信息功能材料与器件专业介绍
电子信息材料专业介绍

电子信息材料专业方向介绍电子信息材料是指在微电子、光电子技术和新型电子元器件领域中所用的材料,主要包括微电子材料、光电子材料、传感材料、磁性材料、电子陶瓷材料等,它们支撑着通信、计算机、信息家电和网络技术等现代信息产业及航空、航天、精确制导、灵巧武器等领域的发展。
电子信息材料属于国家高新技术领域,在现代国防、现代经济和国计民生领域起着举足轻重的作用,是多种边缘学科和重大产业的重要支柱,是现代电子学、电子工业、现代信息技术的坚实基础。
微电子材料、光电子材料等功能材料是国家“十五”规划的重点发展方向,也是国际上迅猛发展的领域。
众所周知,以英美联军发起的伊拉克战争仅用20天时间就获得了全面胜利,靠的就是高科技,伊拉克战争实质上是一场材料战和信息战,而电子信息材料在这个领域起着决定性作用。
电子信息材料是发展电子信息产业的先导和基础。
以单晶硅为代表的第一代半导体材料是集成电路产业的基础。
1948年发明了晶体管,1960年集成电路问世,1962年出现第一代半导体激光器,导致了电子技术、光电子技术革命,产生了半导体微电子学与半导体光电子学,有力地推动了计算机、通讯技术发生根本改变。
光电子技术是现代信息技术的基石,21世纪是光电子时代。
以砷化镓、磷化铟等化合物为代表的第二代半导体材料是新型激光器和光探测器用材料。
半导体发光二极管的出现,其意义不亚于爱迪生发明白炽灯。
半导体灯小巧可靠、寿命长,驱动电压低,发光效率高。
它可以发出赤橙黄绿青蓝紫等的全彩色光和白色,它占尽了照明灯、指示灯的全部优点。
半导体光照明的主体材料主要是第二代、第三代半导体材料,特别是第三代半导体材料氮化镓,它是唯一能发出蓝光和白光的材料。
磁性材料、电子陶瓷材料广泛应用于计算机、通信、航空等各个领域,是新型器件的基础材料。
本专业以微电子、光电子及新型元器件用半导体材料和磁性材料为主导。
使学生掌握电子信息材料的基本性能、制备工艺、材料质量与器件性能间关系的基础理论、工程技术、实验技能和研究技能,能在材料科学与工程领域从事科学研究与教学、工程设计、技术开发、技术改造、质量控制及经营管理等方面的工作,培养适应市场经济发展的高层次、高素质、全面发展的科研、教学、工程技术及经营管理人才。
2023年功能材料专业考研方向和院校排名

2023年功能材料专业考研方向和院校排名功能材料专业是一门集化学、物理、材料科学等多领域知识为一体,以研究材料在不同环境下的性能、功能与化学反应等为主要研究内容的学科。
目前,随着生产技术的不断发展,功能材料的研究和应用越来越受到人们的重视,也为考生提供了更多的就业机会。
本文将介绍功能材料专业的考研方向和院校排名。
一、考研方向1. 材料表面和界面科学该方向主要研究材料表面与界面的结构、性质、反应和修饰等方面内容,包括材料表面化学、界面反应动力学、表面特殊物理化学性质等。
研究领域主要包括金属、无机材料、高分子材料、复合材料等。
2. 先进能源材料该方向主要研究新型能源材料以及材料在能源领域中的应用,包括太阳能电池、燃料电池、锂离子电池、超导材料等。
研究领域主要包括材料的制备、表征、性能等。
3. 智能材料该方向主要研究具有智能响应功能的材料,包括形状记忆材料、可光致变色材料、声波料件材料等。
研究领域主要包括材料的合成、表征、应用等。
4. 多功能复合材料该方向主要研究多种材料的复合,形成具有多种功能的复合材料,包括纳米复合材料、碳/纳米复合材料、生物医学复合材料等。
研究领域主要包括多种材料的合成、表征、性能等。
5. 光电功能材料该方向主要研究材料在光学和电学性质方面的应用,包括光电转换器件、染料敏化太阳能电池、传感器、光学存储器件等。
