软土地基的工程特性和加固处理
软土地基的工程特性及处理方法

软土地基的工程特性及处理方法
软土地基是指土质较为松软、含水量较高的土壤,具有一定的工程特
性和处理方法。
下面将从软土地基的工程特性和处理方法两个方面进行阐述。
1.可压缩性:软土地基具有较大的可压缩性,因为土壤颗粒间的相互
作用较弱,土壤中的空隙率较高,水分含量也较高,容易受到外界荷载的
压实。
2.强度低:软土地基的强度较低,属于不稳定土,容易发生流变变形
和液化等现象。
3.渗透性差:软土地基的渗透性较差,由于土壤颗粒之间的间隙较大,水分在土壤中的移动速度较慢。
软土地基处理方法:
1.排水处理:对于软土地基,排水是解决问题的关键。
可以采用表层
排水和深层排水相结合的方式,通过建设排水沟、排水管道等设施,将土
壤中的过剩水分排除,提高土壤的稳定性。
2.土体改良:通过加入改良剂,如石灰、水泥等,改变软土地基的物
理和化学性质,提高其抗压强度和稳定性。
3.加固和加筋:可以采用加筋土壤、挤密法、灰固法等方法加固软土
地基,增加土体的抗压强度和稳定性。
4.预压和加固:通过对软土地基施加预压荷载,使其产生初始压实度,减小土体的压缩性,提高土壤的强度和稳定性。
5.地下排水系统:在软土地基下设置地下排水系统,通过排水井、排
水管道等设施引导和控制地下水的流动,减小地基的液化风险。
综上所述,软土地基的工程特性包括可压缩性、强度低和渗透性差等,针对软土地基的处理方法主要包括排水处理、土体改良、加固和加筋、预
压和加固以及地下排水系统等。
简述软土地基的处理方法及原理

简述软土地基的处理方法及原理软土地基指的是土质较松软、承载力较低的地基。
由于软土的特性,软土地基在工程建设中容易出现沉降、坍塌、液化等问题,给工程的安全和稳定性带来了很大的隐患。
因此,对软土地基的处理成为了工程建设中的重要环节。
软土地基的处理方法主要包括加固处理和改良处理两种。
加固处理的主要目的是提高软土地基的承载力和稳定性,而改良处理则是通过改变软土的物理和化学特性,使其具备较好的工程性质。
下面将分别介绍这两种处理方法的原理和常用的技术手段。
1. 加固处理:加固处理主要通过加固软土地基的强度和稳定性,使其能够承受工程荷载。
常用的加固处理方法有土方加固、排浆加固、土钉加固和地下连续墙等。
土方加固是指通过在软土地基上加铺一层较厚的填土层,形成一个较为坚硬的荷载传递层,以增加软土地基的承载能力。
排浆加固则是通过人工或机械的方式将软土中的过多水分排除,降低软土的含水量,提高土体的密实度和强度。
土钉加固是一种常用的软土地基加固技术,它通过在软土地基中钻孔,然后在孔内灌注水泥浆,最后将钢筋或钢丝绳固定在孔中,形成一个稳定的土钉墙体。
地下连续墙则是在软土地基中挖掘连续的墙体,以增加土体的整体稳定性。
2. 改良处理:改良处理是通过改变软土地基的物理和化学特性,使其具备较好的工程性质。
常用的改良处理方法有固结预压、土壤改良剂和桩基处理等。
固结预压是指通过施加较大的垂直加载荷载,使软土地基发生固结和压实,从而增加土体的密实度和强度。
这种方法适用于软土地基厚度较大、承载力较低的情况。
土壤改良剂是一种将化学改良剂加入软土中,通过与土体中的颗粒发生化学反应,使颗粒之间产生胶结作用,从而提高土体的强度和稳定性。
常用的土壤改良剂有石灰、水泥、粉煤灰等。
桩基处理是一种常用的软土地基改良方法,它通过在软土地基中打入桩体,增加软土地基的承载能力和稳定性。
常用的桩基处理方法有灌注桩、钻孔灌注桩和静力压桩等。
软土地基的处理方法虽然多种多样,但其核心原理都是通过增加软土地基的承载能力和稳定性,或者改变土体的物理和化学特性,使其满足工程的要求。
剖析软土地基基础设计要点

剖析软土地基基础设计要点软土地基是指土层的承载力低、变形大,水分含量高,具有较强的可压缩性和剪切变形性的土壤,因此在基础建设中,软土地基的处理是非常关键的。
