2019-2020年初一年级数学第一次月考试卷

合集下载

2019-2020年初一数学第一次月考试卷及答案.docx

2019-2020年初一数学第一次月考试卷及答案.docx

2019-2020 年初一数学第一次月考试卷及答案一、选择题 ( 每题 2 分,共 20 分)1. 3 的相反数是(▲ )A .- 3B .+ 3 C.0.3D.| -3|2.在数 上与— 2 的距离等于 4 的点表示的数是(▲ )A . 2B .—6 C. 2或— 6D.无数个3.在下列数- 5,+ 1, 6.7 ,- 14,0,7,-5, 25% 中,属于整数的有(▲ )622A .2个B .3个C .4个D .5个4.下列是四个地区某天的温度,其中气温最低的是(▲)A 、 16℃ B、-8℃C 、2℃D 、-9 ℃5.下列各式正确的是( ▲ )A .3 3B .+(-3) = 3C.(3)3D .- (-3) =-36.下列 法不正确的是(▲ )A . 0 既不是正数,也不是 数B. 0 是 最小的数 C .若 ab , a 与 b 互 相反数D. 0 的相反数是 07. 数、b 在数 上的位置如 所示,a 与-b 的大小关系是( ▲)aaobA .a > - b B. a = - bC. a <- bD. 不能判断8.两个数的商是正数,下面判断中正确的是(▲)A 、和是正数B 、 是正数 C、差是正数 D 、以上都不9.古希腊著名的 达哥拉斯学派把1、 3、6、10 ⋯ 的数称 “三角形数” ,而把 1、4、9、 16 ⋯ 的数称 “正方形数”. 从 中可以 ,任何一个大于1 的“正方形数”都可以看作两个相 “三角形数”之和.下列等式中,符合 一 律的是(▲ )⋯4=1+39=3+616=6+10A .13 = 3+10B .25 = 9+16C .49 = 18+31D . 36 = 15+2110. m 是有理数, m m ( ▲)A. 可以是 数B. 不可能是 数C.必是正数D. 可以是正数也可以是 数二、填空题(第17、 18 题每空 2 分,其它每空 1 分,共 18 分)11.-(- 4.5 )的相反数是1 ___▲ ____, ___▲_____的倒数是-334212.比大小:-(- 5)▲-|-5|__▲ ___,13.直接写出果:45( 1)(- 9) +(+ 4) =__▲ ____(2)(- 9)- (+ 4)=_▲ _____(3) (- 9)×(+ 4) =___▲ ___ (4)(- 9)÷(+ 4) =___▲ ___14.察下列每数据,按某种律在横上填上适当的数。

2019-2020学年成都七中七年级(上)第一次月考数学试卷(9月份)(含解析)

2019-2020学年成都七中七年级(上)第一次月考数学试卷(9月份)(含解析)

2019-2020学年成都七中七年级(上)第一次月考数学试卷(考试时间:120分钟满分:120分)一、选择题(共12小题,共36分)1.在0,﹣2,5,,﹣0.3中,负数的个数是()A.1 B.2 C.3 D.42.在数轴上表示﹣2的点与表示3的点之间的距离是()A.5 B.﹣5 C.1 D.﹣13.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱4.﹣的相反数是()A.B.﹣C.2017 D.﹣20175.下列几何体的截面形状不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱6.计算﹣(﹣1)+|﹣1|,其结果为()A.﹣2 B.2 C.0 D.﹣17.下列平面图形中不能围成正方体的是()A.B.C.D.8.计算1﹣2+3﹣4+5﹣6+7﹣8+…+2013﹣2014的结果是()A.﹣1007 B.﹣2014 C.0 D.﹣19.已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b| B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣110.一组数2,1,1,x,1,y,…,满足“从第三个数起,每个数都等于它前面的两个数之差”,那么这组数中y表示的数为()A.﹣1 B.3 C.5 D.﹣511.如图,数轴上的A,B,C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点B与点C之间(靠近点C)或点C的右边12.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17二、填空题(共6小题;共24分,每小题4分)13.观察图中的立体图形,分别写出它们的名称.14.计算:|﹣2|=.15.如果a与1互为相反数,则|a+2|等于.16.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a+b+c=.17.如图在正方体的展开图上编号,请你写出相对面的号码:3的相对面是,4的相对面是,5的相对面是.18.|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2014|的最小值为,此时x的取值为.三、解答题(共6小题;共60分)19.(8分)化简:(1)﹣[﹣(+4)];(2).20.(8分)计算:(1)(﹣23)+(+58)+(﹣17);(2)(﹣2.8)+(﹣3.6)+3.6;(3).21.(8分)画出数轴,在数轴上表示下列有理数,并用“<”号连接起来.|﹣1.5|,﹣,0,﹣22,﹣(﹣3),﹣2.5.22.(8分)已知a=3,b=﹣5,c=﹣7,求a﹣b﹣c的值.23.(10分)计算:(1);(2).24.(10分)一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)通过计算说明小虫是否回到起点P.(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.参考答案与试题解析1.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.2.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选:A.3.【解答】解:如图所示:这个几何体是四棱锥.故选:A.4.【解答】解:﹣的相反数是:.故选:A.5.【解答】解:棱柱无论怎么截,截面都不可能有弧度,自然不可能是圆,故选:D.6.【解答】解:﹣(﹣1)+|﹣1|=1+1=2,故选:B.7.【解答】解:根据常见的不能围成正方体的展开图的形式是“一线不过四,田、凹应弃之”,只有C选项不能围成正方体.故选:C.8.【解答】解:原式=(1﹣2)+(3﹣4)+(5﹣6)+(7﹣8)+(9﹣10)+(11﹣12)+…+(2011﹣2012)+(2013﹣2014)=﹣1007故选:A.9.【解答】解:根据实数a,b在数轴上的位置,可得a<﹣1<0<1<b,∵1<|a|<|b|,∴选项A错误;∵1<﹣a<b,∴选项B正确;∵1<|a|<|b|,∴选项C正确;∵﹣b<a<﹣1,∴选项D正确.故选:A.10.【解答】解:∵每个数都等于它前面的两个数之差,∴x=1﹣1=0,∴y=x﹣1=0﹣1=﹣1,即这组数中y表示的数为﹣1.故选:A.11.【解答】解:∵|a|>|b|>|c|,∴点A到原点的距离最大,点B其次,点C最小,又∵AB=BC,∴在点B与点C之间,且靠近点C的地方或点C的右边,故选:D.12.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选:D.13.【解答】解:它们的名称分别为:球体,直六棱柱,圆锥体,正方体,直三棱柱,圆柱体,四棱锥,长方体.14.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.15.【解答】解:∵a与1互为相反数,∴a=﹣1,把a=﹣1代入|a+2|得,|a+2|=|﹣1+2|=1.故答案为1.16.【解答】解:依题意得:a=1,b=﹣1,c=0,∴a+b+c=1+(﹣1)+0=0.17.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴3的相对面是6,4的相对面是1,5的相对面是2.故答案为:6,1,2.18.【解答】解:原式可转化为在数轴上找一个点到1,2,3,…,2014对应的点的距离和最小,故当1007≤x≤1008时,距离和最小,可取x=1007,则此时距离和为:1006+1005+1004+…+0+1+2+…+1006+1007=2×(1+2+3+…+1006)+1007=1014049,即原式的最小值为1014049;当x=1008时,最小值也为1014049,故1007≤x≤1008.故答案为:1014049,1007≤x≤1008.19.【解答】解:(1)﹣[﹣(+4)]=4;(2).20.【解答】解:(1)(﹣23)+(+58)+(﹣17)=[(﹣23)+(﹣17)]+(+58)=(﹣40)+(+58)=18(2)(﹣2.8)+(﹣3.6)+3.6=(﹣2.8)+[(﹣3.6)+3.6]=﹣2.8+0=﹣2.8(3)=[+(﹣)]+[(﹣)+(+)]=﹣+=﹣21.【解答】解:如图:,﹣22<﹣2.5<﹣<0<|﹣1.5|<﹣(﹣3).22.【解答】解:当a=3,b=﹣5,c=﹣7时,a﹣b﹣c=3﹣(﹣5)﹣(﹣7)=8+7=1523.【解答】解:(1)=﹣4(2)=4.5+(﹣54)=﹣49.524.【解答】解:(1)∵(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=0,∴小虫能回到起点P;(2)(5+3+10+8+6+12+10)÷0.5,=54÷0.5,=108(秒).答:小虫共爬行了108秒。

