北科大数字图像处理实验报告
数字图像处理实验报告

数字图像处理实验报告1. 引言数字图像处理是使用计算机来处理和优化图像的一种技术。
在本实验中,我们将探索几种常见的数字图像处理方法,并使用Python编程语言和相关库来实现。
2. 实验目的本实验的主要目的是:1.了解图像的基本特性和数字图像处理的基本原理;2.熟悉Python编程语言和相关图像处理库的使用;3.实现常见的图像处理算法并进行实验验证。
3. 实验方法在本实验中,我们使用Python编程语言和以下相关库来实现图像处理算法:•OpenCV:用于图像读取、显示和保存等基本操作;•Numpy:用于图像数据的处理和算术运算;•Matplotlib:用于图像的可视化和结果展示。
以下是实验涉及到的图像处理方法和步骤:1.图像读取和显示:使用OpenCV库读取图像,使用Matplotlib库显示图像;2.图像的灰度化:将彩色图像转换为灰度图像;3.图像的二值化:将灰度图像转换为黑白二值图像;4.图像的平滑处理:使用平滑滤波器对图像进行平滑处理,如均值滤波和高斯滤波;5.图像的边缘检测:使用边缘检测算法对图像进行边缘检测,如Sobel算子和Canny算子;6.图像的直方图均衡化:对灰度图像进行直方图均衡化,增强图像的对比度。
4. 实验过程和结果4.1 图像读取和显示首先,我们使用OpenCV库读取一张图像,并使用Matplotlib库显示该图像:import cv2import matplotlib.pyplot as plt# 读取图像img = cv2.imread('image.jpg')# 显示图像plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) plt.axis('off')plt.show()4.2 图像的灰度化接下来,我们将彩色图像转换为灰度图像:# 灰度化图像gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 显示灰度图像plt.imshow(gray_img, cmap='gray')plt.axis('off')plt.show()4.3 图像的二值化然后,我们将灰度图像转换为黑白二值图像:# 二值化图像_, binary_img = cv2.threshold(gray_img, 128, 255, cv2.THRESH_BINARY)# 显示二值图像plt.imshow(binary_img, cmap='gray')plt.axis('off')plt.show()4.4 图像的平滑处理接下来,我们使用平滑滤波器对图像进行平滑处理,例如使用5x5的均值滤波器和高斯滤波器:# 均值滤波mean_img = cv2.blur(img, (5, 5))# 高斯滤波gaussian_img = cv2.GaussianBlur(img, (5, 5), 0) # 显示平滑处理后的图像plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(cv2.cvtColor(mean_img, cv2.COLOR_BGR2R GB))plt.title('Mean Filter')plt.axis('off')plt.subplot(122)plt.imshow(cv2.cvtColor(gaussian_img, cv2.COLOR_B GR2RGB))plt.title('Gaussian Filter')plt.axis('off')plt.show()4.5 图像的边缘检测然后,我们使用边缘检测算法对图像进行边缘检测,例如使用Sobel算子和Canny算子:# 边缘检测sobel_img = cv2.Sobel(gray_img, cv2.CV_8U, 1, 1, ksize=3)canny_img = cv2.Canny(gray_img, 50, 150)# 显示边缘检测结果plt.figure(figsize=(10, 5))plt.subplot(121)plt.imshow(sobel_img, cmap='gray')plt.title('Sobel Operator')plt.axis('off')plt.subplot(122)plt.imshow(canny_img, cmap='gray')plt.title('Canny Operator')plt.axis('off')plt.show()4.6 图像的直方图均衡化最后,我们对灰度图像进行直方图均衡化,以增强图像的对比度:# 直方图均衡化equalized_img = cv2.equalizeHist(gray_img)# 显示直方图均衡化结果plt.imshow(equalized_img, cmap='gray')plt.axis('off')plt.show()5. 实验总结通过本实验,我们熟悉了数字图像处理的基本方法和步骤,并使用Python编程语言和相关库实现了图像的读取、显示、灰度化、二值化、平滑处理、边缘检测和直方图均衡化等操作。
数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告(一)实验目的1.理解数字图像处理的基本概念与原理。
2.掌握数字图像处理的基本方法。
3.掌握常用数字滤波器的性质和使用方法。
4.熟练应用数字图像处理软件进行图像处理。
实验器材计算机、MATLAB软件实验内容1.图像的读写与显示首先,我们需要在MATLAB中读入一幅图像,并进行显示。
