七年级数学上册培优强化训练10
七年级数学上册数轴、绝对值培优训练

七年级数学上册数轴、绝对值培优训练一、阅读与思考数学是研究数和形的学科,在数学里数和形是有密切联系的。
我们常用代数的方法来处理几何问题;反过来,也借助于几何图形来处理代数问题,寻找解题思路,这种数与形之间的相互作用叫数形结合,是一种重要的数学思想。
运用数形结合思想解题的关键是建立数与形之间的联系,现阶段数轴是数形结合的有力工具,主要体现在以下几个方面:1、利用数轴能形象地表示有理数;2、利用数轴能直观地解释相反数;3、利用数轴比较有理数的大小;4、利用数轴解决与绝对值相关的问题。
二、知识点反馈1、利用数轴能形象地表示有理数;例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )A .1B .2C .3D .42、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。
2、利用数轴能直观地解释相反数;例2:如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 。
拓广训练:1、在数轴上表示数a 的点到原点的距离为3,则._________3=-a2、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。
3、利用数轴比较有理数的大小;例3:已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。
(用“<”号连接) 拓广训练:1、 若0,0><n m 且n m >,比较m n n m n m n m --+--,,,,的大小,并用“>”号连接。
例4:已知5<a 比较a 与4的大小拓广训练:1、已知3->a ,试讨论a 与3的大小2、已知两数b a ,,如果a 比b 大,试判断a 与b 的大小4、利用数轴解决与绝对值相关的问题。
人教版七年级数学上册:第1章《有理数》计算强化培优训练卷【含答案】

人教版七年级数学上册:第1章《有理数》计算强化培优训练卷一.有理数的加减法1.计算:﹣1﹣3=( )A.2B.﹣2C.4D.﹣42.计算|﹣3|﹣(﹣2)的最后结果是( )A.1B.﹣1C.5D.﹣53.某地区一天三次测量气温如下,早上是﹣6℃,中午上升了7℃,半夜下降了9℃,则半夜的气温是( )A.4℃B.﹣8℃C.10℃D.﹣22℃4.下列运算中正确的个数有( )(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(﹣)﹣(+)=﹣.A.1个B.2个C.3个D.4个5.式子(﹣3)﹣(﹣1)+(﹣2)﹣(+5)省略括号后可以写成 ,读作 或 .6.已知|x|=2,y2=9,且|x﹣y|=y﹣x,则x﹣y= .7.计算:(1)﹣3+(﹣7)﹣(+15)﹣(﹣5);(2)1.5+2﹣10﹣4.75.8.计算:(1)(﹣6)+8+(﹣4);(2)23﹣17+(﹣16);(3)1+(﹣2)+2+(﹣1);(4)(+)+(﹣)+(+1)+(﹣).二.有理数的乘除法9.若a•b•c=0,则这三个有理数中( )A.至少有一个为零B.三个都是零C.只有一个为零D.不可能有两个以上为零10.计算:3×(﹣2)=( )A.1B.﹣1C.6D.﹣611.已知43×47=2021,则(﹣43)的值为( )A.2021B.﹣2021C.D.﹣12.已知|a|=2,b2=25,且ab>0,则a﹣b的值为( )A.7B.﹣3C.3D.3或﹣313.﹣1的倒数是 ,﹣8的倒数是 ,的倒数是 ,的倒数是 ,﹣1的倒数是 , 的倒数是﹣2.14.(﹣)÷(﹣2)×(﹣6)= .15.用“>”,“<”或“=”号填空:若a<c<0<b,则abc 0;若a<b<c<0,则abc 0.16.