于在已知数据点处的估计和未知数据点之间的预测。

插值算法可以帮助我们充分利用已知数据点的信息,获得更完整和连续的数据。

在数学建模中,插值算法有多种方法可选,常见的包括拉格朗日插值、牛顿插值、样条插值等。

拉格朗日插值是最常见和简单的插值方法之一、它的基本思想是通过构造一个n次多项式来近似通过已知数据点的曲线。

具体地说,我们可以根据已知数据点的横纵坐标,构造出n个满足这些坐标的插值基函数。

然后,将这些插值基函数分别与相应基函数在未知数据点处取值的乘积相加,得到插值多项式。

最后,利用这个多项式来估计未知数据点的纵坐标。

牛顿插值是另一种常用的插值方法。

它的基本思想是使用差商的概念来创建一个n次多项式。

差商是一个递归定义的概念,其基本思想是通过逐步添加一个已知数据点来计算多项式的高次项系数。

具体地说,我们可以根据已知数据点的横纵坐标,构造出n个差商。

然后,将这些差商与相应基函数在未知数据点处取值的乘积相加,得到插值多项式。

最后,利用这个多项式来估计未知数据点的纵坐标。

样条插值是一种更加复杂但更精确的插值方法。

它的基本思想是通过构造一组n次多项式的集合,使得每个多项式在相应数据点处完全符合已知数据。

具体地说,我们可以根据已知数据点的横纵坐标,构造出n个多项式,并设置它们在数据点处的约束条件。

然后,通过求解一个线性方程组来计算每个多项式的系数。

最后,利用这组多项式来估计未知数据点的纵坐标。

以上是数学建模中常用的几种插值算法,它们各有优缺点,在不同情景下有着不同的适用性。

插值算法在实际应用中具有广泛的用途,例如地图绘制、图像处理、信号处理等领域。

在进行插值计算时,要根据实际情况选择适当的算法,并合理处理计算误差,以提高插值结果的准确性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙格现象
Runge在上个世纪初发现: 在[-5,5]上用n+1个等距节点作n次插值多项式Pn(x), 当在n→∞时,插值多项式Pn(x)在区间中部趋于 f(x)=1/(1+x2) , 但对于3.63≤∣x∣≤5的x,Pn(x)严重ห้องสมุดไป่ตู้散。 用图形分析问题。
for n=10:2:20 %从10等份到20等份 x0=[-5:10/n:5]; %插值节点 y0=1./(1+x0.^2); %插值节点处的精确函数值 x=[-5:0.1:5]; %要进行计算函数值的点 y=lagrange(x0,y0,x); %调用函数计算x点的函数值 plot(x0,y0,’*’,x,1./(1+x.^2),’r’,x,y) %绘制图形 pause %等待,按任意键 end
k =0
n
即为拉格朗日插值公式 拉格朗日插值公式,其中 拉格朗日插值公式
插值基函 数
lk ( x ) =
( x − x0 ) L ( x − xk −1 )( x − xk +1 ) L ( x − xn ) ( xk − x0 ) L ( xk − xk −1 )( xk − xk +1 ) L ( xk − xn )
插值法
2 1.5
1
0.5
0
-0.5 -5
-4
-3
-2
-1
0
1
2
3
4
5
问题
一水库上游河段降暴雨, 一水库上游河段降暴雨,根据预报测算上游流入水库的流量为 立方米/ Q(t) (102立方米/秒) : t (时) 8 12 16 24 30 44 48 56 时 Q(t) 36 54 78 92 101 35 25 16 ( ) 60 13
interp1(x0,y0,x,’method’)
二维插值的MATLAB实现
在MATLAB中,二维插值命令常用的有两个, 1、一个是网格节点插值: 、一个是网格节点插值: z=interp2(x0,y0,z0,x,y,’method’) 其中, z:被插值点处的函数值; x0,y0,z0:插值节点, x0,y0为向量,z0是矩阵,其列 数等于x0的长度,行数等于y0的长度; x,y:被插值点;
1200 ≤ x ≤ 4000, 1200 ≤ y ≤ 3600
山体地貌
要在某山区方圆大约27平方公里范围内修建一条公路,从山脚出发经 过一个居民区,再到达一个矿区。横向纵向分别每隔400米测量一次, 得到一些地点的高程:
X 1200 Y 1200 1600 2000 2400 2800 3200 3600 1130 1320 1390 1500 1500 1500 1480 1600 1250 1450 1500 1200 1200 1550 1500 2000 1280 1420 1500 1100 1100 1600 1550 2400 1230 1400 1400 1350 1550 1550 1510 2800 1040 1300 900 1450 1600 1600 1430 3200 900 700 1100 1200 1550 1600 1300 3600 500 900 1060 1150 1380 1600 1200 4000 700 850 950 1010 1070 1550 980
0 0 0
3 1.8 1.2
5 2.2 1.7
7 2.7 2.0
9 3.0 2.0
11 3.1 2.0
12 2.9 1.8
13 2.5 1.2
14 2.0 1.0
15 1.6 1.6
二维插值
前面的命令interp1()是一维插值,现实中有很多问题 需要二维插值. 二维插值是基于与一维插值同样的基本思 想.
(2)分段三次埃尔米特插值法 定义:
已知n+1个不同节点x0,x1,…,xn ,构造分段多项式I(x),使之满足: I(xk)=yk, I’(xk)=y’k, ; I(x)在[xi,xi+1]上是三次次多项式。