2019-2020学年天津市七年级(上)第一次月考数学试卷解析版

2019-2020学年天津市七年级(上)第一次月考数学试卷解析版

2019-2020学年天津市七年级(上)第一次月考数学试卷一、选择题(每题3分,共30分.请把答案填在下面的表格中.)1.(3分)冰箱冷藏室的温度零上2℃,记作+2℃,则冷冻室的温度零下16℃,记作()A.18℃B.﹣18℃C.16℃D.﹣16℃2.(3分)的相反数是()A.6B.﹣6C.D.﹣3.(3分)下列说法中,错误的是()A.+5的绝对值等于5B.绝对值等于5的数是5C.﹣5的绝对值是5D.+5、﹣5的绝对值相等4.(3分)下列各图中,符合数轴定义的是()A.B.C.D.5.(3分)有理数a、b在数轴上的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 6.(3分)计算(﹣3)﹣9的结果等于()A.6B.﹣12C.12D.﹣67.(3分)下列说法中,不正确的是()A.一个数与它的倒数之积为1B.一个数与它的相反数之商为﹣1C.两数商为﹣1,则这两个数互为相反数D.两数积为1,则这两个数互为倒数8.(3分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为()A.0.778×105B.7.78×104C.77.8×103D.778×1029.(3分)若m是﹣6的相反数,且m+n=﹣11,则n的值是()A.﹣5B.5C.﹣17D.17 10.(3分)下列运算正确的是()A.()2=B.(﹣)3=C.()2=﹣D.(﹣)3=二、填空题:(每题3分,共24分)11.(3分)2的倒数是.12.(3分)绝对值小于2的整数是.13.(3分)在数轴上,与表示数1的点的距离是2的点表示的数是.14.(3分)一个数为﹣5,另一个数比它的相反数大4,这两数的和为.15.(3分)的底数是,指数是,计算的结果是.16.(3分)在数﹣6,﹣1,﹣2,﹣5,4中,任取三个数相乘,其中,最大的积是17.(3分)若|1﹣m|+|n﹣2|=0,则m+n的值为.18.(3分)定义一种运算:a*b=a2﹣b2,则(3*2)*(﹣3)的结果是.三、解答题:(共46分)19.(8分)计算(1)﹣12+7(2)﹣13﹣(﹣9)(3)﹣5×(﹣2.5)(4)﹣36÷(﹣3)20.(12分)计算(1)9+(﹣6);(2)(﹣7)﹣(﹣2);(3)(4)21.(8分)(1);(2)32×(﹣5)+160÷(﹣2)422.(6分)画数轴并在数轴上表示下列各数:﹣2,1,0,2.5,23.(6分)10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,﹣4,2.5,3,﹣0.5,1.5,3,﹣1,0,﹣2.5.求这10筐苹果共超过标准多少千克?10筐苹果一共多少千克?24.(6分)(1)比较有理数与的大小.(2)三个有理数a,b,c,满足a>b>c,且|b|=2|a|,|c|=5,a﹣b=6.求a+b+c的值.参考答案一、选择题(每题3分,共30分.请把答案填在下面的表格中.)1.(3分)冰箱冷藏室的温度零上2℃,记作+2℃,则冷冻室的温度零下16℃,记作()A.18℃B.﹣18℃C.16℃D.﹣16℃【解答】解:零上2℃,记作+2℃,则零下16℃,记作﹣6℃,故选:D.2.(3分)的相反数是()A.6B.﹣6C.D.﹣【解答】解:的相反数是﹣,故选:D.3.(3分)下列说法中,错误的是()A.+5的绝对值等于5B.绝对值等于5的数是5C.﹣5的绝对值是5D.+5、﹣5的绝对值相等【解答】解:A、原来的说法正确;B、绝对值等于5的数是5和﹣5,故原来的说法错误;C、原来的说法正确;D、原来的说法正确.故选:B.4.(3分)下列各图中,符合数轴定义的是()A.B.C.D.【解答】解:A、无正方向和原点,错误;B、无原点和单位长度,错误;C、单位长度不一致,错误;D、正确.故选:D.5.(3分)有理数a、b在数轴上的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a 【解答】解:∵a<0<b,∴﹣b<0<﹣a.故选:C.6.(3分)计算(﹣3)﹣9的结果等于()A.6B.﹣12C.12D.﹣6【解答】解:原式=﹣3+(﹣9)=﹣12,故选:B.7.(3分)下列说法中,不正确的是()A.一个数与它的倒数之积为1B.一个数与它的相反数之商为﹣1C.两数商为﹣1,则这两个数互为相反数D.两数积为1,则这两个数互为倒数【解答】解:A、一个数与它的倒数之积是1,正确;B、一个数(除0外)与它的相反数之商为﹣1,错误;C、两数商为﹣1,则这两个数互为相反数,正确;D、两数积为1,则这两个数互为倒数,正确,故选:B.8.(3分)今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学记数法表示为()A.0.778×105B.7.78×104C.77.8×103D.778×102【解答】解:77800=7.78×104,故选:B.9.(3分)若m是﹣6的相反数,且m+n=﹣11,则n的值是()A.﹣5B.5C.﹣17D.17【解答】解:∵m是﹣6的相反数,且m+n=﹣11,∴m=6,6+n=﹣11,解得:n=﹣17.故选:C.10.(3分)下列运算正确的是()A.()2=B.(﹣)3=C.()2=﹣D.(﹣)3=【解答】解:∵(﹣)2=,∴选项A不符合题意;∵(﹣)3=﹣,∴选项B不符合题意;∵(﹣)2=,∴选项C不符合题意;∵(﹣)3=﹣,∴选项D符合题意.故选:D.二、填空题:(每题3分,共24分)11.(3分)2的倒数是.【解答】解:2×=1,答:2的倒数是.12.(3分)绝对值小于2的整数是﹣1,0,1.【解答】解:绝对值小于2的整数是:﹣1,0,1.13.(3分)在数轴上,与表示数1的点的距离是2的点表示的数是﹣1或3.【解答】解:在数轴上,与表示数1的点的距离是2的点表示的数是1﹣2=﹣1或1+2=3.14.(3分)一个数为﹣5,另一个数比它的相反数大4,这两数的和为4.【解答】解:∵﹣5的相反数为5,∴5+4=9,∴这两数的和为﹣5+9=4.故答案为4.15.(3分)的底数是,指数是3,计算的结果是﹣.【解答】解:﹣()3的底数是,指数是3,计算的结果是﹣.故答案为:;3;﹣.16.(3分)在数﹣6,﹣1,﹣2,﹣5,4中,任取三个数相乘,其中,最大的积是120【解答】解:由题意可知,当﹣6×(﹣5)×4=120时,积最大.故答案为:120.17.(3分)若|1﹣m|+|n﹣2|=0,则m+n的值为3.【解答】解:∵|1﹣m|+|n﹣2|=0,∴1﹣m=0,n﹣2=0,∴m=1,n=2,∴m+n=1+2=3,故答案为:3.18.(3分)定义一种运算:a*b=a2﹣b2,则(3*2)*(﹣3)的结果是16.【解答】解:∵a*b=a2﹣b2,∴(3*2)*(﹣3)=(32﹣22)*(﹣3)=5*(﹣3)=52﹣(﹣3)2=16.故答案为:16.三、解答题:(共46分)19.(8分)计算(1)﹣12+7(2)﹣13﹣(﹣9)(3)﹣5×(﹣2.5)(4)﹣36÷(﹣3)【解答】解:(1)﹣12+7=﹣5;(2)﹣13﹣(﹣9)=﹣13+9=﹣4;(3)﹣5×(﹣2.5)=12.5;(4)﹣36÷(﹣3)=12.20.(12分)计算(1)9+(﹣6);(2)(﹣7)﹣(﹣2);(3)(4)【解答】解:(1)9+(﹣6)=3;(2)(﹣7)﹣(﹣2)=﹣7+2=﹣5;(3)=2+4=6;(4)=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26.21.(8分)(1);(2)32×(﹣5)+160÷(﹣2)4【解答】解:(1)=﹣25﹣×(﹣8)﹣70=﹣25+5﹣70=﹣90;(2)32×(﹣5)+160÷(﹣2)4=﹣160+160÷16=﹣150.22.(6分)画数轴并在数轴上表示下列各数:﹣2,1,0,2.5,【解答】解:如图所示:23.(6分)10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,﹣4,2.5,3,﹣0.5,1.5,3,﹣1,0,﹣2.5.求这10筐苹果共超过标准多少千克?10筐苹果一共多少千克?【解答】解:2﹣4+2.5+3﹣0.5+1.5+3﹣1+0﹣2.5=4,10×30+4=304(千克)答:这10筐苹果共超过标准4千克,10筐苹果一共304千克.24.(6分)(1)比较有理数与的大小.(2)三个有理数a,b,c,满足a>b>c,且|b|=2|a|,|c|=5,a﹣b=6.求a+b+c的值.【解答】解:(1)∵|﹣|=,|﹣|=,<,∴﹣>﹣;(2)∵|c|=5,∴c=±5,∵a>b>c,且|b|=2|a|,a﹣b=6,∴当c=﹣5时,a=2,b=﹣4,a+b+c=2﹣4﹣5=﹣7;当c=5时,不符合题意舍去.故a+b+c的值为﹣7.。

