Loop-Mediated Isothermal Amplification Integrated

合集下载

TwistDx应用介绍

TwistDx应用介绍

TwistDx产品专题英国TwistDx公司(前身为ASM科技有限公司)成立于1999年,基于英国剑桥Babraham研究院建立的生物技术公司。

该公司通过突破等温DNA扩增,开发的重组酶聚合酶扩增专利技术(RPA),被誉为DNA诊断领域的革命性创新。

日前,胜创生物公司已成功取得TwistDx的中国总代理权,TwistDx的各大产品均可在我司查询订购。

What is RPA?概念:重组酶聚合酶扩增(Recombinase Polymerase Amplification,RPA),被称为是可以替代PCR的核酸检测技术。

RPA技术主要依赖于三种酶:能结合单链核酸(寡核苷酸引物)的重组酶、单链DNA结合蛋白(SSB)和链置换DNA聚合酶。

这三种酶的混合物在常温下也有活性,最佳反应温度在37°C左右。

原理:重组酶与引物结合形成的蛋白-DNA复合物,能在双链DNA中寻找同源序列。

一旦引物定位了同源序列,就会发生链交换反应形成并启动DNA合成,对模板上的目标区域进行指数式扩增。

被替换的DNA链与SSB结合,防止进一步替换。

在这个体系中,由两个相对的引物起始一个合成事件。

整个过程进行得非常快,一般可在十分钟之内获得可检出水平的扩增产物。

Who uses RPA?以此为基础的TwistAmp® 核酸扩增产品,能够在15分钟内进行常温下的单分子核酸检测该技术对硬件设备的要求很低,特别适合用于体外诊断、兽医、食品安全、生物安全、农业等领域。

1 体外诊断2 寄生虫学3 水源食品安全4 科研教育5 生物防护6 农业7 测序8 生命科学Why RPA?特性:1.快速检测15min进行单分子检测试验2.简易包装稳定冻干形式试剂3.无需热循环过程摆脱任何仪器束缚4.便携设备要求低,贫瘠条件亦能完成检测文献支持超过40篇文献支持,详见/resources/publications部分文献:1.DNA DETECTION USING RECOMBINATION PROTEINS(/pmc/articles/PMC4074205/)2.Development of Recombinase Polymerase Amplification Assays for Detection of Orientia tsutsugamushi or Rickettsia typhi(/plosntds/article?id=10.1371/journal.pntd.0003884)3.Detection of Entamoeba histolytica by Recombinase Polymerase Amplification.(/pubmed/26123960)4. Development of reverse transcription RPA assay for avian influenzaH5N1 HA gene detection(/science/article/pii/S016609341500244X)产品展示产品详情产品名称货号规格储存检测方法TwistAmp Basic TABAS03KIT 96次-20℃终点检测:如凝胶电泳产品详情产品名称货号规格储存检测方法TwistAmp exo TAEXO02KIT 96次-20℃实时荧光定量检测产品详情产品名称货号规格储存检测方法TwistAmp nfo TANFO02KIT 96次-20℃测流层析试纸检测FAQ1. RPA能实现多重化吗?可以。

结核分枝杆菌诊断技术的发展及目前临床应用的新型诊断技术产品分析

结核分枝杆菌诊断技术的发展及目前临床应用的新型诊断技术产品分析

结核分枝杆菌诊断技术的发展及目前临床应用的新型诊断技术产品分析快速准确地诊断出结核分枝杆菌感染是控制和治疗结核病的前提和关键。

多年来,结核杆菌的诊断技术在不断地发展和创新,近年来,一些针对结核杆菌检测的新方法陆续被报道,一些新型的诊断技术产品也陆续上市。

本资料综述了结核杆菌的主要诊断方法,并对目前国际市场上广泛应用的商业化诊断技术产品进行了简要分析。

标签:结核分枝杆菌;诊断技术;分析Advance in diagnosis techniques of Mycobacterium tuberculosis and analysis of new diagnostic technologies and products in clinical applicationFENG?Meimei1??SU?Wenqin21.Haikou VTI Biological Institute,Haikou 570311,China;2.Department of Pharmacy,Hainan Medical College,Haikou 571199,China[Abstract] Fast and accurate diagnosis of Mycobacterium tuberculosis infection is the key and prerequisite to control and treatment tuberculosis.For many years,the diagnostic techniques of Mycobacterium tuberculosis have been developing and innovating.In recent years,some new techniques for Mycobacterium tuberculosis detection were reported and some new diagnostic products have been listed.This paper reviewed the main diagnosis techniques of Mycobacterium tuberculosis,and analysed briefly the commercialized diagnostic products which are used widely in the international market now.[Key words] Mycobacterium tuberculosis;Diagnosis;Analysis结核分枝杆菌(mycobacterium tuberculosis,MTB)是引起结核病的病原菌,可侵犯全身各器官,以肺结核最多见。

LAMP方法及其在病原微生物检测中的应用_吴禹熹

LAMP方法及其在病原微生物检测中的应用_吴禹熹
Abstract:As a new molecular biology technique,the loop-mediated isothermal amplification (LAMP)has the advantages of easy to operate,no need of specialized devices,low cost,short re- action time and so on.It has higher sensitivity and specificity than the common molecular biology techniques.It has been widely used in rapid and early infection by variety of pathogens including bacteria,virus and mycoplasmas.We reviewed the research progress on LAMP techniques and the diagnostic applications in the bacteria,viruses,Mycoplasma and other pathogens at home and a- broad,so as to understand the advantages and disadvantages of LAMP and application situation, and provide a reference for its widespread application in the future. Key words:loop-mediated isothermal amplification(LAMP);pathogen;detection

LAMP法介绍

LAMP法介绍

(8)
F1c F2c
3’ F1
B1 B2
5’ B1c
4
■ 原理(2) <LAMP法的扩增循环>
9. 首先在 (8)的结构中,以3’末端的F1区段为起点,以自身为模板进行DNA合成延伸。 此时5’末端的环状结构被剥离延伸。因为3‘末端环状的F2c区段处于单链状态,FIP引 物可以与之进行碱基配对,并以F2的3’末端为起点,一边剥离以F1为起点先合成的 DNA链,一边进行DNA合成延伸。
B1 B2 B1c
B1c
B2c B2
B1
BIP
B1c
F1
F2 F1c
B1c B2
B2c BIP B1
B1c (11)
5
LAMP法的操作步骤 -标准法-
■ 使用试剂
DNA的扩增:
RNA的扩增:
需要使用以下试剂: 4种不同的引物 (FIP、F3引物、BIP、B3引物) 链置换型DNA聚合酶 基质(脱氧核苷三磷酸) 反应缓冲液
用限制性内切酶Ear I 去消化扩增产 物,就会形成集中条带。再对这一条 带进行测序,结果证明它们全部都是 靶基因序列。
RNA的扩增实例(PSA mRNA)
PSA 表 达 mRNA 扩 增 试 验 , 左 图 是 把经过65℃1小时扩增的产物进行琼脂 糖凝胶电泳(浓度2%)的结果。在 100 万 个 PSA 非 表 达 的 K562 细 胞 中 混 在的1个及10个PSA表达细胞(LNCaP) 的mRNA发生了扩增。
钙黄绿素(鳌合剂)与试剂中的锰离子结合处于淬火状态。 扩增反应的副产物焦磷酸离子与锰离子结合释放钙黄绿素,淬灭状态解除,发 出黄绿色荧光
荧光目视检测的原理
鈣黃綠素 Mn2+