4、三次样条插值法
对于给定n+1个不同节点x0,x1,…,xn及函数值y0,y1,…,yn, 其中a=x0<x1<…<xn=b,构造三次样条插值函数S(x)。 S(x)称为三次样条函数时需满足: S(x)在[a,b]上二阶导数连续; S(xk)=yk (k=0,1,…,n); 每个子区间[xk,xk+1]上S(x)是三次多项式(k=0,1,…,n)。
x y
x0 y0
x1 y1
x2 y2
… …
xn yn
怎样计算其它点的函数值?
二、问题的解决
两种方法: (1)函数插值 插值; 插值 (2)曲线拟合 拟合. 拟合
三、插值法
定义: 非常复杂或未知时, 定义:当精确函数 y = f(x) 非常复杂或未知时,在一系 测得函数值 列节点 x0 … xn 处测得函数值 y0 = f(x0), … ,yn = f(xn), , 由此构造一个简单易算 简单易算的近似函数 由此构造一个简单易算的近似函数 p(x) ≈ f(x),满足条件 , p(xi) = f(xi) (i = 0, … n)------ 插值条件 称为f(x) 的插值函数; 插值函数; 这里的 p(x) 称为 构造插值函数的方法为插值法。 构造插值函数的方法为插值法。 插值法 插值多项式;构 当 p(x)为多项式时,我们称p(x)为插值多项式 插值多项式 造插值多项式的方法称为多项式插值法 多项式插值法. 多项式插值法
(2)拉格朗日插值的matlab实现
function y=lagrange(x0,y0,x) % x0插值节点, y0插值节点处 的函数值,x要计算函数值的 点; n=length(x0); %计算x0的长度 m=length(x); %计算x的长度 for i=1:m s=0; z=x(i);
for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); %计算插值基函数 end end s=p*y0(k)+s; end y(i)=s; %计算在x(i)处的函数值(拉格 朗日) end
for n=4:2:10 %从4等份到10等份 x0=[-5:10/n:5]; %插值节点 y0=1./(1+x0.^2); %插值节点处的精确函数值 x=[-5:0.1:5]; %要进行计算函数值的点 y=lagrange(x0,y0,x); %调用函数计算x点的函数值 plot(x0,y0,'b-*',x,1./(1+x.^2),'r',x,y,'k') %绘制图形 pause %等待,按任意键 end
四、插值法的matlab实现
命令:interp1(x0,y0,x,’method’) 其中:x0:插值节点; y0:插值节点处的函数值; x:要计算函数值的点;
method:
l i n e a r :分段线性插值; 分段线性插值; c u b i c :分段三次埃尔米特插值; s p l i n e :三次样条插值。
3、分段低次插值法
(1)分段线性插值
定义: 已知n+1个不同节点x0,x1,…,xn ,构造分段多项式I(x),使之满 足 I(x)在[a,b]上连续; I(xk)=yk; I(x)在[xi,xi+1]上是一次多项式; I(x)= yk
x − xk +1 x − xk + yk +1 , x ∈ [ xk , xk +1 ] xk − xk +1 xk +1 − xk
其中:
f[x0,x1] f[x0,x1,x2,…,xn] 一阶差商 n阶差商
注:牛顿插值法与拉格朗日插值法,同一个多项式,不同的表达 方式,但是计算量不一样,牛顿插值法的计算量小。 这两种方法在MATLAB 中没有现成的命令和函数,因为它们存在 龙格现象。
牛顿插值法的matlab实现
function Y=newpoly(x,y,X) %牛顿插值 n=length(x); D=zeros(n); D(:,1)=y'; for j=2:n %计算差商矩阵 for k=j:n D(k,j)=(D(k,j-1)-D(k-1,j-1))/(x(k)-x(k-j+1)); end end C=D(n,n); for k=(n-1):-1:1 %构造插值多项式 C=conv(C,poly(x(k))); m=length(C); C(m)=C(m)+D(k,k); end Y=polyval(C,X);
通过这个预报值,估计14 时上游流入水库的流量. 通过这个预报值,估计14 和 20 时上游流入水库的流量.
在一天24小时内 从零点开始每间隔2小时测得的环境温度为 小时测得的环境温度为(摄 在一天 小时内, 从零点开始每间隔 小时测得的环境温度为 摄 小时内 氏度) 氏度 12,9,9,10,18,24,28,27,25,20,18,15,13 推测在每一分钟时的温度. 推测在每一分钟时的温度
给定数据表:
x lnx 0.4 -0.916291 0.5 -0.693147 0.6 -0.510826 0.7 -0.356675 0.8 -0.223144
计算ln(0.54)的值.
一、问题的提出
在生产和实验中,关于函数f(x),经常存在两种情况: (1)其表达式不便于计算; (2)无表达式, 而只有函数在给定点的函数值,
3、
下表给出的x 数据位于机翼端面的轮廓线上, 下表给出的x、y数据位于机翼端面的轮廓线上,Y1和Y2分 别对应轮廓的上下线。假设需要得到x坐标每改变0 别对应轮廓的上下线。假设需要得到x坐标每改变0.1时的 坐标,试完成加工所需数据,画出曲线. y坐标,试完成加工所需数据,画出曲线.
相关文档
最新文档