江苏省泰州市兴化市板桥中学2019-2020年七年级(上)第一次月考数学试卷 含解析

江苏省泰州市兴化市板桥中学2019-2020年七年级(上)第一次月考数学试卷  含解析

2019-2020学年七年级(上)第一次月考数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.2.在数0,﹣3,1.1010010001…,﹣1.2中,属于无理数的是()A.0 B.﹣3C.1.1010010001…D.﹣1.23.下列计算:①(﹣3)+(﹣9)=﹣12;②0﹣(﹣5)=﹣5;③(﹣)=﹣;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个4.下列说法正确的是()A.﹣6 和﹣4 之间的数都是有理数B.数轴上表示﹣a的点一定在原点的左边C.在数轴上离开原点的距离越远的点表示的数越大D.﹣1 和 0 之间有无数个负数5.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大6.在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是()A.1 B.3 C.7 D.9二、填空题(本大题共10小题,每小题3分,共30分)7.某人的身份证号码是320106************,此人的生日是月日.8.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3000000000000美元,将3000000000000美元用科学记数法表示为.9.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是.10.若a、b互为相反数,c、d互为倒数,则(a+b)﹣cd=.11.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是.12.的平方等于25,立方得﹣8的数是.13.若|x﹣2|+(y+3)2=0,则y x=.14.已知|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,则a+b+c=.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是.16.已知m⩾2,n⩾2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么在43的“分解”中,最小的数是.三、解答题(本大题共10小题,共102分)17.把下列各数分别填入相应的集合里:+(﹣2),0,﹣0.314,﹣5.0101001…(两个1间的0的个数依次多1个)﹣(﹣11),,﹣4,0.,|正有理数集合:{ },无理数集合:{ },整数集合:{ },分数集合:{ }.18.把下列各数在数轴上表示出来.并用“<”连接.1.5,0,3,﹣1,.19.计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)20.计算(1);(2);(3)(4)﹣14﹣[2﹣(﹣3)2]21.计算:(1)(2)﹣1+2﹣3+4…﹣2019+202022.计算:已知|x|=5,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.23.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?24.现定义新运算“⊕”,对任意有理数a、b,规定a⊕b=ab+a﹣b,例如:1⊕2=1×2+1﹣2=1,(1)求3⊕(﹣4)的值;(2)求3⊕[(﹣2)⊕1]的值;(3)若(﹣3)⊕b与b互为相反数,求b的值.25.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2 ﹣12 (1)当上海是10月1日上午10时,悉尼时间是.(2)上海、纽约与悉尼的时差分别为(正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数)(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4 和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A,B 两点间的最大距离是.(4)若数轴上表示数a的点位于﹣4 与2之间,则|a+4|+|a﹣2|=.参考答案与试题解析一.选择题(共6小题)1.与﹣3互为相反数的是()A.﹣3 B.3 C.﹣D.【分析】只有符号不同的两个数互为相反数,0的相反数是0.【解答】解:﹣3的相反数是3.故选:B.2.在数0,﹣3,1.1010010001…,﹣1.2中,属于无理数的是()A.0 B.﹣3C.1.1010010001…D.﹣1.2【分析】无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【解答】解:0,﹣3是整数,属于有理数;﹣1.2是有限小数,属于有理数,∴无理数的是1.1010010001…,故选:C.3.下列计算:①(﹣3)+(﹣9)=﹣12;②0﹣(﹣5)=﹣5;③(﹣)=﹣;④(﹣36)÷(﹣9)=﹣4.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】各式计算得到结果,即可作出判断.【解答】解:①(﹣3)+(﹣9)=﹣12,符合题意;②0﹣(﹣5)=0+5=5,不符合题意;③(﹣)=﹣,符合题意;④(﹣36)÷(﹣9)=4,不符合题意,故选:B.4.下列说法正确的是()A.﹣6 和﹣4 之间的数都是有理数B.数轴上表示﹣a的点一定在原点的左边C.在数轴上离开原点的距离越远的点表示的数越大D.﹣1 和 0 之间有无数个负数【分析】数轴上的点与实数一一对应,不是与有理数一一对应,因此A选项不符合题意;﹣a不一定表示负数,因此B选项不符合题意;数轴所表示的数越向右越大,越向左越小,离原点越远,在左侧时,数就越小,因此选项C不符合题意;0与﹣1之间有无数个点,表示无数个实数,就是有无数个负数,因此选项D符合题意.【解答】解:数轴上的点不是与有理数一一对应,因此A选项不符合题意;﹣a不一定表示负数,因此B选项不符合题意;数轴所表示的数越向右越大,越向左越小,离原点越远,在左侧时,数就越小,因此选项C不符合题意;0与﹣1之间有无数个点,表示无数个实数,就是有无数个负数,因此选项D符合题意.故选:D.5.如果mn>0,且m+n<0,则下列选项正确的是()A.m<0,n<0B.m>0,n<0C.m,n异号,且负数的绝对值大D.m,n异号,且正数的绝对值大【分析】根据有理数的性质,因由mn>0,且m+n<0,可得n,m同号且两者都为负数可排除求解.【解答】解:若有理数m,n满足mn>0,则m,n同号,排除B,C,D选项;且m+n<0,则m<0,n<0,故A正确.故选:A.6.在一列数:a1,a2,a3,…a n中,a1=3,a2=7,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2019个数是()A.1 B.3 C.7 D.9【分析】可分别求出n=3、4、5…时的情况,观察它是否具有周期性,再把2017代入求解即可.【解答】解:依题意得:a1=3,a2=7,a3=1,a4=7,a5=7,a6=9,a7=3,a8=7;周期为6;2019÷6=336…3,所以a2017=a3=1.故选:A.二.填空题(共10小题)7.某人的身份证号码是320106************,此人的生日是10 月17 日.【分析】身份证的第7﹣14位表示的出生日期,其中7﹣10位是出生的年份,11、12位是出生的月份,13、14是出生的日;据此解答.【解答】解:身份证号码是320106************,第7﹣14位是:20071017,表示2007年10月17日出生故答案为:10,17.8.2014年至2016年,中国同“一带一路”沿线国家贸易总额超过3000000000000美元,将3000000000000美元用科学记数法表示为3×1012美元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000000000000=3×1012美元.故答案为:3×1012美元.9.已知数轴上两点A,B表示的数分别是2和﹣7,则A,B两点间的距离是9 .【分析】由数轴上两点表示的数,利用数轴上两点间的距离公式即可求出线段AB的长度.【解答】解:∵数轴上两点A、B表示的数分别是2和﹣7,∴A、B两点间的距离为2﹣(﹣7)=9.故答案为:9.10.若a、b互为相反数,c、d互为倒数,则(a+b)﹣cd=﹣1 .【分析】利用两数互为相反数,和为0;两数互为倒数,积为1,由此可解出此题.【解答】解:依题意得:a+b=0,cd=1,所以(a+b)﹣cd=0﹣1=﹣1.故答案为:﹣1.11.在4,﹣1,+2,﹣5这四个数中,任意三个数之和的最小值是﹣4 .【分析】在4,﹣1,+2,﹣5这四个数中找出较小的三个数,再计算它们的和即可.【解答】解:﹣5<﹣1<+2<4,(﹣5)+(﹣1)+(+2)=﹣4.故答案为:﹣412.±5 的平方等于25,立方得﹣8的数是﹣2 .【分析】根据乘方的性质,可得答案.【解答】解:±5的平方等于25,立方得﹣8的数是﹣2,故答案为:±5,﹣2.13.若|x﹣2|+(y+3)2=0,则y x=9 .【分析】根据非负数的性质可求出x、y的值,再将它们代入y x中求解即可.【解答】解:∵x、y满足|x﹣2|+(y+3)2=0,∴x﹣2=0,x=2;y+3=0,y=﹣3;则y x=(﹣3)2=9.故答案为:9.14.已知|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,则a+b+c= 1 .【分析】根据|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,可以得到a、b、c的值,从而可以求得所求式子的值.【解答】解:∵|a|=2,|b|=3,|c|=4,且a>0,b>0,c<0,∴a=2,b=3,c=﹣4,∴a+b+c=2+3+(﹣4)=1,故答案为:1.15.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是1﹣π.【分析】直接利用圆的周长公式得出圆的周长,再利用对应数字性质得出答案.【解答】解:由题意可得:圆的周长为π,∵直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,∴A点表示的数是:1﹣π.故答案为:1﹣π.16.已知m⩾2,n⩾2,且m、n均为正整数,如果将m n进行如图所示的“分解”,那么在43的“分解”中,最小的数是13 .【分析】通过观察可知:底数是几,分解成的奇数的个数为几,且奇数的个数之和为幂,则在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43.【解答】解:在43的“分解”中最小的数是13,则其他三个数为15,17,19,四数的和为64,恰好为43.故答案为:13三.解答题(共10小题)17.把下列各数分别填入相应的集合里:+(﹣2),0,﹣0.314,﹣5.0101001…(两个1间的0的个数依次多1个)﹣(﹣11),,﹣4,0.,|正有理数集合:{ ﹣(﹣11)、、0.,、},无理数集合:{ ﹣5.0101001…(两个1间的0的个数依次多1个)},整数集合:{ +(﹣2),0,﹣(﹣11)…},},分数集合:{ ﹣0.314,,,0.,}.【分析】根据实数的分类即可求出答案.【解答】解:故答案为:正有理数集合:{﹣(﹣11)、、0.,、…},无理数集合:{﹣5.0101001(两个1间的0的个数依次多1个)……},整数集合:{+(﹣2),0,﹣(﹣11)…},分数集合:{﹣0.314,,,0.,…}18.把下列各数在数轴上表示出来.并用“<”连接.1.5,0,3,﹣1,.【分析】将各数在数轴上表示出来,根据“在数轴上从右到左,数逐步减小”用“>”连接各数即可.【解答】解:将各数在数轴上表示出来,如图所示:∵在数轴上从右到左,数逐步减小,∴.19.计算:(1)7﹣(﹣4)+(﹣5)(2)(3)﹣7.2﹣0.8﹣5.6+11.6(4)【分析】(1)根据有理数的加减法可以解答本题;(2)先去掉绝对值,然后根据有理数的加减法即可解答本题;(3)根据有理数的加减法可以解答本题;(4)根据有理数的加减法可以解答本题.【解答】解:(1)7﹣(﹣4)+(﹣5)=7+4+(﹣5)=6;(2)=6+0.2+(﹣2)﹣1.5=2.7;(3)﹣7.2﹣0.8﹣5.6+11.6=(﹣7.2)+(﹣0.8)+(﹣5.6)+11.6=﹣2;(4)=4.20.计算(1);(2);(3)(4)﹣14﹣[2﹣(﹣3)2]【分析】(1)根据有理数的乘法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据有理数的乘除法可以解答本题;(4)根据有理数的加减法可以解答本题.【解答】解:(1)==2;(2)=﹣=﹣;(3)=﹣5×=﹣1;(4)﹣14﹣[2﹣(﹣3)2]=﹣1﹣(2﹣9)=﹣1﹣(﹣7)=﹣1+7=6.21.计算:(2)﹣1+2﹣3+4…﹣2019+2020【分析】(1)根据乘法的分配律解答即可;(2)先把数字分组:(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2017+2018)+(﹣2019+2020),分组后得出规律每组都为1,算出有多少个1相加即可得出结果.【解答】解:(1)===12+18﹣30﹣27=﹣27;(2)﹣1+2﹣3+4…﹣2019+2020=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2017+2018)+(﹣2019+2020)=1×1010=1010.22.计算:已知|x|=5,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.【分析】(1)由题意x=±5,y=±2,由于xy<0,x=5,y=﹣2或x=﹣5,y=2,代入x+y即可求出答案.(2)由题意x=±5,y=±2,根据几种情况得出x﹣y的值,进而比较即可.【解答】解:因为|x|=5,|y|=2,所以x=±5,y=±2,(1)∵xy<0,∴x=5,y=﹣2或x=﹣5,y=2,∴x+y=±3,(2)当x=5,y=2时,x﹣y=5﹣2=3;当x=5,y=﹣2时,x﹣y=5﹣(﹣2)=7;当x=﹣5,y=2时,x﹣y=﹣5﹣2=﹣7;当x=﹣5,y=﹣2时,x﹣y=﹣5﹣(﹣2)=﹣3,所以x﹣y的最大值是7.23.邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑行了多少千米?【分析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据题意列出算式,即可得出答案.【解答】解:(1);(2)C村离A村的距离为9﹣3=6(km);(3)邮递员一共行驶了2+3+9+4=18(千米).24.现定义新运算“⊕”,对任意有理数a、b,规定a⊕b=ab+a﹣b,例如:1⊕2=1×2+1﹣2=1,(1)求3⊕(﹣4)的值;(2)求3⊕[(﹣2)⊕1]的值;(3)若(﹣3)⊕b与b互为相反数,求b的值.【分析】(1)根据a⊕b=ab+a﹣b,可以求得所求式子的值;(2)根据a⊕b=ab+a﹣b,可以求得所求式子的值;(3)根据题意和a⊕b=ab+a﹣b,可以求得b的值.【解答】解:(1)∵a⊕b=ab+a﹣b,∴3⊕(﹣4)=3×(﹣4)+3﹣(﹣4)=(﹣12)+3+4(2)∵a⊕b=ab+a﹣b,∴3⊕[(﹣2)⊕1]=3⊕[(﹣2)×1+(﹣2)﹣1]=3⊕[(﹣2)+(﹣2)﹣1]=3⊕(﹣5)=3×(﹣5)+3﹣(﹣5)=(﹣15)+3+5=﹣7;(3)∵(﹣3)⊕b与b互为相反数,∴(﹣3)×b+(﹣3)﹣b+b=0,解得,b=﹣1.25.纽约、悉尼与上海的时差如下表(正数表示同一时刻比上海时间早的时数,负数表示同一时刻比上海晚的时数):城市悉尼纽约时差/时+2 ﹣12 (1)当上海是10月1日上午10时,悉尼时间是10月1日上午12时.(2)上海、纽约与悉尼的时差分别为﹣2,﹣14 (正数表示同一时刻比悉尼时间早的时数,负数表示同一时刻比悉尼晚的时数)(3)王老师2018年9月1日,从纽约Newwark机场,搭乘当地时间上午10:45的班机,前往上海浦东国际机场,飞机飞行的时间为14小时55分钟,问飞机降落上海浦东国际机场的时间.【分析】(1)由统计表得出:悉尼时间比上海时间早2小时,也就是10月1日上午12时.(2)由统计表得出:上海比悉尼晚2个小时,所以时差为﹣2,纽约比悉尼晚14个小时,所以时差为﹣14;(3)先计算飞机到达机场时纽约的时间,即:(10+14)时(45+55)分,2018年9月2日1时40分,再根据时差计算结果即可.【解答】解:(1)由题意得:当上海是10月1日上午10时,悉尼时间是10月1日上午故答案为:10月1日上午12时;(2)上海与悉尼的时差是:﹣2;纽约与悉尼的时差是:﹣2﹣12=﹣14;故答案为:﹣2,﹣14;(3)由题意得:(10+14)时(45+55)分,即2018年9月2日1时40分,又知上海比纽约早12小时,所以到上海时是:9月2日13时40分;答:飞机降落上海浦东国际机场的时间为2018年9月2日下午1:40.26.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4 和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=﹣4或2 ;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A,B 两点间的最大距离是8 .(4)若数轴上表示数a的点位于﹣4 与2之间,则|a+4|+|a﹣2|= 6 .【分析】(1)根据题意可以求得数轴上表示4 和1的两点之间的距离和表示﹣3和2两点之间的距离;(2)根据|x+1|=3,可以求得x的值,本题得以解决;(3)根据题意可以求得a、b的值,从而可以求得A,B两点间的最大距离;(4)根据数轴上表示数a的点位于﹣4 与2之间,可以求得|a+4|+|a﹣2|的值.【解答】解:(1)数轴上表示4 和1的两点之间的距离是4﹣1=3,表示﹣3和2两点之间的距离是2﹣(﹣3)=5,故答案为:3,5;(2)∵|x+1|=3∴x+1=±3,解得,x=2或x=﹣4,故答案为:﹣4或2;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或a=1,b=﹣3或b=﹣1,∴当A为5,B为﹣3时,A,B两点间的距离最大,最大距离是5﹣(﹣3)=8,故答案为:8;(4)∵数轴上表示数a的点位于﹣4 与2之间,∴﹣4<a<2,∴|a+4|+|a﹣2|=a+4+2﹣a=6,故答案为:6.。