本文将就软土地基的基础设计要点进行剖析。
一、软土地基的工程特性软土地基具有以下特点:1.承载力低:软土地基的承载力一般在5MPa以下,较差的软土地基甚至在1MPa以下。
2.变形大:软土地基的变形大,随着土层深度的增加,一般会出现较大的沉降量。
3.含水量高:软土地基大多数含水量高,特别是在降雨季节时,含水量更容易增加。
4.压缩性强:软土地基的压缩性很强,因此需要控制压缩变形,避免对建筑物和其它附属设施产生影响。
二、软土地基基础设计要点软土地基的基础设计需要结合土壤的特性和环境条件进行综合考虑,下面主要介绍软土地基基础设计的几个要点。
1.进行深基础由于软土地基的承载力低,因此需要采用深基础来保证建筑物的稳定,通常采用桩基和埋深较深的基础。
桩基的选择需要考虑土层的性质,采用钻孔灌注桩、钢桩、预应力桩、螺旋桩等。
2.加固软基软土地基需要做好加固处理,通过加固软基可以有效地提高软土地基的承载力,减少沉降,提高基础的安全性和使用寿命。
加固软基可采用多种方法,例如喷浆加固、挖土换土加固、加填垫层等。
3.控制建筑物的沉降为了减少建筑物的沉降,软土地基的设计需要控制压缩变形,通常采用压实或预压技术来控制沉降。
在预构造期间,建筑物需要进行预压,使软基在接受建筑物荷载时能够达到更稳定的状态。
4.采用适当的基础形式软土地基的基础形式应该采用适合的形式,比如采用块状基础、连续墙基础、沉井基础等。
5.合理设计排水系统为了控制软土地基中含水量的增加,需要建立合理的排水系统,使地下水位得到有效控制。
排水方法可采用自然排水、引导排水、泵引排水等。
总之,软土地基的基础设计需要结合土层的特性和环境条件进行综合考虑,采用适当的基础形式和加固措施,以保证建筑物的安全和稳定。
软土地基常见五种加强方法

软土地基常见五种加强方法软土地基指的是土质较松软、承载力较低的地基。
针对软土地基,常常需要采取加固措施,提高其承载力和稳定性。
下面是常见的五种软土地基加强方法:1. 桩基础桩基础是一种常见且有效的软土地基加固方法。
通过在软土地基中钻孔,然后注入混凝土或者钢筋混凝土,形成桩身,提供更强的承载能力。
桩基础可分为钻孔灌注桩、钻孔扩孔灌注桩和钻孔灌注桩等多种形式。
选择适合的桩基础形式需考虑土质、承载力要求和施工条件等因素。
2. 加固土壤软土地基的加固方法之一是通过改良土壤的力学性质来提升其承载力。
常用的土壤加固方法包括土壤固化、土壤改良和土壤置换等。
土壤固化是利用特定化学物质或固化剂处理软土,使其变得更加坚固。
土壤改良则是通过添加辅助材料,如水泥、石灰等,改变土壤的物理和化学性质。
土壤置换是将软土替换成更好的土壤或者填充材料,提高地基的承载能力。
3. 硬土法硬土法是将软土地基表层挖除,然后通过回填硬土、石渣、碎石等坚实的材料,形成硬土层,提高地基的承载力。
硬土法相对简单,施工方便,适用于软土地基面积较大的工程。
但需要注意选择合适的填料材料,并保证填充层的均匀性和稳定性。
4. 地基槽法地基槽法是在软土地基上开挖地基槽,然后在槽内设置加固设施,如加固墙、加固板等。
加固设施通过增加地基的横向支撑力来提高地基的承载能力。
地基槽法适用于在软土地基上建设深层建筑物或者需要较大承载力的工程。
5. 钻孔加固法钻孔加固法是通过在软土地基上进行钻孔,然后注浆或注入加固材料,填充钻孔空隙。
加固材料可为水泥浆、聚合物浆液等。
钻孔加固法可以提升软土地基的承载力和稳定性,并具有施工便利和技术成熟的特点。
在选择软土地基加固方法时,需要综合考虑土质特性、承载力要求、施工条件和经济成本等因素。
合理的加固措施能有效提升软土地基的承载能力,确保工程的安全和稳定性。
软土地基的加固措施方法

减少地基变形
控制土体变形
通过加固土体、提高土体刚度等方法,减小在荷 载作用下产生的土体变形,包括压缩变形、剪切 变形等。