计算:(1)(﹣3)×;(2)(﹣1)÷(﹣2).17.计算:(1)(﹣)×(﹣)×(﹣);(2)(﹣5)×(﹣)××0×(﹣325).18.下面是佳佳同学的一道题的解题过程:2÷(﹣)×(﹣3)=[2÷(﹣)+2]×(﹣3),①=2×(﹣3)×(﹣3)+2×4×(﹣3),②=18﹣24,③=6,④(1)佳佳同学开始出现错误的步骤是 ;(2)请给出正确的解题过程.三.有理数的乘方19.(﹣1)2021等于( )A.1B.﹣2021C.2021D.﹣120.下列计算正确的是( )A.﹣(﹣3)2=9B.C.﹣32=9D.(﹣3)3=﹣921.在(﹣10)8中,﹣10是( )A.底数B.指数C.幂D.乘方22.下列各组数中,互为相反数的一组是( )A.﹣(﹣3)和|﹣3|B.(﹣3)3和﹣33C.﹣|3|和﹣3D.(﹣3)2和﹣3223.对于(﹣2)3,指数是 ,底数是 ,(﹣2)3= ;对于﹣42,指数是 ,底数是 ,幂是 .24.若a、b为整数,且|a﹣2|+(b+3)2020=1,则b a= .四.有理数的混合运算25.下列计算错误的是( )A.﹣3÷(﹣)=9B.()+(﹣)=C.﹣(﹣2)3=8D.|﹣2﹣(﹣3)|=526.计算:(﹣3)3×()的结果为( )A.B.2C.D.1027.若a、b互为相反数,c、d互为倒数,m+1的绝对值为5,则式子|m|﹣cd+的值为( )A.3B.3或5C.3或﹣5D.428.计算:23+(﹣3)×(﹣2)2的结果为 .29.计算:﹣(﹣3)2×+|2﹣4|= .30.已知m、n互为相反数,p、q互为倒数,x的绝对值为2,则代数式+2020pq+x2的值是 .31.计算:﹣32÷(﹣1)2+|﹣3+2|.32.计算:﹣32﹣28÷(﹣7)×(﹣)2.33.计算:.34.计算:.答案一.有理数的加减法1.解:﹣1﹣3=﹣1+(﹣3)=﹣4.故选:D.2.解:|﹣3|﹣(﹣2)=3+2=5.故选:C.3.解:﹣6+7﹣9=﹣8(°C).故选:B.4.解:(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(﹣)﹣(+)=.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.5.解:将式子(﹣3)﹣(﹣1)+(﹣2)﹣(+5)写成省略括号的和的形式是﹣3+1﹣2﹣5,可以读作负3正1负2与﹣5的和或负3加1减2减5.故﹣3+1﹣2﹣5;负3正1负2与﹣5的和;负3加1减2减5.6.解:∵|x|=2,y2=9,∴x=±2,y=±3,∵|x﹣y|=y﹣x,∴x﹣y<0,∴x﹣y=﹣2﹣3=﹣5,或x﹣y=2﹣3=﹣1,所以x﹣y=﹣5或﹣1.故﹣5或﹣1.7.解:(1)原式=﹣3﹣7﹣15+5=﹣25+5=﹣20;(2)原式===.8.解:(1)(﹣6)+8+(﹣4)=(﹣6﹣4)+8=﹣10+8=﹣2;(2)23﹣17+(﹣16)=23+(﹣17﹣16)=23﹣33=﹣10;(3)1+(﹣2)+2+(﹣1)=(1+2)+(﹣1﹣2)=4﹣4=0;(4)(+)+(﹣)+(+1)+(﹣)=(++1)+(﹣﹣)=2﹣1=1.二.有理数的乘除法9.解:若a•b•c=0,则这三个有理数中至少有一个为零,故选:A.10.解:3×(﹣2)=﹣6.故选:D.11.解:∵43×47=2021,∴(﹣43)=﹣43×47=﹣2021,故选:B.12.解:因为|a|=2,所以a=±2,因为b2=25,所以b=±5,又因为ab>0,所以a、b同号,所以a=2,b=5,或a=﹣2,b=﹣5,当a=2,b=5时,a﹣b=2﹣5=﹣3,当a=﹣2,b=﹣5时,a﹣b=﹣2﹣(﹣5)=3,因此a﹣b的值为3或﹣3,故选:D.13.