番茄环纹斑点病毒核衣壳蛋白N_的RT-LAMP_检测方法的建立

番茄环纹斑点病毒核衣壳蛋白N_的RT-LAMP_检测方法的建立

㊀山东农业科学㊀2023ꎬ55(11):176~180ShandongAgriculturalSciences㊀DOI:10.14083/j.issn.1001-4942.2023.11.026收稿日期:2023-05-28基金项目:福建省科技计划项目(2023J06040ꎬ2022R1024006)ꎻ福建省农业科学院科技项目(CXTD2021004-3ꎬXTCXGC2021011ꎬXTCXGC2021017)作者简介:罗海燕(1998 )ꎬ女ꎬ硕士研究生ꎬ研究方向为植物病理学ꎮE-mail:2679408148@qq.com通信作者:陈勇(1983 )ꎬ男ꎬ博士ꎬ副研究员ꎬ主要从事媒介昆虫与植物病毒互作研究ꎮE-mail:cheny0903@163.com郑雪(1980 )ꎬ女ꎬ博士ꎬ副研究员ꎬ主要从事媒介昆虫与植物病毒互作研究ꎮE-mail:Zhengxue05@163.com番茄环纹斑点病毒核衣壳蛋白N的RT-LAMP检测方法的建立罗海燕1ꎬ李恒1ꎬ陆承聪1ꎬ魏辉1ꎬ郑雪2ꎬ陈勇1(1.福建省农业科学院植物保护研究所/闽台作物有害生物生态防控国家重点实验室/农业农村部福州作物有害生物科学观测试验站ꎬ福建福州㊀350013ꎻ2.云南省农业科学院生物技术与种质资源研究所ꎬ云南昆明㊀650205)㊀㊀摘要:番茄环纹斑点病毒(TomatozonatespotvirusꎬTZSV)属正番茄斑萎病毒属(Orthotospovirus)ꎬ严重影响番茄㊁辣椒等作物的产量及经济价值ꎮ本研究根据TZSV的核衣壳蛋白N的基因序列设计逆转录环介导等温扩增(reversetranscriptionloop ̄mediatedisothermalamplificationꎬRT-LAMP)反应引物ꎬ建立了TZSV的RT-LAMP检测方法ꎮ结果显示ꎬ该方法能够特异扩增TZSVꎬ与侵染辣椒的番茄斑萎病毒和烟草花叶病毒不发生反应ꎻRNA最低检测限为0.01pg/μLꎬ灵敏度为普通逆转录PCR(RT-PCR)的10倍ꎻ田间样品检测应用结果表明ꎬRT-LAMP扩增和可视化检测结果与RT-PCR一致ꎮ综上ꎬ本研究建立的RT-LAMP快速检测方法可有效应用于TZSV的田间检测ꎮ关键词:番茄环纹斑点病毒ꎻ核衣壳蛋白Nꎻ逆转录环介导等温扩增技术ꎻ检测中图分类号:S432.4+1㊀㊀文献标识号:A㊀㊀文章编号:1001-4942(2023)11-0176-05EstablishmentofaReverseTranscriptionLoop ̄MediatedIsothermalAmplification(RT ̄LAMP)MethodforDetectingNucleocapsidProteinNofTomatoZonateSpotVirusLuoHaiyan1ꎬLiHeng1ꎬLuChengcong1ꎬWeiHui1ꎬZhengXue2ꎬChenYong1(1.InstituteofPlantProtectionꎬFujianAcademyofAgriculturalSciences/StateKeyLaboratoryforEcologicalPestControlofFujianandTaiwanCrops/FuzhouScientificObservingandExperimentalStationofCropPestsꎬMinistryofAgricultureandRuralAffairsꎬFuzhou350013ꎬChinaꎻ2.InstituteofBiotechnologyandGermplasmResourcesꎬYunnanAcademyofAgriculturalSciencesꎬKunming650205ꎬChina)Abstract㊀Tomatozonatespotvirus(TZSV)isaphytopathogenofthegenusOrthotospovirusꎬwhichcau ̄sessevereeconomicvalueandyieldlossoftomatoꎬpepperandothercrops.Inthisstudyꎬthereversetran ̄scriptionloop ̄mediatedisothermalamplification(RT ̄LAMP)primersweredesignedoriginallyusingthegenesequenceofthenucleocapsidproteinNofTZSVꎬandthenaspecificmethodwasestablishedforthedetectionofTZSVbyusingRT ̄LAMPmethod.TheresultsshowedthatthismethodcouldamplifyTZSVspecificallyꎬandcouldnotreactwithtomatospottedwiltvirusandtobaccomosaicvirus.ThelowestdetectionlimitofRNAwas0.01pg/μLꎬandthesensitivitywas10timesofthatofordinaryreversetranscriptionPCR(RT ̄PCR).TheRT ̄LAMPmethodwasappliedtodetectTZSVinfieldsamplesꎬandtheresultsofRT ̄LAMPamplificationandvisualinspectionwereconsistentwiththoseofRT ̄PCR.InconclusionꎬtheRT ̄LAMPrapiddetectionmethodestablishedinthisstudycouldbeeffectivelyappliedtothefielddetectionofTZSV.Keywords㊀TomatozonatespotvirusꎻNucleocapsidproteinNꎻReversetranscriptionloop ̄mediatediso ̄thermalamplification(RT ̄LAMP)ꎻDetection㊀㊀植物病毒病素有 植物癌症 之称ꎬ是导致作物减产和品质下降的主要因素之一ꎬ全球每年因植物病毒病害造成的经济损失高达300亿美元[1]ꎮ在已报道的1484种植物病毒病害中ꎬ70%以上由媒介昆虫传播[2]ꎮ番茄环纹斑点病毒(TomatozonatespotvirusꎬTZSV)属正番茄斑萎病毒属(Orthotospovirus)ꎬ于2005年在我国云南省被首次发现并报道ꎬ自然状态下主要侵染番茄(So ̄lanumlycopersicum)㊁辣椒(Capsicumannuum)㊁烟草(Nicotianatabacum)和马铃薯(Solanumtuberos ̄um)等20多种作物及杂草[3-4]ꎬ主要由西花蓟马(Franiklinellaoccidentalis)㊁梳缺花蓟马(F.shcu ̄letzi)㊁棕榈蓟马(Thripspalmi)等蓟马类昆虫以持久增殖型方式传播ꎬ也可通过机械摩擦传播[4]ꎮ近年来ꎬ除云南外ꎬ在北京㊁贵州及广西的辣椒㊁番茄产区也检测到该病毒病发生ꎬ危害有蔓延至周边省份的趋势[5]ꎮ建立一种高效㊁特异㊁灵敏的检测方法对TZSV的预警及发病规律研究具有重要意义ꎮ逆转录环介导等温扩增技术(reversetran ̄scriptionloop ̄mediatedisothermalamplificationꎬRT-LAMP)是将环介导等温扩增与逆转录反应相结合直接检测RNA的方法ꎬ当被检RNA与反应混合物中的pH指示剂耦合时ꎬ可通过颜色变化获得检测结果[6]ꎮRT-LAMP技术已被广泛应用于粮食㊁果树㊁蔬菜等农作物病毒病的检测[6-9]ꎮ李战彪等[9]建立了基于TZSVRNA聚合酶(RNA-dependentRNApolymeraseꎬRdRp)的RT-LAMP技术ꎮ但迄今国内外未见有利用该技术检测TZSV核衣壳蛋白N(nucleocapsidproteinN)的报道ꎮ本研究根据TZSV核衣壳蛋白N的基因序列设计RT-LAMP引物ꎬ建立快速高效㊁特异灵敏的TZSVRT ̄LAMP检测体系ꎬ以期为TZSV的鉴定及防控提供技术支持ꎮ1㊀材料与方法1.1㊀试验材料1.1.1㊀供试病叶及病毒㊀感染TZSV㊁番茄斑萎病毒(TomatospottedwiltvirusꎬTSWV)和烟草花叶病毒(TobaccomosaicvirusꎬTMV)的辣椒叶片均由云南省农业科学院生物技术与种质资源研究所提供ꎬ经RT-PCR检测确定病毒种类后ꎬ-80ħ保存备用ꎮ携带TZSV-N基因的质粒pTOPO-TZSV-N由福建省农业科学院植物保护研究所生物安全实验室构建并保存ꎮ1.1.2㊀主要试剂㊀TransZolPlant多糖植物总RNA提取试剂盒㊁EasyScriptReverseTranscriptase反转录试剂盒㊁Trans2kPlusDNAMarker㊁dNTPs均购自北京全式金生物技术有限公司ꎻBstDNA聚合酶㊁10ˑBstReactionBuffer购自生工生物工程(上海)股份有限公司ꎻSYBRGreenⅠ和甜菜碱购自北京索莱宝科技有限公司ꎻBst聚合酶㊁Mg ̄SO4购自NewEnglandBiolabs(美国)ꎻ其他试剂均为常规分析纯试剂ꎮ1.1.3㊀主要仪器㊀Bio-radT100PCR仪㊁MINI-PRATEA电泳仪㊁BioRadSYSTEMGelDocXR+凝胶成像系统均购自美国Bio-rad公司ꎮ1.2㊀试验设计与方法1.2.1㊀引物设计㊀根据GenBank中TZSV-N基因序列(登录号:MG656995.1)ꎬ利用PrimerEx ̄plorerV4软件设计RT-LAMP扩增引物ꎬ其中F3和B3为外引物㊁FIP和BIP为内引物(表1)ꎬ由福州尚亚生物技术有限公司合成ꎮ1.2.2㊀总RNA提取及cDNA合成㊀按照TransZolPlant试剂盒操作说明提取病叶总RNA(终浓度1μg/μL)ꎬ-80ħ保存备用ꎮ以RNA为模板ꎬ利用EasyScriptReverseTranscriptase试剂盒合成cDNAꎬ-20ħ保存备用ꎮ1.2.3㊀RT-LAMP和RT-PCR反应体系㊀25μLRT-LAMP反应体系:8U/μLBst2.0DNA聚合酶1μL㊁2.5mmol/LdNTPs4μL㊁25mmol/LMgSO44μL㊁10ˑBstDNABuffer2.5μL㊁20μmol/LBIP2μL㊁甜菜碱3.5μL㊁20μmol/LFIP2μL㊁10μmol/LB30.5μL㊁10μmol/LF30.5μL㊁cDNA模板2μLꎬ最后用ddH2O补至25μLꎮ反应条件:60ħ1hꎬ80ħ5minꎮ反应结束后ꎬ加入2.0μLSYBR771㊀第11期㊀㊀㊀㊀㊀㊀罗海燕ꎬ等:番茄环纹斑点病毒核衣壳蛋白N的RT-LAMP检测方法的建立GreenⅠ核酸染料ꎬ观察颜色反应ꎻ或取5μL扩增产物1%琼脂糖凝胶电泳后凝胶成像仪观察㊁拍照ꎮ㊀㊀表1㊀RT-LAMP及RT-PCR引物信息引物组引物引物序列(5ᶄ-3ᶄ)RT-LAMP-ⅠF3GGAAATATGAGTTTTGTGGTCATB3CTGGTACATTCAAACCGTATGFIPTCTGATGAAAGCTTCAGTCCTTTTA-TTGCTAGTAGTGCTGATGTBIPACCAGACTTATCAGCATGGCC-GGTAGTTCCATTGCCTTGACRT-LAMP-ⅡF3TGCTACAGATGAAACCACAAB3GCCAAAGGAAAGCAAACTGFIPTGGTACATTCAAACCGTATGCAG-AAACAAATGTATGTCAAGGCAATBIPAATTCATCAGCCATTAGACTGATGC-TGCTAATCCAGGAACGCTRT-LAMP-ⅢF3TGTCTAACGTCCGGAGTTB3TTGCATGCAGCAAACACTFIPGCCCTGGGTTTGGTCATCTG-TAACACAACAAAAGATTCACGABIPTTCAGCTTTGCCTCTTTCTATGAG-TTTCAGAATATTTATGCCAGTGTRT-PCRFAAAGATTCAAGAACTATTGGCTRTCTCAGTGAACTCCACGCTA㊀㊀25μLRT-PCR反应体系:10ˑBstReactionbuffer2.5μL㊁8U/μLBst2.0DNA聚合酶1μL㊁2.5mmol/LdNTPs4μL㊁10μmol/LTZSV-Ⅰ-F3及TZSV-Ⅰ-B3各0.5μL㊁cDNA模板2μL㊁ddH2O14.5μLꎮ反应程序:94ħ2minꎻ94ħ30sꎬ55ħ30sꎬ72ħ30sꎬ35个循环ꎻ72ħ2minꎮ1%琼脂糖凝胶电泳检测ꎮ1.2.4㊀特异性及灵敏度检测㊀分别以感染TZSV㊁TSWV㊁TMV的辣椒叶片总RAN为模版ꎬ利用建立的反应体系进行RT-LAMP扩增和1%琼脂糖凝胶电泳检测ꎬ与RT-PCR扩增结果对比ꎬ明确该方法的特异性ꎮ将感染TZSV的总RNA用RNase-freeH2O10倍梯度稀释(1.0ˑ10-1~1.0ˑ10-9)ꎬ以稀释后的RNA为模板ꎬ分别进行RT-LAMP和RT-PCR扩增ꎬ1%琼脂糖凝胶电泳检测扩增产物ꎬ比较两者的灵敏度ꎮ1.3㊀RT-LAMP方法的应用秋冬季从云南省采集疑似感染TZSV的辣椒叶片ꎬ提取总RNAꎬ利用本试验建立的RT-LAMP和普通RT-PCR体系扩增ꎬ1%琼脂糖凝胶电泳检测扩增产物ꎮRT-LAMP反应产物中加入2.0μLSYBRGreenⅠ核酸染料ꎬ阳性为绿色ꎬ阴性为橙色ꎮ2㊀结果与分析2.1㊀RT-LAMP引物筛选以质粒pTOPO-TZSV-N为模板ꎬ进行RT-LAMP反应ꎬ1%琼脂糖凝胶电泳检测表明ꎬ引物组Ⅰ产生典型的LAMP梯状条带ꎬ扩增效果最好ꎬ其余两组无明显的梯状条带(图1A)ꎻ终止反应后向反应液中加入SYBRGreenⅠꎬ可见引物组Ⅰ变为绿色ꎬ其余两组为橙色(图1B)ꎮ因此ꎬ选择第Ⅰ组引物进行特异性和灵敏度检测ꎮM:DNA分子质量标准(DL2000)ꎻ1㊁2㊁3:RT-LAMP引物组Ⅰ㊁Ⅱ㊁Ⅲꎮ图1㊀RT-LAMP检测辣椒叶片TZSV的琼脂糖凝胶电泳