研究领域主要包括材料的制备、表征、性能等。
二、院校排名1. 中国科学院大学中国科学院大学是一所以科学为主要研究方向的高水平研究型大学,其功能材料专业的学科优势十分突出。
学校在开展化学和生物技术领域的前沿研究方面表现出色,为功能材料专业的学生提供了良好的学习和研究环境。
2. 武汉大学武汉大学是一所大型综合性大学,其功能材料专业有较为优秀的师资力量和研究实力。
学校的材料科学与工程学院、化学与分子科学学院、物理与技术学院等学院和研究机构具有较高的学术地位和影响力。
3. 华中科技大学华中科技大学是一所以工科为主的综合性大学,其功能材料专业较为突出。
电子科学与技术研究生课程设置

高分子凝聚态
3
54
第二
材料系
范仲勇
信息功能材料与器件
PHYS6039
等离子体诊断
3
54
第三
光源系
陈育明
物理电子学
三、硕士专业选修课
课程编号
课程名称
学
分
学
时
开课
学期
开课院系
任课教师
适用专业
BIOM7004
现代医学信息处理
3
54
第三
信息学院
汪源源
电路与系统
ELEC6037
气体放电物理II
3
54
第二
信息学院
张卫
微电子学与固体电子学
ELEC6031
现代集成电路分析方法
3
54
第一
信息学院
曾璇
微电子学与固体电子学
ELEC6032
现代电路理论
3
54
第二
信息学院
李锋
电路与系统
ELEC6033
空间遥感信息理论
3
54
第二
信息学院
金亚秋
电磁场与微波技术
ELEC6034
计算电磁学
3
54
第一
信息学院
刘鹏
信息功能材料与器件
ELEC6040
现代光电测试技术
3
54
第一
光源系
刘木清
光电系统与控制技术
ELEC6041
控制理论与技术
3
54
第一
光源系
孙耀杰
光电系统与控制技术
ELEC6048
高功率电子学
3
54
第一
功能材料专业

功能材料专业功能材料专业是一门涉及材料物理、化学、工程等多个学科的综合性专业,其研究的重点是利用材料的特殊性能和功能,设计和制备具有特定功能的材料。
功能材料具有特殊的物理、化学、电子、光学等性能,可以应用于电子器件、传感器、催化剂、能源材料等领域,对于现代科技和工业的发展具有重要意义。
首先,功能材料专业的学生需要掌握材料科学和工程的基础知识,包括材料结构、性能、加工制备等方面的知识。
他们需要了解不同材料的特性和应用,掌握材料分析测试的方法和技术,具备材料设计和制备的能力。
在学习过程中,学生需要通过理论学习和实践操作,掌握材料科学和工程的基本理论和技能,为未来从事功能材料研究和应用奠定基础。
其次,功能材料专业的学生需要具备跨学科的能力和视野。
功能材料的研究涉及多个学科领域,需要学生具备跨学科的知识和技能,能够综合运用物理、化学、材料科学等多个学科的知识,进行材料的设计、制备和应用。
学生需要具备良好的跨学科思维能力和创新能力,能够解决复杂的材料科学和工程问题。
另外,功能材料专业的学生需要关注材料的应用和产业发展。
功能材料的研究不仅仅停留在实验室阶段,更重要的是将研究成果转化为实际的应用和产品。
学生需要了解材料在电子、光电、能源、环境等领域的应用需求,关注材料产业的发展趋势,为未来的科研和创新奠定基础。
最后,功能材料专业的学生需要具备国际化的视野和竞争力。
随着全球化的发展,材料科学和工程已经成为国际性的学科领域,学生需要具备国际化的视野和竞争力,能够在国际舞台上进行学术交流和合作。
学生需要具备良好的英语水平和跨文化交流能力,了解国际材料科学和工程的最新发展动态,为未来的国际合作和交流做好准备。
综上所述,功能材料专业是一门前沿的综合性专业,对学生的综合素质和能力提出了较高的要求。