强化排水系统
完善地基排水系统,降低地下水位,减小孔隙水 压力,从而有效减小地基变形。
改善地基稳定性
01
提高抗滑稳定性
采用抗滑桩、挡土墙等结构措施,阻止地基土体 沿滑动面滑动,提高地基的抗滑稳定性。
02
控制地基沉降
通过加固处理,控制地基的沉降量,防止因不均 匀沉降导致的上部结构破坏,确保地基稳定性。
03
加固措施方法
土质改良法
01
改善土质性能
02
03
04
通过添加固化剂、石灰、水泥 等物质,改善土壤的物理和力 学性质,提高地基承载能力。
适用于土质较差、含水量较高 的软土地基。
优点:成本较低,施工简单, 能够显著提高地基强度。
地质构造与地层分布
地质构造复杂、地层分布不均的地区 ,加固措施应更为周密、综合。
材料与施工条件
加固材料性能
加固材料的力学性能、耐久性等 直接影响加固效果,应选用优质 材料。
施工技术与设备
施工技术和设备的先进性、适用 性对加固工程的实施和质量控制 具有重要作用。
经济与环境因素
工程造价与效益
加固措施的选择应综合考虑工程造价与长期效益,寻求经济合理的解决方案。
环境保护与可持续性
加固工程应符合环保要求,尽量采用环保、可持续的加固材料和施工技术。
THANKS
感谢观看
软土地基的特性
低承载力
软土地基的承载力较低,容易发生地基沉 降和变形。
低渗透性
软土的渗透性较差,地基排水不畅,容易 积水。
软土地基处理技术在建筑工程中的应用

软土地基处理技术在建筑工程中的应用软土地基是指土壤具有较高的含水量、弱的抗剪强度和较低的承载力的土地。
在建筑工程中,遇到软土地基是非常常见的情况。
由于软土地基的特性,会对建筑物的安全和稳定性产生影响。
为了解决这一问题,软土地基处理技术应运而生。
本文将探讨软土地基处理技术在建筑工程中的应用。
一、软土地基的特点软土地基具有以下几个特点:含水量高、抗剪强度弱、承载力低。
因为含水量高,软土地基对于建筑物的稳定性造成了威胁。
抗剪强度弱意味着在受力情况下,土壤会容易发生剪切破坏。
承载力低表示软土地基无法承受大的压力,会导致建筑物下沉和变形。
二、软土地基处理技术的种类1. 土体加固:通过注浆、振动法、排浆等方式,改善土壤结构,提高土壤的强度和稳定性。
2. 土体加厚:在软土地基上铺设填料层,增加地基的厚度,提高承载力。
3. 地基加固:采用板桩、灌注桩等手段加固地基,增加土壤的支撑能力。
4. 地基改造:使用加固材料或改良剂,改变软土地基的物理和化学性质,提高土壤的强度和稳定性。
三、软土地基处理技术的应用1. 基础工程:在建造建筑物的过程中,通过软土地基处理技术,可以保证建筑物的基础稳固并且能够承受重量。
例如,在高层建筑的地基处理中,常常会采用地基加固或地基改造的方式来提高土壤的承载能力。
2. 公路和桥梁建设:在公路和桥梁建设中,软土地基处理技术的应用可以有效地提高地基的质量和强度。
通过加固和加厚软土地基,可以预防地基沉降和变形,确保公路和桥梁的稳定性和耐久性。
3. 水利工程:水利工程常常需要在软土地基上修建堤坝、渠道等结构物。
软土地基处理技术可以增加软土地基的承载力,确保水利工程的安全性和稳定性。
4. 地下工程:地下隧道、地下车库等地下工程往往需要处理软土地基来保证施工的顺利进行。
软土地基处理技术可用于改善软土地基的物理性质,降低施工风险,并保证工程的稳定性。
四、软土地基处理技术的优势软土地基处理技术具有以下几个优势:1. 提高地基的承载力和稳定性,保证建筑物或工程的安全性和可靠性。
软土的工程地质特征

软土的工程地质特征
软土是一种土质,其工程地质特征在土木工程中至关重要。
以下是软土的一些主要工程地质特征:
流变特性:
软土的流变特性明显,容易发生变形。
其抗剪强度通常较低,导致在外部受力作用下容易发生滑动和沉降。
含水量高:
软土通常含水量较高,水分对其力学性质有显著影响。