(A)和染色反应(B)2.2㊀RT-LAMP的特异性检测以TZSV阳性样本为阳性对照ꎬ健康植物样本为阴性对照ꎬ对TMV和TSWV阳性样本进行RT-LAMP检测ꎮ结果显示ꎬ只有TZSV阳性样品出现梯状条带ꎬ其它病毒和健康植物样本中未产生梯状条带ꎬ与RT-PCR检测结果相同(图2)ꎬ说明建立的TZSVRT-LAMP检测方法具有较强的特异性ꎮ871㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀M:DNA分子质量标准(DL2000)ꎻTMV:TMV阳性样本ꎻTSWV:TSWV阳性样本ꎻTZSV:TZSV阳性样本ꎻCK:健康植物样本ꎮ图2㊀TZSV的RT-LAMP(A)和RT-PCR(B)特异性检测2.3㊀RT-LAMP的灵敏度检测将1μg/μL的TZSV总RNA进行10倍梯度稀释ꎬ以不同浓度RNA为模板分别进行RT-LAMP和RT-PCR扩增ꎮ结果显示ꎬRNA浓度被稀释至0.01pg/μL(10-8)时ꎬRT-LAMP方法仍能检测出TZSV(图3A)ꎬ而RT-PCR只能检测到RNA浓度稀释至0.1pg/μL(10-7)的样品(图3B)ꎬ表明RT-LAMP检测方法的灵敏度是RT-PCR的10倍ꎮM:DNA分子质量标准(DL2000)ꎻCK:空白对照ꎻ10-1~10-9:梯度稀释总RNAꎮ图3㊀TZSV的RT-LAMP(A)和RT-PCR(B)灵敏度检测2.4㊀RT-LAMP技术的田间检测应用对采自云南省的疑似感染TZSV的辣椒叶片进行RT-LAMP和RT-PCR检测ꎮ结果显示ꎬ6份样品中利用RT-LAMP方法检测出4份TZSV阳性样品ꎬ与RT-PCR检测结果一致ꎮ向RT-LAMP反应产物中加入SYBRGreenⅠ核酸荧光染料ꎬ阳性样品迅速变为绿色ꎬ阴性样品为橙色ꎬ结果一致(图4)ꎮ综上ꎬ本研究建立的RT-LAMP检测法可用于田间辣椒TZSV快速检测ꎮM:DNAmarkerꎻ1~6:田间采集的辣椒叶片样品ꎻ7:阳性对照ꎻ8:阴性对照ꎮ图4㊀TZSV田间样品RT-PCR(A)㊁RT-LAMP(B)及可视化(C)检测3㊀讨论与结论关于TZSV的检测ꎬ目前已建立了血清学㊁电971㊀第11期㊀㊀㊀㊀㊀㊀罗海燕ꎬ等:番茄环纹斑点病毒核衣壳蛋白N的RT-LAMP检测方法的建立镜观察㊁分子生物学等技术[5]ꎮ与血清学㊁电镜观察等手段相比ꎬRT-PCR和RT-qPCR等分子生物学方法灵敏度较高㊁特异性较强ꎬ是TZSV检测最常用的方法[10]ꎬ但在日常病害诊断中耗时长㊁操作繁琐且受限于高精度的实验仪器ꎮ本研究根据TZSV的核衣壳蛋白N基因设计引物ꎬ建立了TZSV的RT-LAMP检测技术ꎬ具有操作简便㊁特异性和灵敏度高㊁反应时间短㊁无需贵重仪器等优点ꎬ扩增产物既可凝胶电泳检测ꎬ也可依据颜色变化可视化判定ꎬ为生产及科研单位快速诊断TZSV提供了技术支持ꎮ特异性是检测RT-LAMP技术最为重要的指标之一[11]ꎮTZSV是茄科作物上的重要病原菌ꎬ与正番茄斑萎病毒属(Orthotospovirus)代表种TSWV同为云南地区蔬菜上的优势病毒ꎬ常交替或同时发生[12]ꎮ李战彪等[9]报道了基于TZSV-RdRp的RT-LAMP检测方法ꎬ但未明确其是否能特异性区分TZSV与TSWVꎮ本研究以TZSV-N为靶标基因设计筛选了其RT-LAMP特异性引物ꎬ有效扩增到TZSVꎬ未扩增到TSWVꎬ表现出较高的特异性ꎮ通常ꎬRT-LAMP检测的灵敏度要高于普通RT-PCRꎮ本研究建立的TZSVRT-LAMP方法RNA浓度检测下限为0.01pg/μLꎬ是RT-PCR灵敏度的10倍ꎬ也略高于基于TZSV-RdRp的RT-LAMP方法[9]ꎮ此外ꎬ由于TZSV侵染引起的病症存在低温隐症现象ꎬ给病害的诊断造成一定困难ꎮ本研究对秋冬季采自云南的6份辣椒叶片疑似病样进行鉴定ꎬ检测结果与RT-PCR一致ꎬ表明建立的RT-LAMP检测技术对隐症或病毒含量较低的样品也可有效检测ꎮ综上ꎬ本研究建立的TZSV-N基因的RT-LAMP检测方法能够特异扩增TZSVꎬ灵敏度为RT-PCR的10倍ꎮ在RT-LAMP反应产物中加入SYBRGreenⅠ核酸荧光染料用肉眼观察即可判断样品是否感染TZSVꎬ该结论可为TZSV的鉴定及防控提供技术支持ꎮ参㊀考㊀文㊀献:[1]㊀NicaiseV.Cropimmunityagainstviruses:outcomesandfuturechallenges[J].FrontiersinPlantScienceꎬ2014ꎬ5:660. [2]㊀HeSꎬKrainerKMC.Pandemicsofpeopleandplants:whichisthegreaterthreattofoodsecurity?[J].MolecularPlantꎬ2020ꎬ13(7):933-934.[3]㊀DongJHꎬChengXFꎬYinYYꎬetal.Characterizationofto ̄matozonatespotvirusꎬanewtospovirusinChina[J].ArchivesofVirologyꎬ2008ꎬ153(5):855-864.[4]㊀ChenYꎬZhengXꎬWeiHꎬetal.Aplantvirusmediatesinter ̄specificcompetitionbetweenitsinsectvectorsinCapsicuuman ̄nuum[J].JournalofPestScienceꎬ2021ꎬ94(1):17-28. [5]㊀刘宇艳ꎬ张洁ꎬ陈勇ꎬ等.番茄环纹斑点病毒的研究进展[J].山东农业科学ꎬ2021ꎬ53(8):138-142. [6]㊀赵雪君ꎬ邓永杰ꎬ魏周玲ꎬ等.蔬菜中黄瓜花叶病毒的RT ̄LAMP快速检测[J].园艺学报ꎬ2016ꎬ43(6):1203-1210. [7]㊀姜珊珊ꎬ冯佳ꎬ张眉ꎬ等.甘薯羽状斑驳病毒RT-LAMP快速检测方法的建立[J].中国农业科学ꎬ2018ꎬ51(7):1294-1302.[8]㊀王永江ꎬ周彦ꎬ李中安ꎬ等.柑橘衰退病毒RT-LAMP快速检测方法的建立[J].中国农业科学ꎬ2013ꎬ46(3):517-524.[9]㊀李站彪ꎬ秦碧霞ꎬ蔡健和ꎬ等.番茄环纹斑点病毒RT ̄LAMP检测方法㊁引物组及其应用:ZL201310351007.3[P].2014-08-20.[10]徐弢ꎬ郑雪ꎬ张晓林ꎬ等.番茄环纹斑点病毒(TZSV)实时荧光定量PCR检测方法的建立[J].山东农业科学ꎬ2017ꎬ49(7):139-144.[11]戴婷婷ꎬ陆辰晨ꎬ郑小波.环介导等温扩增技术在病原物检测上的应用研究进展[J].南京农业大学学报ꎬ2015ꎬ38(5):695-703.[12]郑雪ꎬ陈永对ꎬ吴阔ꎬ等.2014年云南番茄㊁辣椒上番茄斑萎病毒属病毒与传毒蓟马的发生特点[J].南方农业学报ꎬ2015ꎬ46(3):428-432.081㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀山东农业科学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第55卷㊀。