2019-2020年七年级数学上第一次月考数学试题含答案.docx

2019-2020年七年级数学上第一次月考数学试题含答案.docx

2019-2020 年七年级数学上第一次月考数学试题含答案一、 (本大 共 8 个小 ,每小 3 分,共 24 分.在每小 出的四个 中,只有一 符合 目要求. )1. 3 的相反数是()A .1B . 3C.1 D . 3332.某市 2015 年元旦的最高气温 2℃,最低气温 - 8℃,那么 天的最高气温比最低气温高( ▲ )A .10℃B . -6 ℃C. 6 ℃D . - 10℃3.下列各 数中,两个数相等的是()A . 32 与 23B. 23 与 ( 2)3C . 32 与 ( 3) 2D2. 2 ( 3) 与 2 ( 3)24. 等于其本身的数有()A . 1 个B . 2 个C . 0 个D .无数个5.如果 ab0 , ab 0 ,那么下列各式中一定正确的是()A . a b 0B .aC . b a 0D .abb6、如 所示是 算机程序 算,若开始 入x1, 最后 出的 果是()输入×(- 4)—(— 1) >10YES出NOA . 5 B. -19C. 77D. 877. 已知 : 22222 ,3 3 323, 4 4424, 55 525, ⋯,33 8 8 15152424若 10b 102b符合前面式子的 律, ab 的 ---------()aaA.109B.140C.179D.2108.等 △ ABC 在数 上的位置如 所示,点 A 、C 的数分 0 和- 1,若△ ABC 点沿 方向在数 上 翻 ,翻 1 次后,点 B 所 的数 1, 翻2009 次后,点 B ( ▲ )A .不 任何数B. 的数是 2007C . 的数是 2008D . 的数是 2009二、填空 (本大 共 10 个小 ,每小3 分,共 30 分.) 9. 若 x 2 =81, x= 。

10.省 划重建校舍3890000平方米, 3890000用科学 数法表示.11.如果 a 2(b1) 2 0 ,那么 (ab) 2014.12. 不大于6 的整数的 是.13. 如果一个数的平方等于它的本身, 个数是 。

北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷(word版,含答案)

北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷(word版,含答案)

北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷数学一、选择题(每题4分,共32分)下面各题均有四个选項,其中只有一个是符合题意的1.(4分)在﹣5,﹣2.3,0,0.89五个数中,负数共有()A.2个B.3个C.4个D.5个2.(4分)﹣5的绝对值是()A.5 B.﹣5 C.D.±53.(4分)如图,数轴上两点A,B表示的数互为相反数()A.﹣1 B.1 C.﹣2 D.24.(4分)下列几种说法中,正确的是()A.有理数分为正有理数和负有理数B.整数和分数统称有理数C.0不是有理数D.负有理数就是负整数5.(4分)a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a﹣2|为正数D.|a|+2为正数6.(4分)如图,数轴上一点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C 表示的数为1()A.7 B.3 C.﹣3 D.﹣27.(4分)如果a、b异号,且a+b<0,则下列结论正确的是()A.a>0,b>0B.a<0,b<0C.a,b异号,且正数的绝对值较大D.a,b异号,且负数的绝对值较大8.(4分)已知a,b是有理数,|ab|=﹣ab(ab≠0),b下列正确的是()A.B.C.D.二、填空题(每小题4分,本大题共32分)9.(4分)﹣1的相反数是.10.(4分)比较大小:﹣3﹣2.1,﹣(﹣2)﹣|﹣2|(填>”,“<”或“=”).11.(4分)请写出一个比﹣3大的非负整数:.12.(4分)数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是.13.(4分)如果a为有理数,且|a|=﹣a,那么a的取值范围是.14.(4分)已知a>0,b<0,|b|>|a|,﹣a,b,﹣b四个数的大小关系.15.(4分)已知点O为数轴的原点,点A,B在数轴上若AO=8,且点A表示的数比点B表示的数小,则点B表示的数是.16.(4分)已知x,y均为整数,且|x﹣y|+|x﹣3|=1.三、解答题(本大题共52分,17题,18题各8分,19-20题各7分,第21、22题8分)17.(8分)计算(1)(﹣6)+(﹣13).(2)(﹣)+.18.(8分)画数轴,并在数轴上表示下列数:﹣3、﹣2.7、﹣、1,再将这些数用“<”连接.19.(7分)已知|a|=3,|b|=3,a、b异号20.(7分)若|x﹣2|+|2y﹣5|=0,求x+y的值.21.(8分)出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午先向东走了15千米,又向西走了13千米,又向西走了11千米,又向东走了10千米(1)请你用正负数表示小张向东或向西运动的路程;(2)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(3)离开下午出发点最远时是多少千米?(4)若汽车的耗油量为0.06升/千米,油价为4.5元/升,这天下午共需支付多少油钱?22.(8分)已知数轴上三点A、O、B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)若点P到点A,点B,点O的距离之和最小.四.【附加】23.在某种特制的计算器中有一个按键,它代表运算.例如:上述操作即是求的值,运算结果为1.回答下面的问题:(1)小敏的输入顺序为﹣6,,﹣8,,运算结果是;(2)小杰的输入顺序为1,,,,,﹣2,,,,,,3,,运算结果是;(3)若在,,,,,,,,0,,,,,,,,这些数中,任意选取两个作为a、b的值运算,则所有的运算结果中最大的值是.北京市人大附中2019-2020学年七年级上学期第一次月考数学试卷参考答案一、选择题(每题4分,共32分)下面各题均有四个选項,其中只有一个是符合题意的1.【分析】根据小于零的数是负数,可得答案.【解答】解:在﹣5,﹣2.7,0,﹣4,负数有﹣5,﹣3.3,共有3个.故选:B.【点评】本题考查了有理数,解题的关键是明确小于零的数是负数.2.【分析】根据绝对值的含义和求法,可得﹣5的绝对值是:|﹣5|=5,据此解答即可.【解答】解:﹣5的绝对值是:|﹣5|=2.故选:A.【点评】此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【分析】利用数形结合的思想,数轴上A、B表示的数互为相反数,说明A,B到原点的距离相等,并且点A在点B的右边,可以确定这两个点的位置,即它们所表示的数.【解答】解:数轴上A、B表示的数互为相反数,所以它们到原点的距离都为2,所以点B表示的数﹣2,故选:C.【点评】练掌握数轴的有关知识和相反数的定义.数轴有原点,方向和单位长度,数轴上的点与实数一一对应;若两个数互为相反数,则它们的和为0.利用数轴可以很好的解决有关实数的问题.4.【分析】按照有理数的分类做出判断.【解答】解:A、有理数分为正有理数,故错误;B、整数和分数统称为有理数;C、0是有理数;D、负有理数就是负整数和负分数;故选:B.【点评】此题考查了有理数,掌握有理数的分类是本题的关键,注意0是整数,但它既不是正数,也不是负数.5.【分析】根据绝对值进行判断即可.【解答】解:因为a为有理数,A、当a<0时,错误;B、当a=0时,错误;C、当a=6时,不是正数;D、无论a取任何数,是正数;故选:D.【点评】此题考查正数和负数,关键是根据绝对值的非负性解答.6.【分析】首先设点A所表示的数是x,再根据平移时坐标的变化规律:左减右加,以及点C的坐标列方程求解.【解答】解:设A点表示的数为x.列方程为:x﹣2+5=8,x=﹣2.故选:D.【点评】本题考查数轴上点的坐标变化和平移规律:左减右加.7.【分析】两数异号,两数之和小于0,说明两数都是负数或一正一负,且负数的绝对值大.综合两个条件可选出答案.【解答】解:∵a+b<0,∴a,b同为负数,且负数的绝对值大,∵a,b异号,∴a、b异号.故选:D.【点评】此题主要考查了有理数的乘法和加法,解题的关键是熟练掌握计算法则,正确判断符号.8.【分析】根据题中的两个等式,分别得到a与b异号,a为负数,b为正数,且a的绝对值大于b的绝对值,采用特值法即可得到满足题意的图形.【解答】解:∵|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b,∴|a|>|b|,且a<0在原点左侧,得到满足题意的图形为选项C.故选:C.【点评】此题考查了绝对值的代数意义、几何意义,及异号两数的加法法则.其中绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0.几何意义为:|a|表示在数轴上表示a的点到原点的距离.此类题目比较简单,可根据题中已知的条件利用取特殊值的方法进行比较,以简化计算.二、填空题(每小题4分,本大题共32分)9.【分析】根据相反数的定义分别填空即可.【解答】解:﹣1的相反数是1.故答案为:1.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.【分析】第一个根据两个负数比大小,其绝对值大的反而小比较即可,第二个根据正数都大于一切负数比较即可.【解答】解:∵|﹣3|=3,|﹣7.1|=2.5,﹣|﹣2|=﹣2,∴﹣3<﹣2.1,﹣(﹣2)>﹣|﹣2|,故答案为:<,>.【点评】本题考查了相反数,绝对值和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键.11.【分析】此题答案不唯一,写出一个符合的即可.【解答】解:比﹣3大的非负整数有0,6,2…,故答案为:0.【点评】本题考查了有理数的大小比较和非负整数的意义,能求出符合的数是解此题的关键,注意:非负整数是指正整数和0.12.【分析】在数轴上表示出P点,找到与点P距离3个长度单位的点所表示的数即可.此类题注意两种情况:要求的点可以在已知点﹣2的左侧或右侧.【解答】解:根据数轴可以得到在数轴上与点A距离3个长度单位的点所表示的数是:﹣5或5.故答案为:﹣5或1.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.13.【分析】根据绝对值的性质解答即可.【解答】解:当a≤0时,|a|=﹣a,故答案为:a≤0【点评】此题考查绝对值,关键是根据非正数的绝对值是它的相反数解答.14.【分析】先在数轴上标出a、b、﹣a、﹣b的位置,再比较即可.【解答】解:∵a>0,b<0,∴b<﹣a<a<﹣b,故答案为:b<﹣a<a<﹣b.【点评】本题考查了数轴,相反数和有理数的大小比较,能知道a、b、﹣a、﹣b在数轴上的位置是解此题的关键.15.【分析】根据AO=8,先得出点A表示的数,再根据AB=2,分类讨论即可得出点B表示的数.【解答】解:∵AO=8∴点A表示的数为﹣8或4∵AB=2∴当点A表示的数为﹣8,且点A表示的数比点B表示的数小时,点B表示的数为﹣4;当点A表示的数为8,且点A表示的数比点B表示的数小时,点B表示的数为10.故答案为:﹣6或10.【点评】本题考查了数轴上的点所表示的数,分类讨论是解题的关键.16.【分析】根据x﹣y=±1,x﹣3=0,或x﹣3=±1,x﹣y=0四种情况解答即可.【解答】解:因为x,y均为整数,可得:x﹣y=±1,x﹣3=3,x﹣y=0,当x﹣y=1,x﹣7=0,y=2;当x﹣y=﹣7,x﹣3=0,y=7;当x﹣y=0,x﹣3=5,y=4;当x﹣y=0,x﹣4=﹣1,y=2,故答案为:4或8或4或2.【点评】本题考查了绝对值,分类讨论解含绝对值的方程是关键.三、解答题(本大题共52分,17题,18题各8分,19-20题各7分,第21、22题8分)17.【分析】(1)根据有理数的加法法则可以解答本题;(2)先通分,后加减即可解答.【解答】解:(1)(﹣6)+(﹣13)=﹣(6+13).=﹣19;(2)(﹣)+=﹣+=﹣+=﹣.【点评】本题考查有理数的加减法运算,解答本题的关键是明确有理数加减法的计算方法.18.【分析】先在数轴上表示出各个数,再比较即可.【解答】解:﹣3<﹣2.5<﹣<3.【点评】本题考查了数轴和有理数的大小比较,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的各个数,右边的数总比左边的数大.19.【分析】根据|a|=3,|b|=3,a、b异号,可以求得a、b的值,从而可以求得所求式子的值.【解答】解:∵|a|=3,|b|=3,a,∴a=7,b=﹣3或a=﹣3,当a=6,b=﹣3时,当a=﹣3,b=8时,由上可得,a+b的值是0.【点评】本题考查有理数的加法、绝对值,解答本题的关键是明确题意,求出a、b的值.20.【分析】根据“|x﹣2|+|2y﹣5|=0”,结合绝对值的定义,分别得到关于a和关于b的一元一次方程,解之,代入x+y,计算求值即可.【解答】解:根据题意得:x﹣2=0,解得:x=8,2y﹣5=4,解得:y=,则x+y=6+=,即x+y的值为.【点评】本题考查了代数式求值,非负数的性质:绝对值,正确掌握绝对值的定义,一元一次方程的解法,有理数的混合运算是解题的关键.21.【分析】(1)向东为正,则向西为负,再根据距离,即可用正数、负数表示,(2)计算(1)中的数的和,即可得出答案,(3)分别计算出将每一位顾客送到目的地时,距离出发点的距离,比较得出答案,(4)计算出行驶的总路程,即(1)中的各个数的绝对值的和,再根据单价、数量,进而求出总价即可.【解答】解:(1)用正负数表示小张向东或向西运动的路程(单位:千米)为:+15,﹣13,﹣11,﹣8,(2)(+15)+(﹣13)+14+(﹣11)+10+(﹣8)=2千米,答:将最后一名乘客送到目的地时,小张在下午出车点东7千米的地方,(3)将每一位顾客送到目的地,离出发点的距离为,2千米,5千米,7千米,因此最远为16千米,答:离开下午出发点最远时是16千米.(4)0.06×4.5×(15+13+14+11+10+8)=19.17元,答:这天下午共需支付19.17元的油钱.【点评】考查正数、负数、绝对值的意义,以及数轴表示数,理解正负数的意义是解决问题的前提,借助数轴表示是关键.22.【分析】(1)点P位于点A和点B中间时,点P到点A和点B的距离相等;(2)根据点A、点B的距离之和为4,将点P从点A向左移动1个单位或向右移动1个单位,则点P到点A和点B的距离之和为6,据此可解;(3)点P位于点A和点B之间时,点P到点A,点B的距离之和最小,据此可解;(4)点P位于点O时,点P到点A,点B,点O的距离之和最小,据此可解.【解答】解:(1)∵A、B对应的数分别为﹣3,1,如果点P到点A,点B的距离相等,则x=﹣5故答案为:﹣1;(2)∵点A、点B的距离之和为4∴若要使得点P到点A、点B的距离之和是3则点P位于点A左侧一个单位或点P位于点B右侧1个单位,即:x=﹣4或x=8时,点P到点A;(3)∵点P位于点A和点B之间时,点P到点A,此时x的取值范围是﹣3≤x≤1故答案为:﹣5≤x≤1.(4)若点P位于点O时,点P到点A,点O的距离之和最小最小值为线段AB的长,即4.故答案为:7.【点评】本题考查了数轴上的点所表示的数及点与点之间的距离的关系,明确题意,是解题的关键.四.【附加】23.【分析】本题要求同学们能熟练应用计算器,会用科学计算器进行计算.【解答】解:根据题意,分析运算,b中的最小值,故答案为:(1)根据题意有结果为﹣6与﹣6中的较小的数,即﹣8.(2)根据题意由运算的结果为﹣,﹣8,﹣2.(3)找这一列数中,绝对值相差最小,;按运算法则计算可得结果是.(由于本份试卷有些题目的解法不唯一,因此请老师们依据评分酌情给分.)【点评】本题要求学生根据题意中的计算法则,分析出计算的结果;考查学生的分析,处理问题的能力.。