学生需要掌握材料科学和工程的基础知识,具备跨学科的能力和视野,关注材料的应用和产业发展,具备国际化的竞争力,才能在功能材料领域取得更好的发展和成就。
功能材料专业

功能材料专业
功能材料专业是一门以功能材料研发、制备和应用为主要内容的专业。
功能材料是指具有特定功能或性能的材料,可以满足特定工程或技术应用的需要。
功能材料在科学、工程和技术领域中发挥着重要作用,包括在能源、电子、医疗、环境保护、航空航天等领域。
功能材料专业的学生需要掌握材料科学的基本理论和实验技能,并在此基础上深入研究功能材料的制备、表征和应用。
该专业涵盖了材料结构与性能、材料设计与制备、材料表征与测试、功能材料应用等多个方面的内容。
功能材料专业的培养目标包括以下几个方面:
1.基础理论知识:学生需要掌握材料科学的基本理论知识,包
括材料结构与性能、固体物理与化学等方面的内容。
2.实验技能:学生需要具备基本的实验技能,能够进行功能材
料的制备、表征和测试,并能够分析和解释实验结果。
3.研究能力:学生需要培养良好的科研素养,能够进行科学研究,解决实际问题,并具备独立进行科研工作的能力。
4.创新能力:学生需要培养创新思维,能够针对实际问题提出
新的解决方案,并具备实施创新的能力。
5.工程实践能力:学生需要具备一定的工程实践能力,能够将
学到的理论知识应用到实际工程中,并解决实际问题。
功能材料专业的就业前景广阔。
近年来,功能材料在能源、电子、医疗等领域得到了广泛应用,并产生了巨大的经济效益和社会效益。
因此,毕业生可以在科研院所、大型企业、高新技术公司、政府部门等单位就业,从事功能材料的研发、制备和
应用工作。
同时,也可以选择继续深造,攻读硕士、博士学位,从事教育科研工作或从事高级技术人员的培养。
光电信息材料与器件专业

光电信息材料与器件专业光电信息材料与器件专业是一门涉及光电材料和光电器件的学科,主要研究光电材料的性能和应用以及光电器件的设计、制备和应用。
本文将从光电信息材料和光电器件两个方面进行介绍和探讨。
光电信息材料是指具有特殊光电性能的材料,包括光学、电学和磁学等方面的性能。
光电信息材料的研究重点是开发新型材料,改善材料的性能,并实现其在光电器件中的应用。
目前,常见的光电信息材料包括光电半导体材料、光学功能材料和光电陶瓷材料等。
光电半导体材料是光电信息材料中的重要组成部分,具有特殊的光电特性。
常见的光电半导体材料有硅、锗、砷化镓、磷化镓等。
这些材料在光电器件中广泛应用,如太阳能电池、光电传感器和光通信器件等。
通过对光电半导体材料的研究,可以改善材料的光电特性,提高器件的效能。
光学功能材料是另一类重要的光电信息材料,具有特殊的光学性能。
这些材料可以通过改变光的传播和调控光的波长等方式实现光电器件的功能。
目前,光学功能材料在光通信、光储存和光显示等领域得到广泛应用。
例如,光纤通信系统中的光纤材料、液晶显示器中的液晶材料以及光存储器中的光敏材料等。
光电陶瓷材料是一种特殊的光电信息材料,具有高温稳定性和优异的光电性能。
这些材料通常是由光电功能材料和陶瓷基质组成,具有特殊的结构和性能。
光电陶瓷材料在高温环境中具有良好的稳定性,可在高温条件下工作。
光电陶瓷材料在光电器件中应用广泛,如高温太阳能电池、高温光纤传感器和高温光通信器件等。
光电器件是光电信息材料的应用载体,是将光电信息材料转化为实际应用的关键组成部分。
光电器件的设计和制备是光电信息材料与器件专业的核心内容之一。
光电器件包括光电传感器、光电调制器、光电存储器、光电调制器等。
这些器件通过改变光的强度、波长或相位等方式实现光电信号的检测、调制和存储等功能。
光电器件的设计和制备需要光电信息材料的支持,同时也需要掌握一定的制备工艺和装备。