环介导等温扩增技术

环介导等温扩增技术

延伸循环步骤

产物(10)和(10’)进入延伸循环步骤,分别
形成(11)和(11’);内部引物又可以(11)和(11’)
作为模板,引导链置换DNA 的合成,使产物的序
列不断延伸、环化、再延伸,最终的产物是一些
具有不同茎长度茎环结构的DNA 和带有许多环的
折叠结构的DNA 的混合物。
精品PPT
LAMP法实验室常规操作步骤
抽取、提纯样本DNA或RNA
环介导等温扩增技术(LAMP)法扩增
实时浊度检测或目视检测绿色荧光
精品PPT
精品PPT
精品PPT
精品PPT
优缺点
• 优点:灵敏度高(比传统的PCR方法高2~5个数量级); 反应时间短(30~60分钟就能完成反应);临床使用不需 要特殊的仪器(试剂盒研发阶段推荐用实时浊度仪);操 作简单(不论是DNA还是RNA,检测步骤都是需将反应液、 酶和模板混合于反应管中,置于水浴锅或恒温箱中63℃左 右保温30~60分钟,肉眼观察结果)。
• 缺点:灵敏度高,一旦开盖容易形成气溶胶污染,故在 进行试剂盒的研发过程中可采用实时浊度仪,不要把反应 后的反应管打开;引物设计要求比较高,有些疾病的基因 可能不适合使用环介导等温扩增方法。
精品PPT
精品PPT
精品PPT
应用
LAMP 技术因其快速、高效、特异、灵 敏和经济等优点,已经应用于病原菌、寄 生虫、病毒、疾病和转基因产品检测等领 域,并且还将广泛应用于临床诊断、环境 监测、食源安全等领域,具有更为广阔的 发展应用前景。
• BIP
B1末端延伸至形成一个环状构造(F1末端即3’端游 离);BIP 退火到茎环结构(8’)上,引导链置换DNA 合成反应,产生结构(9’)的产物;随后产物(9’)的 F1末端即3’ 端自动引导链置换DNA 的合成,生成产物 (10’)和茎环结构(8),产物( 8 )开始新一轮的循环 扩增。

Loop-mediated isothermal amplification 环介导等温扩增技术

Loop-mediated isothermal amplification 环介导等温扩增技术

样本前处理
• 简化样本提取DNA/RNA步骤 煮沸法、抽提液、自动化提取……
应用
• RT-LAMP:1步法,逆转录和扩增同时进行 • 原位LAMP • LAMP在核酸测序、SNP分型、DNA/PRO芯片有广泛 应用前景。 • 日本Eiken公司已开发包括禽流感、SARS、西尼罗河 病毒、牛胚胎性别检测等19种LAMP产品出售。 • 我国有20几种LAMP试剂盒申请了专利,但没有一个 通过FDA、SFDA认证。 • 在中国,产品主要覆盖猪、禽、结核、支原体、衣 原体、嗜血杆菌等。
LAMP的特点
• 特异性强:受非靶序列的影响小。 • 灵敏度高:与PCR相比,其检测极限更小,仅为几个拷贝。 • 等温高效:LAMP在等温条件下扩增,不会因温度改变而造 成时间的损失。耗时短。若再增加一对环引物,扩增时间能 缩短到30min内。 • 产物易检测,操作简便,反应不需PCR仪。 • 稳定性、精密度均符合试剂盒(研发)要求。 • 一次只能检测一个病原 • 引物设计比传统的PCR复杂,须用专业软件设计(免费)。 在200bp片段内选择6个设计区域,引物筛选周期2-3个月。 引物特异性 • 产物鉴定麻烦,需开管酶切,仅日本拥有LAMP产物测序技 术? • Cutoff值,检测仪器LA-320C实时浊度仪
扩增效率:107
原 理
温度 60~65℃是双链DNA复性及延伸的中间温度,DNA在65℃左右 处于松散的动态平衡状态。 酶 Bst DNA大片段聚合酶,能在引物配对双链DNA的互补部位进 行延伸扩增,同时将另一条链解离,变成单链。 引物 利用4条特异引物使链置换DNA合成在不停地自我循环。
• 副产物—— 焦磷酸镁的浊度检测:在核酸大量合成时,从dNTP析出的 焦磷酸根离子与反应溶液中的Mg离子 结合,产生副产物——焦磷酸 镁,白色沉淀,只要用肉眼观察或浊度仪在400nm光下,检测沉淀浊 度就能够判断扩增与否。