2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷(解析版)

2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷(解析版)

2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷一、单项选择题:(本题共10小题,每小题3分,共30分)1.在下列各数:﹣(+2019),﹣|﹣2019|,﹣,﹣(﹣2019),2019中,负数的个数是()个A.2B.3C.4D.52.主视图、左视图和俯视图完全相同的几何体是()A.圆锥B.长方体C.圆柱D.正方体3.﹣2的相反数等于()A.﹣2B.2C.D.4.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.5.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A.圆锥B.五棱柱C.正方体D.圆柱6.为庆祝郑州一中建校70周年,桐一学子制作了精美纪念胸章,质量要求是“70±0.25克”,则有理数中大小合格的有()A.69.70克B.70.30克C.70.51克D.69.80克7.下列各图中,()是四棱柱的侧面展开图.A.B.C.D.8.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.249.在立方体六个面上,分别标上“我、爱、郑、州、一、中”,如图是立方体的三种不同摆法,则“州”字相对面是()A.我B.爱C.一D.中10.用小立方块搭成的几何体,从正面和上面看的形状图如图,则组成这样的几何体需要立方块个数为()A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块二、填空题:(本题共6小题,每题3分,共18分.)11.有理数可分为:、、.12.比较大小:﹣2019﹣2018(填=,>,<号)13.圆柱的侧面展开图是形.14.在数轴上到表示﹣2的点的距离为4的点所表示的数是.15.已知|a+2019|=﹣|b﹣2020|,a+b=.16.张老师在黑板上写出以下四个结论:①﹣3的绝对值为;②一个负数的绝对值一定是正数;③若|a|=﹣a,则a一定是负数;④一个五棱柱的截面最多是七边形,认为张老师写的结论正确的有(填序号)三、解答题.(共6道题,52分.)17.(8分)计算:(1)﹣5+2×(﹣3)+(﹣12)÷[﹣2](2)﹣|﹣2|×[÷(﹣)+0×(﹣2019)+]÷()18.(9分)画出如图图形的三视图.19.(8分)如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足|a﹣8|+|b+5|=0.(1)写出a、b及AB的距离:a=b=AB=;(2)若动点P从点A出发,以每秒3个单位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动.若P、Q同时出发,问点Q运动多少秒追上点P?20.(8分)如图所示,圆柱的高4cm,底面半径3cm,请求出该圆柱的表面积和体积.21.(9分)“十•一”黄金周期间,郑州市绿博园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日人数变化(单位:万人)+1.6+0.8﹣0.4﹣0.4﹣1.4+0.2﹣0.9(1)第3天与假期前的游客人数相比,是增加了还是减少了?增加(减少)了多少万人?(2)7天假期中平均每天的游客数相较假期前是增加还是减少了?增加(减少)了多少万人?(3)请判断七天内游客人数最多的是日.22.(10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a >0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=9,|b|=4,且a<b,求a﹣2b的值.2019-2020学年河南省郑州市桐柏一中七年级(上)第一次月考数学试卷参考答案与试题解析一、单项选择题:(本题共10小题,每小题3分,共30分)1.在下列各数:﹣(+2019),﹣|﹣2019|,﹣,﹣(﹣2019),2019中,负数的个数是()个A.2B.3C.4D.5【分析】根据负数的定义即小于0的数是负数,再把所给的数进行计算,即可得出答案.【解答】解:﹣(+2019)=﹣2019,﹣|﹣2019|=﹣2019,﹣,﹣(﹣2019)=2019,∴在所列实数中负数有3个,故选:B.【点评】此题主要考查了绝对值以及有理数的乘方运算,正确化简各数是解题关键.2.主视图、左视图和俯视图完全相同的几何体是()A.圆锥B.长方体C.圆柱D.正方体【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、圆锥的主视图和左视图是相同的,都为一个三角形,但是俯视图是一个圆形,不符合题意;B、长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,不符合题意;C、圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,不符合题意;D、正方体的三视图都是大小相同的正方形,符合题意.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.﹣2的相反数等于()A.﹣2B.2C.D.【分析】根据相反数的概念解答即可.【解答】解:﹣2的相反数是﹣(﹣2)=2.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.4.四位同学画数轴如图所示,你认为正确的是()A.B.C.D.【分析】数轴的定义:规定了原点、单位长度和正方向的直线.【解答】解:A中,无原点;B中,无正方向;D中,数的顺序错了.故选:C.【点评】考查了数轴的定义.注意数轴的三要素:原点、正方向和单位长度.5.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体不可能是()A.圆锥B.五棱柱C.正方体D.圆柱【分析】根据圆柱体的主视图只有矩形或圆,即可得出答案.【解答】解:∵圆柱体的主视图只有矩形或圆,∴如果截面是三角形,那么这个几何体不可能是圆柱.故选:D.【点评】此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.6.为庆祝郑州一中建校70周年,桐一学子制作了精美纪念胸章,质量要求是“70±0.25克”,则有理数中大小合格的有()A.69.70克B.70.30克C.70.51克D.69.80克【分析】计算精美纪念胸章的质量标识的范围:在70﹣0.25和70+0.25之间,即:从69.75到70.25之间.【解答】解:70﹣0.25=69.75(克),70+0.25=70.25(克),所以精美纪念胸章,质量标识范围是:在69.75到70.25之间.故选:D.【点评】此题考查了正数和负数,解题的关键是:求出精美纪念胸章的质量标识的范围.7.下列各图中,()是四棱柱的侧面展开图.A.B.C.D.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.【解答】解:由分析知:四棱柱的侧面展开图是矩形图;故选:A.【点评】本题考查了几何体的展开图,此题应根据四棱柱的侧面展开图,进行分析、解答.8.一个棱柱有10个面,那么它的棱数是()A.16B.20C.22D.24【分析】根据八棱柱的定义可知,一个棱柱有10个面,那么这个棱柱是八棱柱,即可得出答案.【解答】解:一个棱柱有10个面,那么这个棱柱是八棱柱,它的棱数为3×8=24;故选:D.【点评】本题考查了棱柱的特征:n棱柱有(n+2)个面,有3n条棱;熟记棱柱的特征是解题的关键.9.在立方体六个面上,分别标上“我、爱、郑、州、一、中”,如图是立方体的三种不同摆法,则“州”字相对面是()A.我B.爱C.一D.中【分析】根据与“我”相邻的字是“中”“州”“爱”“一”可以得到“我”的对面是“郑”,同理可以找出与“中”相邻的四个字,然后找出“中”的对面是“一”,从而得出“州”与“爱”相对即可得解.【解答】解:根据图形,“我”相邻的字是“中”“州”“爱”“一”,∴“我”的对面是“郑”,“中”相邻的字是“我”“郑”“州”“爱”,∴“中”的对面是“一”,∴“州”与“爱”相对.故选:B.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相邻面入手找出四个相邻的字,从而得到对面的字是解题的关键.10.用小立方块搭成的几何体,从正面和上面看的形状图如图,则组成这样的几何体需要立方块个数为()A.最多需要8块,最少需要6块B.最多需要9块,最少需要6块C.最多需要8块,最少需要7块D.最多需要9块,最少需要7块【分析】易得这个几何体共有3层,由俯视图可得第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,相加即可.【解答】解:有两种可能;由主视图可得:这个几何体共有3层,由俯视图可得:第一层正方体的个数为4,由主视图可得第二层最少为2块,最多的正方体的个数为3块,第三层只有一块,∴最多为3+4+1=8个小立方块,最少为个2+4+1=7小立方块.故选:C.【点评】此题主要考查了由三视图判断几何体,关键是掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就很容易得到答案.二、填空题:(本题共6小题,每题3分,共18分.)11.有理数可分为:正有理数、零、负有理数.【分析】根据有理数的分类即可解答.【解答】解:有理数包括整数和分数,可以分为正有理数、零、负有理数.故答案为:正有理数,零,负有理数.【点评】此题主要考查了有理数的分类,解题时熟练掌握有理数的定义及不同的分类标准即可解决问题.12.比较大小:﹣2019<﹣2018(填=,>,<号)【分析】两个负数作比较,绝对值大的反而小.据此可得.【解答】解:∵|﹣2019|>|﹣2018|,∴﹣2019<﹣2018.故答案为:<【点评】此题考查了两个负数比较大小:两个负数作比较,绝对值大的反而小.13.圆柱的侧面展开图是长方形.【分析】由圆柱的侧面展开图的特征知它的侧面展开图为长方形.【解答】解:圆柱的侧面展开图为长方形.故答案为:长方.【点评】本题考查了圆柱的展开图,熟练掌握常见立体图形的侧面展开图的特征是解决本题的关键.14.在数轴上到表示﹣2的点的距离为4的点所表示的数是﹣6或2.【分析】根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.【解答】解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.【点评】此题主要考查了实数与数轴之间的对应关系,解题应该会根据距离和已知的一点的坐标确定另一点的坐标方法:左减右加.15.已知|a+2019|=﹣|b﹣2020|,a+b=1.【分析】直接利用绝对值的性质得出b的值,进而得出a的值,即可得出答案.【解答】解:∵|a+2019|=﹣|b﹣2020|,∴b﹣2020=0,∴b=2020,∴a=﹣2019,∴a+b=1.故答案为:1.【点评】此题主要考查了绝对值,正确掌握绝对值的性质是解题关键.16.张老师在黑板上写出以下四个结论:①﹣3的绝对值为;②一个负数的绝对值一定是正数;③若|a|=﹣a,则a一定是负数;④一个五棱柱的截面最多是七边形,认为张老师写的结论正确的有②④(填序号)【分析】根据乘积为1的数互为倒数;负数的绝对值是它的相反数;五棱柱有7个面,用平面去截长方体时最多与7个面相交得七边形判断即可.【解答】解:①﹣3×(﹣)=1,∴﹣3的倒数为﹣,故不符合题意;②负数的绝对值一定是正数,正确;故符合题意;③若|a|=﹣a,则a一定是非正数,故不符合题意;④截面可以经过三个面,四个面,五个面,六个面或七个面,那么得到的截面的形状最多是七边形,故符合题意;故答案为:②④.【点评】本题考查倒数,绝对值的定义及有关几何体的截面等知识,正确的理解题意是解题的关键.三、解答题.(共6道题,52分.)17.(8分)计算:(1)﹣5+2×(﹣3)+(﹣12)÷[﹣2](2)﹣|﹣2|×[÷(﹣)+0×(﹣2019)+]÷()【分析】(1)根据有理数的混合运算顺序即可求解;(2)根据有理数的混合运算顺序:先算括号内的和绝对值,再算乘除即可.【解答】解:(1)原式=﹣5﹣6+6=﹣5;(2)原式=﹣2×(﹣×4+0+)×3=﹣2×(﹣+)×3=﹣2×(﹣)×3=4.【点评】本题考查了有理数的混合运算,严格按运算顺序进行计算是关键.18.(9分)画出如图图形的三视图.【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图,分别画出即可.【解答】解:如图所示:【点评】此题主要考查了三视图,关键是把握好三视图所看的方向.19.(8分)如图,已知数轴上点A表示的数为a,点B表示的数为b,且满足|a﹣8|+|b+5|=0.(1)写出a、b及AB的距离:a=8b=﹣5AB=13;(2)若动点P从点A出发,以每秒3个单位长度沿数轴向右匀速运动,动点Q从点B出发,以每秒5个单位长度向右匀速运动.若P、Q同时出发,问点Q运动多少秒追上点P?【分析】(1)利用绝对值的非负性,可求出a,b的值,进而可得出线段AB的长;(2)由点P,Q的出发点、速度可得出:当运动时间为t秒时,点P表示的数为3t+8,点Q表示的数为5t﹣5,根据点Q追上点P,即可得出关于t的一元一次方程,解之即可得出结论.【解答】解:(1)∵|a﹣8|+|b+5|=0,∴a=8,b=﹣5,∴AB=8﹣(﹣5)=13.故答案为:8;﹣5;13.(2)当运动时间为t秒时,点P表示的数为3t+8,点Q表示的数为5t﹣5,依题意,得:3t+8=5t﹣5,解得:t=.答:点Q运动秒追上点P.【点评】本题考查了一元一次方程的应用、数轴以及绝对值的非负性,解题的关键是:(1)利用绝对值的非负性,求出a,b的值;(2)找准等量关系,正确列出一元一次方程.20.(8分)如图所示,圆柱的高4cm,底面半径3cm,请求出该圆柱的表面积和体积.【分析】根据圆柱表面积=底面周长×高,底面积=πr2公式计算表面积,根据底面积乘以高计算体积.【解答】解:根据圆柱表面积的计算公式可得π×2×3×4+π×32×2=42π(cm2).体积π×32×4=36π(cm3)【点评】本题主要考查了圆柱表面积和体积的计算方法.熟练运用圆柱面积公式与体积公式是解题的关键.21.(9分)“十•一”黄金周期间,郑州市绿博园在7天假期中每天旅游的人数变化如表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期1日2日3日4日5日6日7日人数变化(单位:万人)+1.6+0.8﹣0.4﹣0.4﹣1.4+0.2﹣0.9(1)第3天与假期前的游客人数相比,是增加了还是减少了?增加(减少)了多少万人?(2)7天假期中平均每天的游客数相较假期前是增加还是减少了?增加(减少)了多少万人?(3)请判断七天内游客人数最多的是2日.【分析】(1)求出第3天的变化人数,即可得出结论;(2)求出7天假期中平均每天的游客数,即可得出答案;(3)由1.6+0.8=2.4,以后连续3天减少,第6日增加不多,即可得出答案.【解答】解:(1)第3天的游客人数为1.6+0.8﹣0.4=2.0>0,∴第3天与假期前的游客人数相比,是增加了,增加了2.0万人;(2)7天假期中平均每天的游客数为(1.6+0.8﹣0.4﹣0.4﹣1.4+0.2﹣0.9)≈﹣0.07<0,∴7天假期中平均每天的游客数相较假期前是减少了,减少了约0.07万人;(3)∵1.6+0.8=2.4,以后连续3天减少,第6日增加不多,∴七天内游客人数最多的是2日;故答案为:2.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性.22.(10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求++的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:++=++=1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a >0,b<0,c<0,则:++=++=1﹣1﹣1=﹣1所以:++的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求++的值;(2)已知|a|=9,|b|=4,且a<b,求a﹣2b的值.【分析】(1)根据阅读材料分情况讨论计算即可;(2)根据绝对值的意义,先求出a、b的值,进而可得结果.【解答】解:(1)由题意得:a,b,c三个有理数都为负数或其中一个为负数,另两个为正数.①当a,b,c都是负数,即a<0,b<0,c<0时,则:++=﹣﹣﹣=﹣1﹣1﹣1=﹣3;②当a,b,c有一个为负数,另两个为正数时,设a>0,b>0,c<0,则:++=++=1+1﹣1=1所以:++的值为﹣3或1.(2)因为|a|=9,|b|=4,所以a=±9,b=±4,因为a<b,所以a=﹣9,b=±4,所以a﹣2b=﹣9﹣2×4=﹣17或a﹣2b=﹣9﹣2×(﹣4)=﹣1.答:a﹣2b的值为﹣17或﹣1.【点评】本题考查了有理数的混合运算、绝对值的意义,解决本题的关键是读懂阅读材料.。