含水量高会导致土体的稠密度较低,强度相对较差。
压缩性强:
软土的压缩性强,受外部荷载时容易发生沉降和变形。
这对建筑物和基础设施的稳定性构成挑战。
孔隙水压力:
软土中的孔隙水压力通常较高,这可能对基坑工程和基础工程产生负面影响。
在挖掘和建造过程中需要适当考虑孔隙水的影响。
可压缩性:
软土具有较高的可压缩性,当外部荷载作用于土体时,土体容易发生压缩,导致沉降。
地基沉降:
由于软土的流变特性和压缩性,地基沉降是在软土地区常见的问题。
这可能需要采取适当的加固和处理措施。
地震敏感性:
软土地区通常对地震较为敏感,可能导致液化等地震引发的地质灾害。
因此,在设计和施工中需要充分考虑地震因素。
土体不均匀性:
软土的物理和力学性质在空间上可能表现出较大的不均匀性,这对工程设计和施工提出了挑战。
在软土地区进行工程设计和施工时,需要根据软土的特性采取相应的地基处理、加固措施,以确保工程的稳定性和安全性。
这可能包括使用加固桩、地下连续墙、土体改良等方法。
建筑工程软土地基处理技术分析

建筑工程软土地基处理技术分析软土地基是指由软粘性土层组成的地基,是目前大多数城市建设中广泛存在的一种土地基。
由于软土地基的特性,如易沉降、易开裂、强度低、渗透性差等,使其在建设时成为经常面临的难题。
为了确保建筑工程的安全和稳定,需要对软土地基进行处理。
本文将分析当前主要的软土地基处理技术。
一、加固法加固法是常见的软土地基处理技术之一,常用的加固方法有土钉、CMC桩、水泥搅拌桩等。
其中,土钉加固技术的原理是在软土地基中加入钢筋或钢丝绳进行横向或纵向拉应力增强地基的承载力。
CMC桩是一种借鉴钢筋混凝土柱和灌注桩优点的新型复合地基处理技术,可有效提高地基承载力和稳定性。
水泥搅拌桩则能够在软土地基中形成坚硬的石灰土体,极大提高承载能力。
二、排水法排水法是通过排除软土地基中的孔隙水进行处理,主要用于减小软土地基的沉降量。
常用的排水技术包括立管抽水和灌淤法。
立管抽水法通常通过在地基区域内开挖井眼并插入管道,在海拔低于4.5米的情况下进行抽水,降低孔隙水位,使软土地基排水干燥并沉降。
灌淤法则是利用砂石装载淤泥进行人工填充来增强地基。
通过填充物的加压可挤出淤泥中部分的孔隙水,使地基变得更加坚硬和稳定。
三、发泡剂法发泡剂法是将发泡剂混合在水中,并在软土地基内注入水泥或其他材料来形成硬化体系的技术。
此技术能使软土体系中的孔隙率减小,同时增加软土体系的硬度和密度,用于增强和处理软土地基。
此技术可以提高承载力、抗沉降能力、稳定性以及改善土壤的渗透性。
综上所述,目前软土地基处理技术主要集中在加固法、排水法和发泡剂法三类,发泡剂法最为新颖,仍在研究阶段;排水法保持传统,适用范围较广;加固法在改进后,在已有基础上不断提高软土地基的施工质量和工程安全性。
但任何技术都不是万能的,根据具体情况选取合适的处理技术非常重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
软土地基的工程特性和加固处理
随着我国基础建设的飞速发展,高等级公路建设也得到了快速发展。
同时对线形指标的选用也随之提高,从而不可避免地带来公路路基穿过软土地区的情况。
因此,在软土地基上修筑路基已非常普遍。
对公路软土地基的成功处理,往往也成为提高建设速度、确保工程质量、降低工程造价的重要措施之一。
但在软土地基上修建道路时,若对地基处理不当,有可能因地基沉降或差异沉降过大而影响道路的正常使用功能。
软土地基的加固处理质量直接影响到路基的基础承载力,也是保证道路建成后安全、高效运营的关键。
所以选择合理的软基加固处理方案及方法并快速实施,从而取得预期的经济和社会效益,就具有重大的实际意义。
一、软土的工程特性与危害
(一)软土的定义
软土一般是指在静力或缓慢流水环境中以细颗粒为主的近代沉积物。
这类土的物理特性大部分是饱和的,含有机质,天然含水量大于液限,孔隙比大于1。