% 导入图像文件I = imread('myimage.jpg');% 显示图像imshow(I);2.图像的分辨率与色彩空间转换数字图像处理中的一个重要概念是图像的分辨率,通常用像素数量表示。
图像的分辨率越高,代表着图像包含更多的像素,从而更具细节和清晰度。
在数字图像处理中,常常需要将一幅图像从一种色彩空间转换为另一种色彩空间。
RGB色彩空间是最常见的图像色彩空间之一,并且常常作为其他色彩空间的基础。
% 转换图像色彩空间J = rgb2gray(I);% 显示转换后的图像imshow(J);3.图像的增强与滤波图像的增强通常指的是对图像的对比度、亮度和清晰度等方面进行调整,以改善图像的质量和可读性。
数字图像处理中的滤波是一种常用的图像增强方法。
滤波器是一个能够对图像进行局部操作的矩阵,它能够提取或抑制特定的图像特征。
% 对图像进行平滑滤波K = imgaussfilt(J, 1);% 显示滤波后的图像imshow(K);4.数字图像处理在实际应用中的例子数字图像处理在很多实际应用中被广泛应用。
这些应用包括医疗成像、计算机视觉、人脸识别、安防监控等。
下面是数字图像处理在人脸识别应用中的一个简单例子。
% 导入图像文件I = imread('face.jpg');% 进行人脸检测faceDetector = vision.CascadeObjectDetector;bbox = step(faceDetector, I);% 在图像上标记人脸位置IFaces = insertObjectAnnotation(I, 'rectangle', bbox, 'Face');imshow(IFaces);实验结论通过本次实验,我已经能够理解数字图像处理的基本概念与原理,掌握数字图像处理的基本方法,熟练应用数字图像处理软件进行图像处理。
数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告1一. 实验内容:主要是图像的几何变换的编程实现,具体包括图像的读取、改写,图像平移,图像的镜像,图像的转置,比例缩放,旋转变换等.具体要求如下:1.编程实现图像平移,要求平移后的图像大小不变;2.编程实现图像的镜像;3.编程实现图像的转置;4.编程实现图像的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图像进行旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.二.实验目的和意义:本实验的目的是使学生熟悉并掌握图像处理编程环境,掌握图像平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图像文件的读、写操作,及图像平移、镜像、转置和旋转等几何变换的程序实现.三.实验原理与主要框架:3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开发工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创建高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软基础类库(MFC)和活动模板类库(ATL),因此它是软件开发人员不可多得的开发工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开发,正由于VC具有明显的优势,因而我选择了它来作为数字图像几何变换的开发工具.在本程序的开发过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的体现和灵活的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:具体组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或更少256色DIB有256个表项或更少真彩色DIB没有调色板每个表项长度为4字节(32位)像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIB Pixels DIB图像数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部分组成.2. BMP文件头BMP文件头数据结构含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保留字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有若干个表项,每一个表项是一个RGBQUAD类型的结构,定义一种颜色.具体包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows规定一个扫描行所占的字节数必须是4的倍数(即以long为单位),不足的以0填充.3.3 BMP(BIT MAP )位图的显示:①一般显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创建显示用位图, 用函数创建兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形进行淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图像所用颜色要少的设备上显示彩色图像.BMP位图显示方法如下:1. 