转基因大豆检测技术研究进展

转基因大豆检测技术研究进展

转基因大豆检测技术研究进展[摘要]大豆的转基因研究是国内外植物分子生物学研究的热点之一。

转基因大豆已成为世界大豆主产国大豆产业发展的主要动力。

由于转基因产品的安全性在世界范围内引起广泛关注,对转基因检测技术的要求也越来越高,因此,对转基因大豆检测技术的研究成为近年来研究的热点。

重点介绍以蛋白质和核酸为目标的检测技术,如EI。

ISA、PCR和基因芯片技术的最新进展,并对不同方法的优缺点进行比较,为转基因大豆快速检测方法的选择、改进和后续研究提供参考。

[关键词]转基因大豆;检测技术;蛋白质;核酸Abstract:Soybean transformation research is a/hot spot0in the area of plant molecular genetics. Transgenic soybean has become the important power of soybeans industry development in the worlds' major producers of soybean. The different points on potential ecological risks and the impact of transgenic products on human health attracted worldwide attention. With the increase of transgenic products, the transgenic detection technology requirements should be established and perfected. The advance in detection techniques of transgenic soybean were summarized focusing on the protein and nucleic acid for target detection technology,such as new research on ELISA,PCR and gene chip techn0109y,and their characteristic were compared to provide references for transgenic soybean fast detection selection,improvement and subsequent research.Key words:transgenosis soybean;detection technology;protein;nucleic acid.转基因大豆,是指利用转基因技术,通过基因工程方法导入外源基因所培育的具有特定性状的大豆品种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Loop-Mediated Isothermal Amplification Integrated on Microfluidic Chips for Point-of-Care Quantitative Detection of PathogensXueen Fang,†,‡Yingyi Liu,‡Jilie Kong,*,†and Xingyu Jiang*,‡Department of Chemistry and Institutes of Biomedical Sciences,Fudan University,Shanghai200433,P.R.China,and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety,National Center for Nanoscience and Technology,Beijing100190,P.R.ChinaThis work shows that loop-mediated isothermal amplifica-tion(LAMP)of nucleic acid can be integrated in an eight-channel microfluidic chip for readout either by the naked eye(as a result of the insoluble byproduct pyrophosphate generating during LAMP amplification)or via absorbance measured by an optic sensor;we call this system micro-LAMP(µLAMP).It is capable of analyzing target nucleic acids quantitatively with high sensitivity and specificity. The assay is straightforward in manipulation.It requires a sample volume of0.4µL and is complete within1h. The sensitivity of the assay is comparable to standard methods,where10fg of DNA sample could be detected under isothermal conditions(63°C).A real time quan-titativeµLAMP assay using absorbance detection is pos-sible by integration of opticalfibers within the chip.Pseudorabies virus(PRV)is the main pathogen of pseudora-bies,which would infect pigs with high mortality.Effective PRV detection is very important in the surveillance and control of the acute infectious disease.Traditional methods for PRV detection includes virus isolation,immunohistological assays,and various polymerase chain reactions(PCRs),which either consume unac-ceptably long time or demand sophisticated instruments for routine and large-scale assays or point-of-care detection.Loop-mediated isothermal amplification(LAMP)is a method for the amplification of nucleic acids,which amplifies DNA/RNA under isothermal conditions(60-65°C)with high specificity and sensitivity using a set of six specially designed primers and a Bst DNA polymerase.1Without the need to accurately toggle the reaction mixture between different temperatures normally re-quired for PCR,LAMP is a powerful tool for nucleic acid amplification and it has already been used widely in pathogen detection,such as human immunodeficiency virus(HIV),2severe acute respiratory syndrome coronavirus(SARS-CoV),3hepatitis B virus(HBV),4H5avian influenza virus,5and so forth.Although LAMP is more convenient and effective than technologies based on pathogen isolation,immunoassays,and PCRs,most of the methods for monitoring the process of LAMP are performed in macroscale tubes,often requiring at least tens to hundreds of microliters of solutions in polypropylene tubes,which severely limits the throughput/miniaturization of LAMP and the incorpora-tion of LAMP into automated and integrated diagnostic systems.Recent developments in microfluidics technology have enabled applications related to lab-on-a-chip or micrototal analysis systems. They allow the manipulation of small volumes of liquids in microfabricated channels and in some cases microchannels to perform all analytical steps including sample pretreatment,reac-tion,separation,and detection on a small chip in an effective and automatic format.6-8Microfluidics has been applied in many biological assays,such as electrophoresis,9immunoassays,10-14 nucleic acid amplification analysis,15-17cell manipulations18-21and*To whom correspondence should be addressed.E-mail:xingyujiang@ (X.J.);jlkong@(J.K.).†Fudan University.‡National Center for Nanoscience and Technology.(1)Notomi,T.;Okayama,H.;Masubuchi,H.Nucleic Acids Res.2000,28,E63.(2)Curtis,K.A.;Rudolph,D.L.;Owen,S.M.J.Virol.Methods2008,151,264–270.(3)Hong,T.C.;Mai,Q.L.;Cuong,D.V.J.Clin.Microbiol.2004,4,1956–1961.(4)Cai,T.;Lou,G.Q.;Yang,J.;Xu,D.;Meng,Z.H.J.Clin.Virol.2008,41,270–276.(5)Imai,M.;Ninomiya,A.;Minekawa,H.;Notomi,T.;Ishizaki,T.;Tashiro,M.;Odagiri,T.Vaccine2006,24,6679–6682.(6)Zheng,B.;Ismagilov,R.F.Angew.Chem.,Int.Ed.2005,44,2520–2523.(7)Whitesides,G.M.Nature2006,442,368–373.(8)Wang,J.B.;Zhou,Y.;Qiu,H.W.;Huang,H.;Sun,C.H.;Xi,J.Z.;Huang,b Chip2009,9,1831–1835.(9)Manz,A.;Harrison,D.J.;Verpoorte,E.M.J.;Fettinger,J.C.;Paulus,A.;Lu¨di,H.;Wider,H.M.J.Chromatogr.1992,593,253–258.(10)Jiang,X.Y.;Ng,J.M.K.;Stroock,A.D.;Dertinger,S.K.W.;Whitesides,G.M.J.Am.Chem.Soc.2003,125,5294–5295.(11)Yang,D.Y.;Niu,X.;Liu,Y.Y.;Wang,Y.;Gu,X.;Song,L.S.;Zhao,R.;Ma,L.Y.;Shao,Y.M.;Jiang,X.Y.Adv.Mater.2008,20,4770–4775. (12)Liu,Y.Y.;Yang,D.Y.;Yu,T.;Jiang,X.Y.Electrophoresis2009,30,3269–3275.(13)Shi,M.H.;Peng,Y.Y.;Zhou,J.;Liu,B.H.;Huang,Y.P.;Kong,J.L.Biosens.Bioelectron.2007,22,2841–2847.(14)Chen,H.;Jiang,C.M.;Yu,C.;Zhang,S.;Liu,B.H.;Kong,J.L.Biosens.Bioelectron.2009,24,3399–3411.(15)Northrup,M.A.;Ching,M.T.;White,R.M.;Watson,R.T.Proc.Tranducers1993,924–926.(16)Schaerli,Y.;Wootton,R.C.;Robinson,T.;Stein,V.;Dunsby,C.;Neil,M.A.A.;French,P.M.W.;deMello,A.J.;Abell,C.;Hollfelder,F.Anal.Chem.2009,81,302–306.(17)Huang,Y.Y.;Castrataro,P.;Lee,C.C.;Quake,b Chip2007,7,24–26.(18)Sun,Y.;Liu,Y.Y.;Qu,W.S.;Jiang,X.Y.Anal.Chim.Acta2009,650,98–105.(19)Chen,Z.L.;Li,Y.;Liu,W.W.;Zhang,D.Z.;Zhao,Y.Y.;Yuan,B.;Jiang,X.Y.Angew.Chem.,Int.Ed.2009,48,8303–8305.(20)Chen,Z.;Xie,S.B.;Shen,L.;Du,Y.;He,S.I.;Li,Q.;Liang,Z.W.;Meng,X.;Li,B.;Xu,X.D.;Ma,H.W.;Huang,Y.Y.;Shao,Y.H.Analyst2008, 133,1221–1228.Anal.Chem.2010,82,3002–300610.1021/ac1000652 2010American Chemical Society 3002Analytical Chemistry,Vol.82,No.7,April1,2010Published on Web03/10/2010so forth.Among these assays,nucleic acid amplification-based microfluidics is an active research bination of LAMP and microfluidic technology will miniaturize the LAMP detection system and facilitate the realization of point-of-care(POC)patho-gen detection.In this study,we integrate the LAMP on a microfluidic chip, which we call microLAMP(µLAMP)to quantitatively detect target nucleic acids with high sensitivity,specificity,and rapidity.This device potentially enables LAMP assays to be highly portable for on-site analysis.MATERIALS AND METHODSMaterials.Pseudorabies virus(PRV)derived from cell culture was provided by the Shanghai Entry-Exit Inspection and Quar-antine Bureau(SHCIQ).Total PRV genomic DNA used as the positive model was extracted using the QlAamp DNA Blood Mini Kit(Qiagen GmbH,Germany).This virus was used as the model for the development of theµLAMP assay for the following reasons: (1)as a real world virus,this model is more complex and challenging than a synthetic sequence of nucleic acids and(2) the surveillance of PRV is particularly important in countries(e.g., China)where pork is the predominant source of meat.Microfluidic Chip Design and Fabrication.A poly(dimeth-ylsiloxane)(PDMS)master with positive surface patterns was molded against a60mm×60mm poly(methyl methacrylate) (PMMA)glass fabricated by mechanical microfabrication.The PDMS replica was produced by soft lithography as the following: 19The PDMS precursor mixture prepared at a weight ratio of base to curing agent of10:1was poured carefully on the master, placed under vacuum for∼0.5h to rid the bubbles,and cured at 80°C for2h.The cured PDMS replica was gently peeled off the master,and the conically shaped inlet/outlet was drilled manually using a knife.