当天然孔隙比大于1.5时,称为淤泥,天然孔隙比大于1而小于1.5时,则称为淤泥质土。
工程上将淤泥、淤泥质土、泥炭、泥炭质土、冲填土、杂填土和饱和含水黏性土统称为软土。
(二)软土的工程特性
软土的性质与地基土的成层构造、沉积年代、成因类型有密切关系。
不同年代和成因的软土,其物理性质指标尽管可能相近,但作为地基,
工程性质却可能相差很大。
1.含水量较高。
因为软土的成分主要是由粘土粒组和粉土粒组组成,并含少量的有机质。
粘粒的矿物万分之二为蒙脱石、高岭石和伊利石。
这些矿物晶粒很细,呈薄片状,表面带负电荷,它与周围介质的水和阳离子相互作用,形成偶极水分子,并吸附于表面形成水膜,在不同的地质环境下沉积形成各种絮状结构。
因此这类土的含水量比较高。
2.透水性差。
软土的渗透系数一般在1×10-6~1×10-8cm/s之间,所以在荷载作用下固结速度很慢。
当地基中有机质含量较大时,土中可能产生气泡,堵塞渗流通道而降低其渗透性。
所以在软土层上的建筑物基础的沉降拖延很长时间才能稳定,同样在荷载作用下地基土的强度增长也是很缓慢的。
3.压缩性较高。
一般正常固结的软土层的压缩系数约为0.5~1.5Mpa-1,最大可达到4.5Mpa-1;压缩指数约为0.35~0.75。
天然状态的软土层大多数属于正常固结状态,但也有部分是属于超固结状态,近代海岸滩涂沉积为欠固结状态。
欠固结状态土在荷重作用下产生较大沉降。
超固结状态土,当应力未超过先期固结压力时,地基的沉降很小。
4.流变性强。
在荷载的作用下,软土承受剪应力的作用产生缓慢的剪切变形,并可能导致抗剪强度的衰减,在主固结沉降完毕之后还可能继续产生可观的次固结沉降。
(三)软土的工程危害
根据上述软土的特点,以软土作为公路的地基是十分不利的。
(1)地基抗剪强度不够引起路堤侧向整体滑动,边坡外侧土体隆起;(2)人工构造物与路堤衔接处产生差异沉降,引起跳车;
(3)路堤的变形以及地下水位过高,将导致路面的破坏。
因此,在软土地基上进行路基施工,都要求对软土地基进行处理。
其处理的目的主要是改善地基土的工程性质,达到满足建筑物对地基稳定和变形的要求,包括改善地基土的变形特性和渗透性,提高其抗剪强度和抗液化能力,消除其他不利的影响。
二、软土地基常见的加固方法
软土由于具有含水量高、压缩性大、透水性差和流变性强等工程特性,一般不能直接作为天然地基使用,需经过加固处理以减小道路路基在荷载作用下引起的沉降或不均匀沉降。
软土路基处理方法较多,分类也各有不同,常用的处理方法主要有:
(一)表层排水法
表层排水法是在路基填筑前,在地面开挖水沟,以排除地表水,同时降低地基表层的含水量,确保施工机械的作业条件,为了使开挖水沟在施工中发挥盲沟作用,常用透水性良好的砂砾回填。
水沟布设应全面考虑地形与土质情况,使排水畅通。
水沟断面尺寸一般取宽0.5m,深0.5~1.0m。
路堤填筑前,宜用砂砾回填成盲沟,若埋设孔管,必须用良好的过滤材料保护。
(二)强夯法
强夯法是反复将重锤提到高处使其自由落下夯击地基,从而使地基的
强度提高、压缩性得到降低的方法。
强夯法适用于处理碎石土、砂土、粉土、粘性土、杂填土和素填土等地基,它不仅能提高地基的强度、降低其压缩性、还能改善其抗振动液化的能力和消除土的湿陷性,所以还常用于处理可液化砂土地基和湿陷性黄土地基等。
强夯法对于饱和度较高的粘性土,一般来说处理效果不显著,尤其是淤泥和淤泥质土地基,处理效果更差。
因此在强夯时,为了取得更好的效果,根据软土的物理力学性质,可以采用综合加固方法进行,但是此种方法费用较高,对路基大面积采用得不偿失。
(三)换填法
换填法就是将基础地面以下不太深的一定范围内的软弱土层挖去,然后以质地坚硬、强度较高、性能稳定、具有抗侵蚀性的砂、碎石、卵石、素土、灰土、煤渣、矿渣等材料分层充填,并同时以人工或机械方法分层压、夯、振动,使之达到要求的密实度,成为良好的人工地基。