打开视频函数,一般放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在函数中显示位图5. 关闭视频函数 ,一般放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或打印机上显示DIB. 在显示时不进行缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式进行控制,可以指定每个像素颜色的位数,而且可以指定是否进行压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创建GDI 位图.5. CreateDIBSection函数:该函数能创建一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits 的函数.它的最主要的优点是可以使用抖动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图像的几何变换图像的几何变换,通常包括图像的平移、图像的镜像变换、图像的转置、图像的缩放和图像的旋转等.数字图像处理实验报告2一、实验的目的和意义实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图像处理的一些基本算法程序,来巩固和掌握图像处理技术的基本技能,提高实际动手能力,并通过实际编程了解图像处理软件的实现的基本原理。
数字图像处理实验实验报告 实验二

数字图像处理实验实验报告(实验一)一、实验目的:1、直方图显示2、计算并绘制图像直方图3、直方图均衡化二.程序脚本clear all;RGB=imread('me.jpg');figure;imshow(RGB);title('图1 彩色图');%========================================================== I=rgb2gray(RGB);figure;imshow(I);title('图2 灰度图');%========================================================= figure;imhist(I);title('灰度直方图');%========================================================= hi=imhist(I);j=1;%为使画出的直方图更好看,在此进行了抽样for(i=1:256)if(mod(i,10)==1)h(j)=hi(i);j=j+1;endendn=0:10:255;figure;stem(n,h);axis([0 255 0 2500]);title('图3.1 stem显示直方图');figure;bar(n,h);axis([0 255 0 2500]);title('图3.2 bar显示直方图');figure;plot(n,h);axis([0 255 0 2500]);title('图3.3 plot显示直方图');%========================================================= I=rgb2gray(RGB);figure;subplot(3,2,1);imshow(I);title('图4.1 原始灰度图');subplot(3,2,2);imhist(I);title('图4.2 原始灰度直方图');%=============================J1=imadjust(I);subplot(3,2,3);imshow(J1);title('调整对比度以后的图');subplot(3,2,4);imhist(J1);title('调整对比度以后的灰度直方图');%=================================J2=histeq(I);subplot(3,2,5);imshow(J2);title('均衡化以后的的图');subplot(3,2,6);imhist(J2);title('均衡化以后的灰度直方图');三.实验结果图1 彩色图图2 灰度图010002000灰度直方图10020010020005001000150020002500图3.1 stem 显示直方图10020005001000150020002500图3.2 bar 显示直方图10020005001000150020002500图3.3 plot 显示直方图图4.1 原始灰度图10002000图4.2 原始灰度直方图0100200调整对比度以后的图010002000调整对比度以后的灰度直方图0100200均衡化以后的的图02000均衡化以后的灰度直方图100200。
《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。
在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。
首先,我们进行了图像的读取和显示实验。
通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。
这为我们后续的实验奠定了基础。
同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。
这使我们能够更好地理解后续实验中的算法和操作。
接下来,我们进行了图像的灰度化实验。
灰度化是将彩色图像转换为灰度图像的过程。