(This kind of inlet/outlet was necessary for the con-venient and accurate addition of the DNA sample and at the same time making the capillary force available to transport the LAMP reaction mixture into microchannel.)Finally,the replica was irreversibly sealed with a microscope glass slide by an O2plasma to form a leak-proofµLAMP microchannel.Thefinal dimension of the microchannel is1mm×0.8mm×0.6mm with a volume of∼5µL.Setup for Real-Time Quantitative Analysis.A detection length of1.2mm was used in the real-time turbidity absorbance detection system while the volume of the microchannel remained to be5µL.The optical detection unit including opticalfibers(FU-76F,Keyence Corporation,Osaka,Japan)and digitalfiber optic sensor(FS-V31M,Keyence Corporation,Osaka)were applied in our system.Thefiber optic sensor employs a high-intensity red light-emitting diode(LED)light at640nm and a phototransistor. The launching and collecting opticalfibers with a265µm diameter core and400µm diameter cladding were inserted carefully into thefiber channels that oppose each other.The reduction of optical density was used to indicate the turbidity generation of the LAMP reaction:22,23optical density)ln(I/I1)=turbiditywhere I0is the intensity of incident light and I1is the intensity of transmitted light.Serial dilutions(10-fold)of PRV DNA ranging from105to10fg/µL were used as templates to evaluate the dynamics of LAMP amplification in microfluidic chips and establish standard curves for quantitative analysis.LAMP Amplification.The LAMP reaction was performed according to our previous work with minor modification.24The whole volume of the system was5µL,which contained1×ThermoPol buffer(New England Biolabs Inc.),8.0mM MgSO4, 0.8M betaine(Sigma,Germany),1.0mM dNTPs(Invitrogen), 0.2µM each of the outer primer(F3,CGCCTTCCTGCAC-TACG;B3,AGCGGGCCGTTGAAGA),1.6µM each of inner primer(FIP,AGAGGTGCACGGGGTAGAGCGGGCACGGT-GTCCATC AA;BIP,GGACGTCAACCGGCTCGTGG CGCGGG-TACACAAACTCCT),and0.8µM each of loop primer(LF, ACGCGCCACGCCTCGTGC;LB,CGACCCCTTCAACG CCAA), 0.32U/µL of Bst polymerase(large fragment;New England Biolabs Inc.)with0.4µL of nucleic acid sample as a template. The amplification was performed at63°C in a laboratory water bath for1h.The detection result was determined directly by the naked eye or afiber optic sensor according to the turbidity of the solution during LAMP amplification,which was then confirmed by agarose gel electrophoresis and restriction digestion with the Hinc II enzyme.Integrated Microfluidic LAMP Chip Operation.A sample containing0.4µL of nucleic acid wasfirst introduced via the inlet.A reaction mixture for LAMP(prepared manually according to the system above)of4.6µL was drawn slowly into the micro-channel by capillary force.The inlet and outlet were tightly sealed by uncured PDMS to form an integral microchamber for LAMP reaction.The whole microfluidic chip was incubated at63°C for 1h using a water bath.Thefinal results were analyzed by the naked eye or optical absorbance and confirmed by agarose gel electrophoresis.The presence of0.1%Triton X-100in the reaction mixture and the hydrophilicity of the PDMS replica(as a result of O2plasma treatment)could help completelyfill the micro-chamber without trapped air.25RESULTS AND DISCUSSIONFabrication of Microchips forµLAMP.We constructed a PDMS-glass hybrid microfluidic chip with eight5µL microchan-nels(Figure1).The microfluidic chip is easy to fabricate without using any precise valves or pumps.The LAMP reaction and readout could be simultaneously performed on the microchip.We prevented typical problems associated with the failure of DNA amplification in microchannels,such as bubble generation,reagent evaporation,cross contamination,by completelyfilling and sealing the microchamber with uncured PDMS in the conically shaped inlet/outlet while taking care to prevent entrapped gas.This method precludes any of the frequently encountered problems reported by researchers designing nucleic amplification micro-channels.26These advantages ofµLAMP are most likely due to(21)Go´mez-Sjo¨berg,R.;Leyrat,A.A.;Pirone,D.M.;Chen,C.S.;Quake,S.R.Anal.Chem.2007,79,8557–8563.(22)Mori,Y.;Kitao,M.;Tomita,N.;Notomi,T.J.Biochem.Biophys.Methods2004,59,145–157.(23)Lee,S.Y.;Huang,J.G.;Chuang,T.L.;Sheu,J.C.;Chuan,Y.K.;Holl,M.;Meldrum,D.R.;Lee,C.N.;Lin,C.W.Sens.Actuators,B2008,133,493–501.(24)Fang,X.E.;Xiong,W.;Li,J.;Chen,Q.J.Virol.Methods2008,151,35–39.(25)Ramalingam,N.;San,T.C.;Kai,T.J.;Mak,M.Y.M.;Gong,H.Q.Microfluid.Nanofluid.2009,7,325–336.(26)Shin,Y.S.;Cho,K.;Lim,S.H.;Chung,S.;Park,S.J.;Chung,C.;Han,D.C.;Chang,J.K.J.Micromech.Microeng.2003,13,768–774.3003 Analytical Chemistry,Vol.82,No.7,April1,2010the fact that µLAMP does not require changes in temperature,a protocol that may bring about problems such as bubble generation in PDMS.In this respect,µLAMP is particularly compatible with PDMS.As an isothermal DNA amplification device,our µLAMP chip did not require a precise thermal cycling module.A water bath or heat block alone was sufficient for performing the µLAMP,which would be more acceptable in resource-poor settings.Sensitivity and Specificity of the µLAMP.During LAMP amplification,a large amount of byproduct,a white precipitate of magnesium pyrophosphate,appears,leading to a turbid reaction mixture,which could be directly observed by the naked eye.27We incorporated this visual detection method in the µLAMP system.Such visual detection often suffers from low sensitivity in microchan-nels because of the short optical length.Lee et al.demonstrated the necessity of at least a volume of 25µL in the microchamber for the turbidity detection.Zhang et al.presented a 10µL volume LAMP microchamber for visual determination.28In our system,we designed an optical length of 800µm for turbidity detection of µLAMP while the reaction volume was reduced to 5µL.The sensitivity of the µLAMP was evaluated by the naked eye visual analysis and standard agarose gel electrophoresis using a series of PRV DNA dilutions (10-2to 10-8)as templates (original concentration of DNA sample was 10ng/µL).We observed that the detection limit of the assay was 10fg of DNA,100-1000-fold more sensitive than the standard PCRs for PRV detection (Figure 2).24The high sensitivity of our system was possibly attributable to the merits of Bst polymerase and loop-mediated mechanism of the amplification.1Otherwise,the turbidity in the microchannels did not decrease simultaneously with reduction of the initial DNA copies,which made the naked eye detection more powerful and effective (Figure 2A).To demonstrate the specificity of µLAMP,we applied a Hinc II restriction enzyme digestion assay.24Products of a band of predict-able size of ∼108bp were resolved on the gel after the Hinc II enzyme digestion assay,demonstrating that the target region of the nucleic acid was amplified specifically (Figure 3B,lane 2).To validate the specificity of µLAMP for PRV,we used viruses not targeted by the LAMP primers,namely,foot-and-mouth disease virus (FMDV),transmissible gastroenteritis of swine virus (TGEV),and porcine parvovirus (PPV)as control experiments.The result shows that µLAMP is highly specific and does not bring about cross-reaction from nontargeted viruses (Figure 3A).Moreover,the specificity of LAMP can be confirmed by the ladderlike pattern observed in gel electrophoresis (Figure 3B,lane 1).1,27Because of the very weak turbid signal of LAMP in the traditional PCR tube,many groups have developed other detection methods in recent years,such as various DNA staining methods,fluorescent LAMP primers,30fluorescent metal indicators,31and so forth.These methods typically rely on either complex equip-ment or sophisticated chemical synthesis.We can,however,easily observe the turbidity in the microchamber with the naked eye alone,which makes µLAMP suitable for integration into complex systems designed to be in a lab-on-a-chip format without having to resort to bulky equipments required in many complex methods.We ascribe the strong turbid signal in the microchamber to its larger depth-to-width ratio (DWR of the microchamber in our µLAMP and a typical PCR tube was 1.33and 1.00,respectively).In a word,the µLAMP established in our study using the direct naked eye detection was highly sensitive,specific,and could be(27)Mori,Y.;Nagamine,K.;Tomita,N.;Notomi,T.Biochem.Biophys.Res.Commun.2001,289,150–154.