2019-2020学年江苏省常州市天宁区丽华中学七年级(上)第一次月考数学试卷 解析版

2019-2020学年江苏省常州市天宁区丽华中学七年级(上)第一次月考数学试卷  解析版

2019-2020学年江苏省常州市天宁区丽华中学七年级(上)月考数学试卷一、选择题(每小题3分,共24分)1.(3分)小明的身份证号码是320483************,则小明的生日是()A.4月2日B.2月12日C.12月6日D.4月21日2.(3分)某商店出售三种品牌的面粉,袋上分别标有质量为(2.5±0.1)kg,(2.5±0.2)kg,(2.5±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A.0.8 kg B.0.4 kg C.0.5 kg D.0.6 kg3.(3分)下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数、负分数C.正有理数和负有理数统称有理数D.无限小数叫作无理数4.(3分)数轴上一点从﹣1向正方向移动3个单位长度,再向负方向移动5个单位长度,此时这点表示的数为()A.8B.﹣2C.2D.﹣35.(3分)下列各组数中,互为相反数的是()A.﹣|﹣2|和﹣(+2)B.|﹣(﹣2)|和﹣[﹣(﹣2)]C.|﹣2|和﹣(﹣2)D.|﹣2|和26.(3分)已知a=|5|,b=|8|,且满足a+b<0,则a﹣b的值为()A.13或3B.11或3C.3D.﹣37.(3分)如果一个数的倒数等于它本身,那么这个数为()A.1和﹣1B.1和0C.﹣1和0D.±1和08.(3分)有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,若a1=﹣,从第二个数起,每个数都等于1与它前面那个数的差的倒数,则a2019值为()A.﹣B.C.3D.二、填空题(每小题2分,共20分)9.(2分)太平洋最深处的马里纳海沟低于海平面11034m,它的海拔高度可表示为.10.(2分)×(﹣)=﹣1.11.(2分)若|x|=|﹣5|,则x=.12.(2分)大于﹣7小于6.5的正整数有个.13.(2分)比较大小:﹣﹣.14.(2分)若数轴上的两点A、B分别表示﹣2和﹣9,则AB=.15.(2分)某公交车原有20人,经过3个站台时上下车情况如下(上车为正,下车为负):(+3,﹣5)、(+2,﹣5)、(6,﹣3),则车上还有人.16.(2分)在数轴上,若点A和点B表示的数互为相反数,点A在点B的左侧,且它们之间的距离是4个单位长度,那么点A和点B分别表示的数为.17.(2分)三个数﹣12,﹣2,7的和减去它们的绝对值的和,结果为.18.(2分)规定符号⊕的意义为a⊕b=ab﹣a﹣b﹣1,那么﹣2⊕5=.二、解答题(共56分)19.(16分)计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)﹣5.29+3.1﹣(﹣2)+(﹣0.1)﹣9.71;(3)(﹣0.25)×(﹣)×4×(﹣18);(4)(1﹣﹣)×(﹣48).20.(8分)把下列各数填在相应的集合中:﹣5,,0.62,﹣|﹣4|,﹣1.1,﹣(﹣7.3),0.,0.1010010001 0(1)非正整数:{…}(2)分数:{…}(3)正有理数:{…}(4)无理数:{…}21.(6分)将﹣|﹣3|,2,﹣(﹣4),0这些数在数轴上表示出来,并用“<”将它们连接起来.22.(4分)学习了有理数之后,老师给同学们出了一道题:计算:17×(﹣9)下面是小方给出的答案,请判断是否正确,若错误给出正确解答过程.解:原式=﹣17×9=﹣17=﹣25.23.(8分)如图所示,小明有5张卡片,每张卡片上写着不同的数字,请你按要求抽出卡片,完成各问题:(1)从中取出2张卡片,使这2张卡片上数字相减最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(3)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).24.(6分)某水泥仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+20、﹣25、﹣13、+28、﹣29、﹣16.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费?25.(8分)阅读下列材料:我们知道|x|的几何意义是数轴上数x的对应点与原点之间的距离,即|x|=|x﹣0|,也可以说|x|表示数轴上数x与数0对应点之间的距离.这个结论可以推广为|x1﹣x2|表示数轴上数x1与数x2对应点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点距离为2的点表示的数为﹣2和2,∴x的值为﹣2或2.例2:已知|x﹣1|=2,求x的值.解:在数轴上与1对应的点的距离为2的点表示的数为3和﹣1,∴x的值为3或﹣1.仿照材料中的解法,求下列各式中x的值.(1)|x|=3.(2)|x﹣(﹣2)|=4.2019-2020学年江苏省常州市天宁区丽华中学七年级(上)月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)小明的身份证号码是320483************,则小明的生日是()A.4月2日B.2月12日C.12月6日D.4月21日【分析】身份证的第7~14位表示的出生日期,其中7﹣10位是出生的年份,11、12位是出生的月份,13、14是出生的日;据此解答.【解答】解:小明的身份证号码是320483************,那么小明的生日是2月12日.故选:B.2.(3分)某商店出售三种品牌的面粉,袋上分别标有质量为(2.5±0.1)kg,(2.5±0.2)kg,(2.5±0.3)kg的字样,任意取出两袋,它们的质量最多相差()A.0.8 kg B.0.4 kg C.0.5 kg D.0.6 kg【分析】先根据已知条件算出质量最重的和最轻的面粉,再把所得的结果相减即可.【解答】解:∵质量最重的面粉为2.5+0.3=2.8kg,质量最轻的面粉为:2.5﹣0.3=2.2kg,∴它们的质量最多相差:2.8﹣2.2=0.6kg.故选:D.3.(3分)下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数、负分数C.正有理数和负有理数统称有理数D.无限小数叫作无理数【分析】根据实数分类以及有关概念解答即可.【解答】解:A、整数就是正整数,0和负整数,说法错误;B、分数包括正分数、负分数,说法正确;C、正有理数、0和负有理数统称有理数,说法错误;D、无限不循环小数是无理数,说法错误;4.(3分)数轴上一点从﹣1向正方向移动3个单位长度,再向负方向移动5个单位长度,此时这点表示的数为()A.8B.﹣2C.2D.﹣3【分析】根据有理数的意义,列式计算即可.【解答】解:﹣1+3﹣5=﹣3,故选:D.5.(3分)下列各组数中,互为相反数的是()A.﹣|﹣2|和﹣(+2)B.|﹣(﹣2)|和﹣[﹣(﹣2)]C.|﹣2|和﹣(﹣2)D.|﹣2|和2【分析】利用相反数的定义和绝对值的意义对各选项进行判断.【解答】解:A、﹣|﹣2|=﹣2,﹣(+2)=﹣2,则﹣|﹣2|=﹣(+2);B、|﹣(﹣2)|=2,﹣[﹣(﹣2)]=﹣2,则|﹣(﹣2)|与﹣[﹣(﹣2)]互为相反数;C、|﹣2|=2,﹣(﹣2)=2,则|﹣2|=﹣(﹣2);D、|﹣2|=2.故选:B.6.(3分)已知a=|5|,b=|8|,且满足a+b<0,则a﹣b的值为()A.13或3B.11或3C.3D.﹣3【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法法则,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,则a﹣b的值为3或13,故选:A.7.(3分)如果一个数的倒数等于它本身,那么这个数为()A.1和﹣1B.1和0C.﹣1和0D.±1和0【分析】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:如果一个数的倒数等于它本身,那么这个数一定是±1.8.(3分)有若干个数,第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n 个数记为a n,若a1=﹣,从第二个数起,每个数都等于1与它前面那个数的差的倒数,则a2019值为()A.﹣B.C.3D.【分析】先分别求出a1=﹣,a2=,a3=3,a4=﹣,a5=,根据以上算式得出规律,即可得出答案.【解答】解:a1=﹣,a2==,a3==3,a4==﹣,a5=,…,∵2019÷3=673,∴a2019=a3=3,故选:C.二、填空题(每小题2分,共20分)9.(2分)太平洋最深处的马里纳海沟低于海平面11034m,它的海拔高度可表示为﹣11034m.【分析】根据正数与负数的意义可直接求解.【解答】解:太平洋最深处的马里纳海沟低于海平面11034m,它的海拔高度可表示为﹣11034m,故答案为﹣11034m.10.(2分)×(﹣)=﹣1.【分析】利用倒数积为1可得答案.【解答】解:×(﹣)=﹣1,故答案为:.11.(2分)若|x|=|﹣5|,则x=±5.【分析】依据绝对值的意义,得出x=±5.注意结果有两个.【解答】解:因为|x|=|﹣5|=5,所以x=±5.故答案为:±5.12.(2分)大于﹣7小于6.5的正整数有6个.【分析】根据正整数的定义即可求解.【解答】解:大于﹣7小于6.5的正整数有1,2,3,4,5,6,一共6个.故答案为:6.13.