在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。
通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。
随后,我们进行了图像的直方图均衡化实验。
直方图均衡化是一种用于增强图像对比度的方法。
在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。
通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。
在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。
滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。
在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。
通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。
此外,我们还进行了图像的边缘检测实验。
边缘检测是一种用于提取图像边缘信息的方法。
在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。
通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。
最后,我们进行了图像的压缩实验。
图像压缩是一种将图像数据进行压缩以减小文件大小的方法。
数字图像处理实验报告3

实验三图像分割实验一.实验目的1. 掌握基本的图像分割方法2.观察图像分割的效果3.加深对边缘提取的理解二.实验原理1.边缘检测:图象的边缘是指图象局部区域亮度变化显著的部分,该区域的灰度剖面一般可以看作是一个阶跃,既从一个灰度值在很小的缓冲区域内急剧变化到另一个灰度相差较大的灰度值。
图象的边缘部分集中了图象的大部分信息,图象边缘的确定与提取对于整个图象场景的识别与理解是非常重要的,同时也是图象分割所依赖的重要特征,边缘检测主要是图象的灰度变化的度量、检测和定位。
2.灰度阈值分割即是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中各个像素的灰度值与这个阈值相比较:划分成像素灰度大于阈值的一类和小于阈值的一类。
3. 双峰法的原理及其简单:它认为图像由前景和背景组成,在灰度直方图上,前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在三.实验内容1.实验步骤1.打开matlab编程环境;2.利用“imread”函数导入图像数据;3.利用“imshow”显示所读入的图像数据;4.进行图像分割处理;5.记录和整理实验报告;2. 按下面要求编写程序并运行结果1. 用sobel方法对一幅灰度图像进行边缘提I=imread('cameraman.bmp');R=double(I(:,:,1));G=double(I(:,:,2));B=double(I(:,:,3));[rows,cols]=size(R);I=0.299*R+0.587*G+0.114*B;[H,W]=size(I);M=double(I);J=M;for i=2:H-1for j=2:W-1J(i,j)=abs(M(i-1,j+1)-M(i-1,j-1)+2*M(i,j+1)-2*M(i,j-1)+M(i+1,j+1)-M(i+1,j-1))+abs(M(i-1,j-1)-M(i+1,j-1)+2*M(i-1,j)-2*M(i+1,j)+M(i-1,j+1)-M(i+1,j+1));end;end;for i=2:H-1for j=2:W-1if J(i,j)>254J(i,j)=255;elseJ(i,j)=0;endendendsubplot(1,2,1);imshow(uint8(I));title('原图');subplot(1,2,2);imshow(uint8(J));title('Sobel 处理后');2.用 Laplacian-Gaussian方法对一幅灰度图像进行边缘提取I = imread('cameraman.bmp');R=double(I(:,:,1));G=double(I(:,:,2));B=double(I(:,:,3));[rows,cols]=size(R);I=0.299*R+0.587*G+0.114*B;s=fftshift(fft2(I));[M,N]=size(s);n=2;d0=400;n1=floor(M/2);n2=floor(N/2);for i=1:Mfor j=1:Nd=sqrt((i-n1)^2+(j-n2)^2);h=1*exp(-1/2*(d^2/d0^2));s(i,j)=h*s(i,j);endends=ifftshift(s);s=uint8(real(ifft2(s))); subplot(1,2,1),imshow(s);title('GLPF滤波');s=double(s);[r,c]= size(s);R=zeros(r,c);core1=[-1 -1 -1;-1 8 -1;-1 -1 -1];core2=[0 -1 0;-1 4 -1;0 -1 0];for x=2:r-1for y=2:c-1Z=[s(x-1,y-1) s(x-1,y) s(x-1,y+1);s(x,y-1) s(x,y) s(x,y+1);s(x+1,y-1) s(x+1,y) s(x+1,y+1)];A=core1*Z;B=core2*Z;R(x,y)=max(abs(sum(sum(A))),abs(sum(sum(B))));endendfor x=2:r-1for y=2:c-1if R(x,y)>250R(x,y)=255;elseR(x,y)=0;endendendsubplot(1,2,2),imshow(uint8(R));title('拉普拉斯处理后 ');3. 