当地基软弱土层较薄,而且上部荷载不大时,也可直接以人工或机械方法进行表层压、夯、振动等密实处理,同样可取得换填加固地基的效果。
换填法适用于浅层地基处理,包括淤泥、淤泥质土、松散素填土、杂填土、已完成自重固结的回填土等地基处理以及暗塘、暗洪、暗沟等浅层处理和低洼区域的填筑。
换填法还适用于一些地域性特殊土的处理:用于膨胀土地基可消除地基上的胀缩作用,用于湿陷性黄土地基可消除黄土的湿陷性,用于山区地基可用于处理岩面倾斜、破碎、高低差,软硬不匀以及岩溶与土洞等,用于季节性冻土地基可
消除冻胀力和防止冻胀损坏等。
(四)土工合成材料法
土工合成材料是以人工合成的聚化物为原料制成的各种类型产品。
可置于岩土或其它工程结构内部、表面或各种结构层之间,具有过滤、防渗、隔离、排水、加筋和防护等多种功能,发挥加强、保护岩土或其它结构功能的一种新型岩土工程材料。
比如在土体中放置了筋材,构成了土体-筋材的复合体。
由于土的抗拉抗剪性能差,在土体中加筋,以筋材料为抗拉构件,与土产生相互摩擦作用,限制其上下土体及土体的侧向变形,等效于给土体施加了一个侧压力增量,从而增强土体内部的强度和整体性,提高土体的抗剪强度。
(五)水泥搅拌桩法
水泥搅拌桩加固软土地基的机理主要是通过水泥的水解和水化反应及水泥水化物与黏土的化学反应及碳酸化作用,而形成强度相对较高的桩体与桩周软土一起形成复合地基,以起到提高地基承载力、增强路基稳定性及减少路基沉降的作用。
水泥搅拌桩目前有喷浆法(湿法)和喷粉法(干法)之分,均通过深层搅拌机械将软土和固化剂强制搅拌,固化剂采用水泥浆液时,称为水泥浆搅拌桩法或湿法,固化剂采用水泥粉时,称为粉体搅拌桩法或干法。
一般认为湿法水泥剂量容易控制,搅拌均匀,成桩质量较为可靠,而干法喷粉量相对较难控制搅拌质量不容易控制,成桩质量相对较差,湿法质量有保证的成桩长度也比干法成桩长度大,但干法采用粉体作固化剂,不再向地基中附加
水分,反而能充分吸收软土的自由水,因此,加固后地基的初期强度较高,特别是对高含水量的软土加固效果显著,在国外得到广泛应用。
三、软土地基加固处理应考虑的因素
(一)路基状况
在路基加固中,在软土层浅而薄的情况下,常用简单的表层处理法。
重要的构造物基础常用开挖换填法。
若软土层较厚,应使用其他方法配合表层处理法。
夹有砂层且厚度较薄的软土层,一般采用表层处理法、强夯法等方法,即使是5cm的砂层也是有效排水层,在土质调查中不要遗漏。
软土层厚且无砂层的情况,因排水距离长,固结沉降需很长时间,强度也不增长。
因此,沉降处理常用表层排水法。
在浅层部位堆积有4m以上厚度砂层,以下为软弱粘土层的情况。
一般来说,稳定不成问题,只需沉降处理,常用强夯法。
(二)道路性质
我们知道,道路等级愈高,平整度愈重要,愈需要采取有效的沉降处理措施。
等级较低时,可先铺简易路面,待沉降结束后,再铺正式路面以节约资金。
同时路堤的设计高度与宽度也是选择处理方法时要考虑的重要因素。
如采用换填法时,宽而低的路堤易发生局部破坏;反之窄而高的路堤,下面易被换填。
在设计高度大而稳定有危险的情况下,采用强夯法将受到限制。
还有路堤越宽越高,则地基产生压力球的根部越深,而引起深处粘土层沉降。
(三)施工环境
不同的施工环境选用的处理方法不同,经济性也不同。
比如噪音、振动地基及地下水的变化和排出的泥水等,在选择施工方法时必须考虑。
同时在路堤高度较而地基特别软弱的情况下,周围地基经常发生大的隆起或沉降。
这样,在路堤坡脚附近有民房和重要构造物时,应考虑以减小总沉降量且控制剪切变形的方法为主要措施。
不能采用这类方法时,应考虑事先对可能受影响的构造物加以保护,否则应考虑以高架构造物代替路堤。
总之,软土地基的加固处理质量直接影响到路基的基础承载力,也是保证道路建成后安全、高效运营的关键,我们一定要加以重视。