例如,在太阳能电池的制备过程中,需要选取合适的光电半导体材料和优化器件的结构,同时还需要掌握先进的制备工艺,如溅射、化学气相沉积和激光刻蚀等。
半导体材料与器件专业

半导体材料与器件专业引言半导体材料与器件是现代电子科学与技术的重要分支领域。
随着信息技术的迅猛发展,半导体材料与器件的研究与应用日益广泛,对于推动社会进步和经济发展具有重要作用。
本文将全面、详细、完整地探讨半导体材料与器件专业的相关内容,包括材料与器件的基本概念、研究方向、应用领域以及发展趋势等。
半导体材料与器件的基本概念半导体材料半导体材料是一类介于导体和绝缘体之间的材料,具有介电常数相对较小、导电性能相对较弱的特点。
常见的半导体材料有硅(Si)、锗(Ge)、砷化镓(GaAs)等。
半导体器件半导体器件是利用半导体材料制造的电子器件,广泛应用于电子信息领域。
常见的半导体器件包括二极管、晶体管、集成电路等。
半导体材料与器件的研究方向半导体材料的研究方向1.材料的生长与制备技术:研究半导体材料的生长机制、制备工艺以及优化方法,以提高材料质量和性能。
2.材料的性能表征与测试:研究半导体材料的光电性能、电子输运性质等,通过材料表征与测试手段获取与分析材料性能。
3.材料的能带结构与能带工程:研究半导体材料的能带结构,通过能带工程手段调控材料的能带结构,以实现特定的功能与性能要求。
半导体器件的研究方向1.器件的设计与模拟:利用计算机辅助设计工具,对半导体器件进行设计与模拟,分析其电学特性与工作原理。
2.器件的制造与加工技术:研究半导体器件的制造工艺与技术,包括光刻、薄膜沉积、离子注入等,以实现高精度与高可靠性的器件制造。
3.器件的封装与封装技术:研究半导体器件的封装方式与封装工艺,以保护器件并提供合适的引脚连接方式。
4.器件的可靠性与故障分析:研究半导体器件的可靠性问题,探索其寿命特性与故障机理,并提出相应的改进与优化方案。
半导体材料与器件的应用领域通信与信息技术领域半导体材料与器件在通信与信息技术领域具有广泛应用。
例如,光通信器件利用半导体材料的光电转换特性,实现大容量、高速率的光信号传输。
集成电路则提供了计算机和通信设备等现代电子产品所必需的处理和存储功能。
信息功能材料与器件课题组简介-哈尔滨工业大学材料学院

信息功能材料与器件课题组简介21世纪是信息技术高速发展的时代,由于高速度、大容量、海量存储等信息科技发展的需求,传统的微电子正逐步被光电子所替代,现代科技正向光电信息科学与技术高速迈进,相应地光电子材料与器件作为光电科技发展的基础和支撑也得到了世界众多国家的广泛关注,成为科技革命频发的领域。
目前我国已把光电子材料与器件作为新材料领域的战略性新兴产业优先发展,为培养专业化高技术人才,2010年经教育部批准在以哈工大为首的五所高校设立了“光电子材料与器件”本科专业,2012年与其他专业经教育部批准统一合并为“光电信息科学与工程”专业。
以此为基础,哈尔滨工业大学光电信息科学系在赵连城院士和诸位老师的努力下于2013年12月正式成立。
在赵院士的带领下,信息功能材料与器件课题组目前已形成并拥有一支师资实力较强,年龄和知识结构基本合理、具有富于创新精神和实际经验的教学科研队伍,其中包括:院士2人(兼职1人),教授博士生导师6人(兼职2人),可培养光电信息科学与工程专业本科生、硕士生和博士研究生,拥有学士、硕士、博士学位授予权,并设有博士后流动站。
研究团队从最初的红外探测材料研究已拓展形成发光材料与量子器件、光电转换材料与量子器件、特种光纤与器件、信息存贮材料与器件和有机荧光材料与分子荧光探针五大研究方向。