利用双峰法对一幅灰度图像进行灰度分割处理I = imread('lena.bmp');I=double(I);sum_obj=0;obj_counter=0;sum_backgnd=0;backgnd_counter=0;[rows,cols]=size(I);cols_c=floor(cols/20);rows_c=floor(rows/20);corners=[I(1:rows_c,1:cols_c);I(1:rows_c,(end-cols_c+1):end);I((en d-rows_c+1):end,1:cols_c);I((end-rows_c+1):end,(end-cols_c+1):end) ];threshold=mean(mean(corners));while 1for i=1:rowsfor j=1:colsif(I(i,j)>threshold)sum_obj=sum_obj+I(i,j);obj_counter=obj_counter+1;elsesum_backgnd=sum_backgnd+I(i,j);backgnd_counter=backgnd_counter+1;endendendnew_threshold=((sum_backgnd/backgnd_counter)+(sum_obj/obj_counter))/2 ;if(abs(threshold-new_threshold)<=0.01)break;endthreshold=new_threshold;endfor i=1:rowsfor j=1:colsIf(I(i,j)<=threshold)I(i,j)=0;elseI(i,j)=255;endendendimshow(I);四.实验结果及分析1. sobel边缘提取placian-Gaussian方法边缘提取3.双峰法对一幅灰度图像进行灰度分割处理五.实验小结与体会1.本次实验以图像分割为主线,涉及边缘提取2. 通过实验结果的比较,对课堂上的理论有了直观的认识,也为更好的理解理论奠定了基础,培养了兴趣。
数字图像处理实验报告(五个实验全)
数字图像处理实验报告(五个实验全)实验⼀ Matlab图像⼯具的使⽤1、读图I=imread('lena.jpg');imshow(I);2、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像。
a=imread('lena.jpg')i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);subplot(3,1,2);imshow(i);subplot(3,1,3);imshow(I);原图像灰度图像⼆值图像实验⼆图像变换1、对⼀幅图像进⾏平移,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与平移后傅⾥叶频谱的对应关系。
s=imread('beauty.jpg');i=rgb2gray(s)i=double(i)j=fft2(i);k=fftshift(j); 原图像原图的傅⾥叶频谱l=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b)b=double(b) 平移后的图像平移后的傅⾥叶频谱c=fft2(b);e=fftshift(c);l=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);subplot(2,2,2);imshow(uint8(b));subplot(2,2,3);imshow(A);subplot(2,2,4);imshow(B);2、对⼀幅图像进⾏旋转,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与旋转后傅⾥叶频谱的对应关系。
数字图像处理实验报告实验三
代码:
I=imread('lines.png');
F=rgb2gray(I);
subplot(2,2,1);
imshow(I);
title('原始图像');
thread=130/255;
subplot(2,2,2);
imhist(F);
图5-2 添上一层(漆)
3.开运算open:
4.闭close:
5.HMT(Hit-Miss Transform:击中——击不中变换)
条件严格的模板匹配
模板由两部分组成。 :物体, :背景。
图5-3 击不中变换示意图
性质:
(1) 时,
(2)
6.细化/粗化
(1)细化(Thin)
去掉满足匹配条件的点。
图5-4 细化示意图
se = strel('ball',5,5);
I2 = imerode(I,se);
imshow(I), title('Original')
figure, imshow(I2), title('Eroded')
Matlab用imopen函数实现图像开运算。用法为:
imopen(I,se);
I为图像源,se为结构元素