(2分)比较大小:﹣<﹣.【分析】应先算出两个负数的绝对值,比较两个绝对值,进而比较两个负数的大小即可.【解答】解:∵|﹣|=,|﹣|=,>,∴﹣<﹣.14.(2分)若数轴上的两点A、B分别表示﹣2和﹣9,则AB=7.【分析】根据数轴表示数的意义和数轴上两点之间距离的计算方法,列式计算即可.【解答】解:|﹣2﹣(﹣9)|=7,故答案为:7.15.(2分)某公交车原有20人,经过3个站台时上下车情况如下(上车为正,下车为负):(+3,﹣5)、(+2,﹣5)、(6,﹣3),则车上还有18人.【分析】根据题意可求出三个站点共上车人数和下车人数,容易得车上剩余的人数.【解答】解:经过三个站点上车人数共有3+2+6=11;下车人数共有5+5+3=13.下车人数比上车人数多13﹣11=2.所以剩余人数为20﹣2=18.故答案是:18.16.(2分)在数轴上,若点A和点B表示的数互为相反数,点A在点B的左侧,且它们之间的距离是4个单位长度,那么点A和点B分别表示的数为﹣2和2.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:4÷2=2,则点A和点B分别表示的数为﹣2和2.故答案为:﹣2和2.17.(2分)三个数﹣12,﹣2,7的和减去它们的绝对值的和,结果为﹣28.【分析】根据绝对值的性质进行选择即可.【解答】解:﹣12﹣2+7=﹣7,|﹣12|+|﹣2|+|7|=21,﹣7﹣21=﹣28,故答案为:﹣28.18.(2分)规定符号⊕的意义为a⊕b=ab﹣a﹣b﹣1,那么﹣2⊕5=6.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:原式=﹣2×5+2﹣5﹣1=10+2﹣5﹣1=6.故答案为:6.二、解答题(共56分)19.(16分)计算:(1)23﹣17﹣(﹣7)+(﹣16);(2)﹣5.29+3.1﹣(﹣2)+(﹣0.1)﹣9.71;(3)(﹣0.25)×(﹣)×4×(﹣18);(4)(1﹣﹣)×(﹣48).【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用减法法则变形,结合后相加即可求出值;(3)原式从左到右依次计算即可求出值;(4)原式利用乘法分配律计算即可求出值.【解答】解:(1)原式=23﹣17+7﹣16=6+7﹣16=13﹣16=﹣3;(2)原式=﹣5.29﹣9.71+3.1﹣0.1+2=﹣15+3+2=﹣15+5=﹣10;(3)原式=﹣××4×18=﹣14;(4)原式=×(﹣48)﹣×(﹣48)﹣×(﹣48)=﹣50+36+6=﹣50+42=﹣8.20.(8分)把下列各数填在相应的集合中:﹣5,,0.62,﹣|﹣4|,﹣1.1,﹣(﹣7.3),0.,0.1010010001 0(1)非正整数:{﹣5,﹣|﹣4|,0,…}(2)分数:{,062,﹣1.1,﹣(﹣7.3),,…}(3)正有理数:{,0.62,﹣(﹣7.3),,…}(4)无理数:{0.1010010001…,,…}【分析】根据实数分类解答即可.【解答】解:(1)非正整数有﹣5,﹣|﹣4|,0;(2)分数有,062,﹣1.1,﹣(﹣7.3),;(3)正有理数有,0.62,﹣(﹣7.3),;(4)无理数有0.1010010001…,;故答案为:(1)﹣5,﹣|﹣4|,0;(2),062,﹣1.1,﹣(﹣7.3),;(3),0.62,﹣(﹣7.3),;(4)0.1010010001…,.21.(6分)将﹣|﹣3|,2,﹣(﹣4),0这些数在数轴上表示出来,并用“<”将它们连接起来.【分析】直接在数轴上把相关数据表示出来,根据数轴上右边的数总比左边的大,用“<”将它们连接起来即可.【解答】解:﹣|﹣3|<0<2<﹣(﹣4).22.(4分)学习了有理数之后,老师给同学们出了一道题:计算:17×(﹣9)下面是小方给出的答案,请判断是否正确,若错误给出正确解答过程.解:原式=﹣17×9=﹣17=﹣25.【分析】利用乘法分配律进行计算即可.【解答】解:小方给出的答案错误;17×(﹣9)=﹣[(17+)×9]=﹣(17×9+×9)=﹣161.23.(8分)如图所示,小明有5张卡片,每张卡片上写着不同的数字,请你按要求抽出卡片,完成各问题:(1)从中取出2张卡片,使这2张卡片上数字相减最大,如何抽取?最大值是多少?(2)从中取出2张卡片,使这2张卡片上数字乘积最大,如何抽取?最大值是多少?(3)从中取出2张卡片,使这2张卡片上数字相除的商最小,如何抽取?最小值是多少?(4)从中取出4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子(一种即可).【分析】(1)观察这五个数,要找相减最大的就要找符号不同且绝对值最大的数,所以选4和﹣5;(2)观察这五个数,要找乘积最大的就要找符号相同且绝对值最大的数,所以选﹣3和﹣5;(3)2张卡片上数字相除的商最小就要找符号不同,且分母越大越好,分子越小越好,所以就要选3和﹣5,且﹣5为分母;(4)从中取出4张卡片,用学过的运算方法,使结果为24,这就不唯一,用加减乘除只要答数是24即可,比如﹣3、﹣5、0、3四个数,{0﹣[(﹣3)+(﹣5)]}×3=24.【解答】解:(1)抽取4,﹣5,最大的差是4﹣(﹣5)=9.(2)抽取﹣3,﹣5,最大的乘积是(﹣3)×(﹣5)=15.(3)抽取﹣5,+3,最小的商是﹣.(4)(答案不唯一)如抽取﹣3,﹣5,0,+3,运算式子为{0﹣[(﹣3)+(﹣5)]}×(+3)=24.24.(6分)某水泥仓库6天内进出水泥的吨数如下(“+”表示进库,“﹣”表示出库):+20、﹣25、﹣13、+28、﹣29、﹣16.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费?【分析】(1)根据有理数的加法运算,可得答案;(2)根据有理数的减法运算,可得答案;(3)根据装卸都付费,可得总费用.【解答】解:(1)+20+(﹣25)+(﹣13)+(+28)+(﹣29)+(﹣16)=20﹣25﹣13+28﹣29﹣16=﹣35,答:仓库里的水泥减少了,减少了35吨;(2)200﹣(﹣35)=235(吨)答:6天前,仓库里存有水泥235吨;(3)(|+20|+|﹣25|+|﹣13|+|+28|+|﹣29|+|﹣16|)×5=131×5=655(元)答:这6天要付655元的装卸费.25.(8分)阅读下列材料:我们知道|x|的几何意义是数轴上数x的对应点与原点之间的距离,即|x|=|x﹣0|,也可以说|x|表示数轴上数x与数0对应点之间的距离.这个结论可以推广为|x1﹣x2|表示数轴上数x1与数x2对应点之间的距离.例1:已知|x|=2,求x的值.解:在数轴上与原点距离为2的点表示的数为﹣2和2,∴x的值为﹣2或2.例2:已知|x﹣1|=2,求x的值.解:在数轴上与1对应的点的距离为2的点表示的数为3和﹣1,∴x的值为3或﹣1.仿照材料中的解法,求下列各式中x的值.(1)|x|=3.(2)|x﹣(﹣2)|=4.【分析】(1)|x|可表示数轴上表示x的点到原点的距离,据此求解可得;(2)|x﹣(﹣2)|可表示数轴上与﹣2对应的点的距离,据此求解可得.【解答】解:(1)在数轴上与原点距离为3的点表示的数为﹣3和3,∴x的值为﹣3或3.(2)在数轴上与﹣2对应的点的距离为4的点表示的数为2和﹣6,∴x的值为2或﹣6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一年级数学第一次月考试卷2007.09
(总分150分,考试时间:120分钟)
1.
2-的相反数是
A 2
1-
B 2-
C
2
1 D 2
2. 下列说法中,正确的是
A 在数轴上表示a -的点一定在原点的左边
B 有理数a 的倒数是
a
1 C 一个数的相反数一定小于或等于这个数
D 如果一个数的绝对值等于这个数的相反数,那么这个数是负数或零
3. 2003年5月19日,国家邮政局特别发行万众一心,抗击“非典”邮票,其邮票发行为
12050000枚,用科学记数法表示正确的是
A 7
10205.1⨯
B 8
1020.1⨯
C 7
1021.1⨯
D 4
10205.1⨯ 4. 绝对值大于2而小于5的所有正整数之和为
A 7
B 8
C 9
D 10
5. 如果10<<a ,那么a
a a 1
,
,2
之间的大小关系是 A a
a a 1
2
<
< B a a a 12<< C 2
1a a a
<<
D
a a a
<<21
6. 若(),0432=++-y x 则代数式x
y 的值是
A 12
B 12-
C 64-
D 64
7. 已知:,4,3==b a 则b a -的值是
A 1-
B 71--或
C 71±±或
D 1或7
8. 若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式m
b
a cd m ++-2
的值为 A 3-
B 3
C 5-
D 3或5-
9. 两个有理数相加,如果和比其中任何一个加数都小,那么这两个数
A 均为正数
B 均为负数
C 互为相反数
D 异号
10. 已知:A 和B 都在同一条数轴上,点A 表示2-,又知点B 和点A 相矩5个单位长
度,则点B 表示的数一定是 A 3
B 7-
C 7或3-
D 7-或3
11. 在()()
5
2,0,1,3,1,82
2
2007
--------中,负数共有
A 4个
B 3个
C 2个
D 1个
12. 有一批同样的地砖,长45cm ,宽30cm ,若铺成正方形地面,则至少用( )块
这样的地砖 A 45
B 30
C 6
D 12
二、填空题(每题3分,共24分) 13. 绝对值小于3.14的所有整数是_________ 14. 计算:()()⎪⎭