(28)Hataoka,Y.;Zhang,L.H.;Mori,Y.;Tomita,N.;Notomi,T.;Baba,Y.Anal.Chem.2004,76,3689–3693.(29)Vanoirschot,J.T.J.Clin.Microbiol.1991,5–9.(30)Mori,Y.;Hirano,T.;Notomi,T.BMC Biotechnol.2006,6,3.(31)Tomita,N.;Mori,Y.;Kanda,H.;Notomi,T.Nat.Protoc.2008,3,877–882.Figure 1.Eight-channel PDMS -glass hybrid microfluidic chip for LAMP:(A)photograph and (B)schematic drawing of an eight-channel PDMS -glass hybrid microfluidicchip.Figure 2.Sensitivity of the µLAMP:(A)direct naked eye detection.Channels 1-5show the white precipitate (channels appear white),while channels 6-8do not (channels appear dark).(B)Sensitivity of the LAMP determined by standard agarose gel electrophoresis.(1-7)DNA sample located at 10-2(105fg/µL),10-3(104fg/µL),...0.10-7(0.1fg/µL)dilutions,respectively,and (8)negativecontrol.Figure 3.The specificity of the µLAMP:(A)specificity of the µLAMP determined by nontargetted viruses;(1-5)PRV,FMDV,TGEV,PPV,and negative control,respectively.(B)The specific amplification confirmed by the Hinc II enzyme;(M)DL2000DNA marker,(1)ladderlike bands of µLAMP,(2)product of a band of predictable size of ∼108bp determined by the Hinc II assay,(3)negative control.3004Analytical Chemistry,Vol.82,No.7,April 1,2010conducted together with the amplification in one step without using any detection reagents or equipment.The notable merits of the µLAMP were compared with other methods,including polymerase chain reaction (PCR),enzyme-linked immunosorbant assay (ELISA),and direct virus isolation assay,which were demonstrated in Table 1.We believe that this method has great potential for developing point-of-care devices.µLAMP for Quantitative Analysis.To further show that µLAMP can be easily expanded for more sophisticated assays,we demonstrate that the µLAMP system could also be applied for the quantitative analysis via measuring the absorbance of the reaction mixture.Absorbance assay is a flexible and robust technology commonly used in microfluidic chips.32Because of the generation of turbidity in LAMP reaction,we performed the turbidity absorbance detection by integrating optical fibers in the microfluidic chip to realize real-time monitoring of the LAMP process and its quantitative analysis.We applied a single channel optical detection module with a 1.2mm detection length to develop the quantitative µLAMP (Figure 4).We obtained values of threshold time (Tt,defined as the reaction time necessary for samples to reach sufficiently positive signals above the baseline during real-time amplification)of µLAMP by measuring MPs from different initial concentrations of DNA template had different values of Tt,which can be related to the initial DNA concentration.Tt could be obtained by monitoring absorbance,which changes in real time as a result of the accumulation of precipitates.22We used serial dilutions (10-fold)of DNA templates from 105to 10fg/µL to generate standard dynamic curves by the optical µLAMP chip system and corresponding Tt values (Figure 5A).The log linear regression plot between template concentration and Tt shows a correlation coefficient of 0.9894,making the fiber optical µLAMP chip useful for quantitative DNA analysis (Figure 5B).From the results shown in Figure 5,The LAMP amplification from the lowest sample concentration (10fg/µL DNA)initiated a positive response at 46min and then proceeded rapidly at an approximate exponential rate,reaching a maximum at 50min.Experiments with high initial DNA concentrations exhibited fast positive responses in reaching the maximum.All curves decreased slightly after the maximum time.We attribute this observation to the following reasons:(1)precipitation and aggregation of magnesium pyrophosphate and (2)adsorption of pyrophosphates on the microchannel surface.This decay in turbidity absorbance does not affect the accuracy of the quantitative analysis because of the prominence of the emergence of the Tt.Compared with other known methods for detecting viruses,µLAMP is relatively fast,and virus isolation 33and immunohisto-logical methods 34for detecting PRV are both time-consuming,requiring at least 2-3days,while PCR assays also required 2-3h to finish the amplification.35-37By contrast,in our system,LAMPs from detectable DNA samples could all be accomplished within 60min (with higher concentrations of samples requiring even less time,see Figure 5.This time was comparably short among various methods.The whole diagnostic process from the sample arrival to the final result readout could be accomplished within less than 2h.Although fluctuations could not be avoided between runs in this homemade single channel optical detection system,the emergence of new technologies,such as integrated optical waveguides in microfluidics or optofluidics,may bring us the hope(32)Myers,F.B.;Lee,b Chip 2008,8,2015–2031.(33)Pensaert,M.B.;Kluge,J.P.In Virus Infections of Porcines ;Pensaert,M.B.,Ed.;Elsevier:Amsterdam,The Netherlands,1989;pp 39-65.(34)Ducatelle,R.;Coussement,W.;Hoorens,J.Res.Vet.Sci.1982,32,294–302.(35)Osorio, F. A.In First International Symposium on the Eradication ofPseudorabies Aujeszky’s Disease Virus ;Morrison,R.B.,Ed.;Elsevier:Saint Paul,MN 1991;pp 17-32.(36)Balasch,M.J.;Segale,P.J.Vet.Microbiol.1998,60,99–106.(37)Lee,C.S.;Moon,H.J.;Yang,J.S.J.Virol.Methods 2007,139,39–43.Table 1.Merits of µLAMP Compared with Other Techniquesmethodssensitivity specificity sample timeequipmentµLAMP 10fg/µL high 0.4µL 0.5-1h water bath PCR 24103fg/µL high 2µL 1.5-2h thermocycler ELISA 29∼103fg/µL low 2µL 2-3h ELISA reader neutralization 29,32,33lowhigh∼50µL3daysbiosafetylabFigure 4.Photograph (A)and schematic illustration (B)of the quantitative analysisunit.Figure 5.Results from the optical absorbance assay:dynamic curves (A)and standard curve (B)of the real-time absorbance detection of the LAMP chip.3005Analytical Chemistry,Vol.82,No.7,April 1,2010in realizing multichannel detection,which may achieve increas-ingly accurate real-time quantitative analysis in one experiment.38,39 The combination of the turbidity-based readout of LAMP and the opticalfiber incorporation in the microfluidic chip would be an attractive area and bring us a fascinating future to achieve a POC quantitative nucleic acid analytical device which could be used to survey and combat epidemics,such as SARS,tuberculosis,or influenza A(H1N1)and so forth.CONCLUSIONSIn this study,we integrated an isothermal DNA amplification, LAMP,on a microfluidic chip and fabricated a multichannel microfluidic system for parallel detection of pathogens.The readout could either be a naked-eye determination or a compact real-time absorbance detection device.TheµLAMP presented here allows the direct analysis of a sample of0.4µL of interested DNA in less than1h with a detection limit of10fg/µL.The combination of LAMP and microfluidics will perform diagnostics in a parallel,multiple,high-throughput,and integrated format.The technology presented here will eventually facilitate the realization of POC devices that can be used anywhere,by anyone to assay for agents that are associated with epidemics.ACKNOWLEDGMENTWe are grateful for the kind help from the colleagues in our groups,particularly Wanshun Ma for his help in chip fabrication and Wenying Pan,Bo Yuan,and Yi Zhang for their assistance in image illustration.We thank Dr.Hui Chen for her helpful advice in the manuscript revision.We acknowledge the National Science Foundation of China(2Grants0945001,20890020,20890022, 2009ZX10605,and90813032),the Human Frontier Science Pro-gram,the Chinese Academy of Sciences(Grant KJCX2-YW-M15), and the Ministry of Science&Technology(Grants2007CB714502, 2009CB930001,and2009ZX10004-505)forfinancial support.Received for review January9,2010.Accepted March3, 2010.AC1000652(38)Balslev,S.;Jorgensen,A.M.;Bilenberg,B.;Mogensen,K.B.;Snakenborg,D.;Geschke,O.;Kutter,J.P.;Kristensen,b Chip2006,6,213–217.(39)Keea,J.S.;Poenarb,D.P.;Neuzil,P.;Yobas,L.Sens.Actuators,B2008,134,532–538.3006Analytical Chemistry,Vol.82,No.7,April1,2010。

相关文档
最新文档