构造一个中心具有菱形结构的结构元素,R为跟中心点的距离
SE = strel('rectangle',MN)
构造一个矩形的结构元素,MN可写在[3 4],表示3行4列
SE = strel('square',W)
构造一个正方形的矩阵。
数字图像处理实验报告
数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。
本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。
实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。
实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。
在Python中,我们可以使用OpenCV库来实现图像的读取和显示。
以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。
常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。
以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。
数字图像处理实验报告
数字图像处理实验报告图像处理课程的目标是培养学生的试验综合素质与能力。
使学生通过实践,理解相关理论学问,将各类学问信息进行新的组合,制造出新的方法和新的思路,提高学生的科学试验与实际动手操作能力[1]。
从影像科筛选有价值的图像,建成影像学数字化试验教育平台,系统运行正常;具备图像上传、图像管理、图像检索与扫瞄、试验报告提交、老师批阅等功能;能满意使用要求[2]。
1.试验内容设计思路1.1项目建设内容和方法数字图像处理的内容:完整的数字图像处理大体上分为图像信息的猎取,存储,传送,处理,输出,和显示几个方面。
数字图像信息的猎取主要是把一幅图像转换成适合输入计算机和数字设备的数字信号,包括摄取图像,光、电转换及数字化。
数字图像信息的存储,数字图像信息的突出特点是数据量巨大,为了解决海量存储问题,数字图像的存储主要研究图像压缩,图像格式及图像数据库技术。
数字图像信息的传送数字图像信息的传送可分为系统内部传送与远距离传送[4]数字图像信息处理包括图像变换,图像增加,图像复原,彩色与多光谱处理图像重建,小波变换,图像编码,形态学,目标表示与描述。
数字图像输出和显示,最终目的是为人和机器供应一幅便于解释和识别的图像,数字图像的输出和显示也是数字图像处理的重要内容之一。
1.2数字图像处理的方法大致可以分为两大类,既空域法和频域法空域法:是把图像看做平面中各个像素组成的集合,然后直接对一维和二维函数进行相应处理,依据新图像生成方法的不同,空域处理法可为点处理法,区处理法,叠代处理法,跟踪处理法,位移不变与位移可变处理法。
点处理法的优点,点处理的典型用途a)灰度处理b)图像二值处理点处理方法的优点a)可用LUT方法快速实现b)节省存储空间。
区处理法,邻域处理法。
它依据输入图像的小邻域的像素值,按某些函数得到输出像素。
区处理法主要用于图象平滑和图像的锐化。
叠代处理法:叠代就是反复进行某些处理运算,图像叠代处理也是如此,拉普拉斯算子或平滑处理的结果是物体轮廓,该图像轮廓边缘太宽或粗细不一,要经过多次叠代把它处理成单像素轮廓——图像细化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京科技大学计算机与通信工程学院
实验报告
实验名称:《数字图像处理》课程实验
****:***
专业:计算机科学与技术
班级:计1304
学号:********
****:***
实验成绩:
实验时间:2016 年12 月15 日
一、实验目的与实验要求
1、实验目的
1. 熟悉图像高斯、脉冲等噪声的特点,以及其对图像的影响;
2. 理解图像去噪算法原理, 并能编程实现基本的图像去噪算法, 达到改善图像质量的效果, 并能对算法性能进行简单的评价。
3. 理解图像分割算法的原理,并能编程实现基本的灰度图像分割算法,并显示图像分割结果。
2、实验要求
1. 对于给定的两幅噪声图像(test1.jpg, test
2.jpg), 设计或选择至少两种图像滤波算法对图像进行去噪。
2. 利用给出的参考图像(org1.jpg, org2.jpg), 对不同算法进行性能分析比较。
3. 对于给定的两幅数字图像(test.jpg,test
4.jpg),将其转换为灰度图像,设计或选择至少两种图像分割算法对图像进行分割,用适当的方式显示分割结果,并对不同算法进行性能分析比较。
二、实验设备(环境)及要求
1. Mac/Windows计算机
2. Matlab编程环境。
三、实验内容与步骤
1、实验1
(1)实验内容
1. 对于给定的两幅噪声图像(test1.jpg, test
2.jpg), 设计或选择至少两种图像滤波算法对图像进行去噪。
2. 利用给出的参考图像(org1.jpg, org2.jpg), 对不同算法进行性能分析比较。
(2)主要步骤
1. 打开Matlab 编程环境;
2. 利用’imread’函数读入包含噪声的原始图像数据;
3. 利用’imshow’函数显示所读入的图像数据;
结果显示:
4. 编码实现图像滤波算法,对原始噪声图像进行滤波处理;
分别用均值滤波,中值滤波和维纳滤波如下:
代码:
J=imread('test1.jpg');
%h=ones(4,4)/16;%产生4*4的全1数组