实验室面积达1500平方米,拥有包括购自法国Riber公司两套分子束外延系统在内的先进材料制备技术、性能测试、评价和分析设备20余台套,部分设备属于国内领先、多数设备具有国际先进水平,总价值达3260余万元,先后承担国家863、973、国家自然科学基金及部委项目30余项,已获科研经费4000余万元;曾获国家科技进步二等奖1项、省部级科技奖励8项,专利20项;发表论文800余篇、出版著作10部;培养博士研究生50人、硕士45人、博士后8人。
为我国光电信息科学技术与工程应用作出了突出的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开设的主要专业课程:
材料热力学、固体材料学、器件物理、纳米电子学、信息存储与显示、计算物理、扫描隧道显微学、薄膜物理与技术、高等结构分析、固体电子谱与离子谱等。
21世纪是以信息产业为核心的知识经济时代。
随着信息技术向数字化、网络化的迅速发展,超大容量信息传输、超快实时信息处理和超高密度信息存储已成为信息技术追求的目标。
信息的载体正由电子向光电子结合和光子方向发展;与此相应,信息材料也从体材料发展到薄层、超薄层微结构材料,并正向光电信息功能集成芯片和有机/无机复合材料以及纳米结构材料方向发展。
历史发展表明,信息功能材料是信息技术发展的基础和先导;没有硅材料和硅集成芯片的问世,就不会有今天微电子技术;没有光学纤维材料的发明,砷化镓材料的突破,超晶格、量子阱材料的研制成功,以及半导体激光器和超高速器件的发展,就不会有今天先进的光通信、移动通信和数字化高速信息网络技术;可以预料,基于量子效应的纳米信息功能材料的发展和应用,人类必将进入一个变幻莫测、奇妙无比的量子世界,必将彻底地改变世界政治、经济格局和军事对抗形式,也将对人类的生产和生活方式产生深远的影响。
信息功能材料与器件是一个科学内涵极丰富、创新性极强、应用前景极广阔、社会经济效益巨大的领域,极有可能触发新的信息技术革命。
建议将下述关键信息功能材料与器件研发内容,列入国家中长期科学与技术发展规划,给以重点支持,符合国家长远利益和国家发展战略。
(1)微纳电子材料和器件:微纳电子材料和器件是信息产业的基础和核心,它的发展对带动我国相关产业实现技术跨越,提升我国经济和产业的国际竞争力,实现我国经济社会的可持续发展和保障国家安全等都有着不可替代的作用。
研究内容主要包括:ULSI用12-18英寸硅晶片和外延材料,SOI材料,高K和低K介质,金属互连,框架、封装材料以及基于纳米特征尺度的超大规模集成电路设计和集成芯片制造技术等。
(2)光电子材料与器件:光电子材料和器件是光通信、移动通信和高速信息网络的基础,它的发展和应用将极大地提高人民的生活质量,并对保障国家安全,提升我国高技术产业的国际竞争力具有至关重要作用。
大直径(6-8英寸)GaAs、InP单晶和片材规模生产、制备技术,GaAs、InP基为代表的Ⅲ-V族化合物半导体微结构材料、器件和集成芯片批量制造技术,硅基高效发光材料和硅基混合光电集成芯片材料与电路以及有机半导体光电子材料与器件的研发等为主要研发内容。
(3)第三代(高温宽带隙)半导体材料与器件:以氮化镓和碳化硅等为代表的第三代半导体材料,以其优异的物理和化学性能在国防、航空、航天、石油勘探、
光存储、显示以及白光照明等领域有着重要应用前景,市场潜力巨大。
主要研究内容包括:GaN衬底和GaN基异质结构材料、器件与电路制备技术;大尺寸、无微管缺陷的SiC单晶和异质外延材料制备和器件开发研究;单晶金刚石薄膜生长和N型掺杂;ZnO基单晶、单晶薄膜制备和P型掺杂;大失配异质结构材料体系柔性衬底理论与制备技术等。
(4)纳米电(光)子材料和器件:基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维结构是一种人工设计、制造的新材料,是新一代量子器件的基础。