⎝⎛-
⨯-÷-5154=_________ 15. 观察排列规律,填入适当的数: 6
5
,54,43,32,21---
第100个数是_________ 16. 规定123*-+=b a b a ,则()6*4-的值为_________
17. 一个数的平方等于这个数的立方,这个数是_________ 18. 如果
4
1
1=n ,那么n=_________ 19. 某种细菌在培养过程中,每半小时分裂一次(由1个分裂成2个,2个分裂成4个……),
若这种细菌由1个分裂成128个,那么这个过程需要经过_________小时
20. 用长为2008个单位长度的线段AB 放在数轴上,能覆盖_________个整数点。

2019-2020年初一年级数学第一次月考试卷 学校_________________ 班级_________________ 姓名_________________ 考试号_________________
三、计算题(每题6分,共30分) 21. 计算:()()169
4
4981-÷⨯÷- 22. 计算:()()2.53.46.34.15.1-+---+-
23. 计算:()563722
+⨯--⨯-
24. 计算:()()2007
23
11324225.0-+⎥⎥⎦
⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛-÷--⨯
25. 计算:524436183241114÷⎥⎦

⎢⎣⎡⨯⎪⎭⎫ ⎝⎛-+-+-
四、解答题(共60分)
26. 请你把()()()5.1,0,5.2,2,32
+----+这五个数按从小到大顺序,从左到右串个糖
葫芦,把数填在“○”内,再把这五个数的相反数在数轴上表示出来。

(10分)
27. 若1-a 与()2
2+b 互为相反数,求:()
20072008
a b a ++的值。

(10分)
28. 张红靠勤工俭学的收入支付上大学的费用,下面是张红一周的收入情况表(收入为
正,支出为负,单位为元)(8分)
周一 周二 周三 周四 周五 周六 周日 +15 +10 0 +20 +15 +10 +14 -8
-12
-19
-10
-9
-11
-8
⑵照这样,一个月(按30天计算)张红能有多少结余?
29. (12分)中央电视台每一期的“开心辞典”栏目,都有一个“二十四点”的趣味题,将
四个数(四个数都用且只能用一次)进行“+”、“-”、“×”、“÷”运算,可加括号使其结果等于24。

例如:对1、2、3、4可作运算()244321=⨯++,也可写成()243214=++⨯,但视作相同方法的运算。

①现有四个有理数3,4,-6,10请你用两种不同的算法计算出24,请分别写出算式。

②若给你四个有理数3,-5,7,-13,你还能凑出24吗?请写出一个算式。

30. “*”表示一种新运算,它的意义是()b a ab b a +--=*,
求:①()53*-;
②()()54-*-(8分)
31. (12分)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,
揭示了数与点之间的内在联系,它是“数形结合”的基础。

请利用数轴回答下列问题: ①如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是_______,A 、B 两点间的距离是_______ ②如果点A 表示数3,将A 点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B 表示的数是_______,A 、B 两点间的距离是_______
③一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,请你猜想终点B 表示的数是_______,A 、B 两点间的距离是_______
学校_________________ 班级_________________ 姓名_________________ 考试号_________________
友情提醒:做完后认真、细心、耐心地复查
预祝大家考出理想成绩?。

相关文档
最新文档