%B=conv2(J,h);%卷积运算
K2=filter2(fspecial('average',4),J)/255; %均值滤波模版尺寸为4 K= medfilt2(J);%采用二维中值滤波函数进行滤波
K1=wiener2(J,[4 4]); %对噪声图像进行二维自适应维纳滤波subplot(2,2,1);imshow(J);
title('加噪图像');
subplot(2,2,2);imshow(K2);
title('均值滤波后的图像');
subplot(2,2,3);imshow(K);
title('中值滤波后的图像');
subplot(2,2,4);imshow(K1);
title('维纳滤波后的图像');
imwrite(K2,'均值滤波图像.jpg','quality',100);
imwrite(K,'中值滤波图像.jpg','quality',100);
imwrite(K1,'维纳滤波图像.jpg','quality',100);
处理结果如下:
细节如下:
原始图像均值滤波
中值滤波维纳滤波:对图像二的处理结果:
原始图像均值滤波
中值滤波维纳滤波
5. 计算滤波后图像与原图的差异(如PSNR、MSE 等); J=imread('test1.jpg');
J2=imread('org1.jpg');
%h=ones(4,4)/16;
%B=conv2(J,h);
K2=filter2(fspecial('average',4),J)/255; %均值滤波K= medfilt2(J);% 采用二维中值滤波函数进行滤波
%计算均值滤波后图像对比对照图像的PMSE和PSNR
diff1=(double(J2)-(K2)).^2;
mse1=mean(diff1(:));
psnr1=double(10*log10(255^2/mse1));
%计算中值滤波后图像对比对照图像的PMSE和PSNR
M=double(K);
diff2=(double(J2)-(M)).^2;
mse2=mean(diff2(:));
psnr2=double(10*log10(255^2/mse2));
结果:
对于test1.jpg
均值滤波:MSE=1.6391e+04,PSNR=5.9848
中值滤波:MSE=251.4171,PSNR=24.1269
对于test2.jpg
均值滤波:MSE=1.7382e+04,PSNR=5.7550
中值滤波:MSE=31.1728,PSNR=33.1931
实验2
(1)实验内容
对图像进行分割并显示。
(2)主要步骤
1. 打开Matlab编程环境。
2. 利用‘imread’函数读入包含噪声的原始图像数据。
>> I=imread('test3.jpg');
3. 利用‘imshow’函数显示所读入的图像数据。
>> imshow(I);
4. 利用’rgb2gray’函数将彩色图像转换为灰度图像; >> d=rgb2gray(I);
结果为:
5. 编码实现图像分割, 对原始图像进行区域分割, 并得到各个区域的标号;
1. 利用双分法
先给出原图的直方图,再定出阈值(门限)T,一般取两个峰值间的谷值。
代码:
I=imread('test3.jpg');
subplot(1,2,1);
i=rgb2gray(I);
imhist(i);
title('原始图像直方图');
thread=75/255;
subplot(1,2,2);
i3=im2bw(i,thread);
imshow(i3);
title('分隔结果');
从直方图看出两个峰值的谷值大概为75,取作阀值。
分隔结果:
图片二处理:
代码:
I=imread('test4.jpg');
subplot(1,2,1);
i=rgb2gray(I);
imhist(i);
title('原始图像直方图');
thread=50/255;
subplot(1,2,2);
i3=im2bw(i,thread);
imshow(i3);
title('分隔结果');
阀值定为50,处理结果如下:
分隔方法二:分水岭分隔法
基本思想:
1.把图像看作一个三维拓扑地形图
2.集水盆:局部极小点及其影响区域
3.分水岭:集水盆的边界
4.目标:在图像中找出不同的集水盆和分水岭代码:
F=imread('test3.jpg');
f=rgb2gray(F);
subplot(2,2,1);
imshow(f);
title('原始灰度图像');
f=double(f);
hv=fspecial('prewitt');
hh=hv.';
gv=abs(imfilter(f,hv,'replicate'));
gh=abs(imfilter(f,hh,'replicate'));
g=sqrt(gv.^2+gh.^2);
L=watershed(g);
wr=L==0;
subplot(2,2,2); imshow(wr);
title('分水岭');
f(wr)=225;
subplot(2,2,3); imshow(uint8(f)); title('分隔结果');
rm=imregionalmin(g); subplot(2,2,4); imshow(rm);
title('局部极小值');结果:
四:实验结果与分析
结果符合预期,分隔图像用双分法结果较好。
对于测试图片用中值滤波处理效果较好。
五:结论(讨论)
1、实验结论
了解了数字图像的基本处理方法,掌握了几种分隔图像方法和去噪滤波方法。
2、讨论
对不同的图像需要判断用哪种处理方法为好。
六、教师评审。