这类量子器件以其固有的超高速、超高频(1000GHz)、高集成度(1010电子器件/cm2),高效低功耗和极低阈值电流(亚微安)、极高量子效率、极高增益、极高调制带宽、极窄线宽和高的特征温度以及微微焦耳功耗等特点在未来的纳米电子学、光子学和量子计算与密码通信等方面有着极其重要应用背景,极有可能触发新的技术革命。
探索、建立高效、快速的原子级无损伤加工方法和纳米结构的自组装可控生长及其评价技术,实现无缺陷纳米结构的生长;研制单电子器件、单光子光源、量子点激光器、探测器和量子点光放大器和自旋电子器件,探索其功能集成与应用;固态量子比特构筑及其应用等,是目前研发的主要内容。
(5)海量存储材料与器件:虽然磁记录材料仍是目前最重要的信息存储材料,但预计到2006年,磁材料中磁记录单元(磁晶)的尺寸将达到其记录状态的物理极限。
GaN基蓝、紫光激光器件的出现,加快了光存储技术的发展,然而,光存储技术的面密度也已接近光学衍射极限;因而寻求发展基于新原理的新型海量存储、三维光存储材料、器件与系统;全息存储和近场光存储技术以及光学烧孔和STM热化学烧孔存储技术等,已成为目前国际研发的热点。
(6)平面显示材料、器件与系统集成:大屏幕、高清晰度显示材料、器件与系统,如有机料、纳米碳管等平面显示,我国有一定基础。
(7)全固态激光材料和激光技术:全固态激光器是人工晶体与大功率量子阱泵浦激光器结合的产物,在全色显示、激光加工、三维光存储、光刻、医疗、激光核聚变、激光同位素分离、激光武器、激光制导灵巧炸弹、激光雷达等方面有着重要的应用前景,经济和社会效益巨大。
大直径、高光学质量激光晶体,非线性光学晶体批量生产和晶片制备与高损伤阈值光学镀膜关键技术;大功率半导体激光材料,特别是无铝半导体激光材料,激光器、列阵与光纤模块批量生产技术;大功率全固态红、蓝、绿(RGB)激光器和RGB激光显示技术以及基于全固态激光的高功率激光器,如激光核聚变、激光武器和激光加工等;紫外、深紫外非线性光学晶体与紫外、深紫外光刻光源等是目前国际研发的重点领域。
(8)半导体照明工程―――照明光源的革命:上世纪90年代初中期,GaN基
蓝、紫光料,特别是P型掺杂技术的突破,为全固态全色显示和白光照明技术的迅速发展,打下了科学与技术基础。
目前,高亮度GaN基蓝、绿光二极管(LED)已形成高技术产业,2002年GaN基LED的世界市场已达18亿美元,并以年50%的速度增长,市场潜力巨大。
低成本、大功率、超高亮度GaN基蓝、紫光LED 造技术的突破,将触发照明光源的革命,受到世界各国的重视,是目前研发的重点。
半导体灯不仅可以节省能源,有利于可持续发展,而且也被认为是绿色照明的首选,有利于环保。
我国是近似于美国的世界第二发电大国,使用的能源的3/4为燃煤,造成空气和环境的严重污染。
2002年我国照明用电约占我国1.65万亿度总发电量的12%,约2000亿度,相当于三峡总发电量的二倍多,照明节电的潜力很大。
如果采用“半导体灯”替代传统光源,按节能45%计,可少建一个三峡电站!
应当看到,要实现这个极具挑战性的、代表人类光源的又一次革命的雄伟目标,难度很大。
这就需要我们从现在起,集中产、学、研优势力量,在国家的统一部署和领导下,协同作战,攻克高质量GaN基异质外延材料(包括衬底材料)生长和芯片制备技术,高效、长寿命荧光材料和高效、稳定的有机/高分子三线态发光材料工业制备,大功率白光照明器件结构设计与实现以及有效散热和封装等关键技术,形成我国自己的知识产权;这就是说,到2020年,与现在的水平相比,“半导体灯”的发光(流明)效率要提高8倍,价格要降低100倍!难度之大,可想而知。