解:由乘积为1的两个数互为倒数得,∵﹣1×(﹣1)=1,∴﹣1的倒数是﹣1;∵﹣8×(﹣)=1,∴﹣8的倒数是﹣;∵﹣×(﹣7)=1,∴﹣的倒数是﹣7;∵×=1,∴的倒数是;∵﹣1×(﹣)=1,∴﹣1的倒数是﹣;∵﹣×(﹣2)=1,∴﹣2的倒数是﹣,故﹣1,﹣,﹣7,,﹣,﹣.14.解:原式=×()×(﹣6)=×(﹣6)=﹣1,故﹣1.15.解:若a<c<0<b,则abc>0;若a<b<c<0,则abc<0,故>,<.16.解:(1)(﹣3)×=﹣×=﹣2;(2)(﹣1)÷(﹣2)=(﹣)÷(﹣)=.17.解:(1)(﹣)×(﹣)×(﹣)=﹣××=﹣;(2)(﹣5)×(﹣)××0×(﹣325)=0.18.解:(1)佳佳同学开始出现错误的步骤是①.故①.(2)2÷(﹣)×(﹣3)==2×(﹣12)×(﹣3)=72.三.有理数的乘方19.解:(﹣1)2021=﹣1,故选:D.20.解:A.﹣(﹣3)2=﹣9,故此选项不符合题意;B.,故此选项符合题意;C.﹣32=﹣9,故此选项不符合题意;D.(﹣3)3=﹣27,故此选项不符合题意.故选:B.21.解:(﹣10)8中表示8个(﹣10)相乘,其中(﹣10)是底数,8是指数,故选:A.22.解:A,因为﹣(﹣3)=3,|﹣3|=3,3与3不是相反数,所以A选项不符合题意;B,因为(﹣3)3=﹣27,﹣33=﹣27,﹣27与﹣27不是相反数,所以B选项不符合题意;C,因为﹣|3|=﹣3,﹣3与﹣3不是相反数,所以C选项不符合题意;D,因为(﹣3)2=9,﹣32=﹣9,9与﹣9互为相反数,所以D选项符合题意.故选:D.23.解:根据乘方的定义,得(﹣2)3的底数是﹣2,指数是3,(﹣2)3=﹣2×(﹣2)×(﹣2)=﹣8.同理,﹣42的底数是4,指数是2,幂是﹣16.故3,﹣2,﹣8,2,4,﹣16.24.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.四.有理数的混合运算25.解:﹣3÷(﹣)=3×3=9,故选项A正确;()+(﹣)==,故选项B正确;﹣(﹣2)3=﹣(﹣8)=8,故选项C正确;|﹣2﹣(﹣3)|=|﹣2+3|=1,故选项D错误;故选:D.26.解:(﹣3)3×()=(﹣27)×()=(﹣27)×﹣(﹣27)×+(﹣27)×=(﹣9)+15+(﹣4)=2,故选:B.27.解:∵a,b互为相反数,c,d互为倒数,m+1的绝对值为5,∴a+b=0,cd=1,|m+1|=5,∴m=﹣6或4,则原式=6﹣1+0=5或4﹣1+0=3.故选:B.28.解:23+(﹣3)×(﹣2)2=8+(﹣3)×4=8﹣12=﹣4.故﹣4.29.解:﹣(﹣3)2×+|2﹣4|=﹣9×+2=﹣3+2=﹣1.故﹣1.30.解:∵m、n互为相反数,p、q互为倒数,x的绝对值为2,∴m+n=0,pq=1,x=2或﹣2,则原式=+2020×1+4=2024.故2024.31.解:原式=﹣9÷1+|﹣1|=﹣9+1=﹣8.32.解:原式=﹣9+28×=﹣9+1=﹣8.33.解:原式===.34.解:原式=﹣9÷(4﹣1)+(﹣)×24=﹣9÷3+(×24﹣×24)=﹣3+(16﹣6)=﹣3+10=7.。
华东师大版七年级数学上册 动点问题培优训练【含答案解析】

(3)在(1)的条件下,若 C、D 运动 5 秒后,恰好有 CD 1 AB ,此时 C 点停止运动,D 点继续运动(D 点在线 2
段 PB 上),M、N 分别是 CD、PD 的中点,下列结论:①PM﹣PN 的值不变;② MN 的值不变,可以说明,只有 AB
5
2.如图 1,已知数轴上两点 A、B 对应的数分别为﹣1、3,点 P 为数轴上的一动点,其对应的数为 x.
(1)PA= |x+1| ;PB= |x﹣3| (用含 x 的式子表示) (2)在数轴上是否存在点 P,使 PA+PB=5?若存在,请求出 x 的值;若不存在,请说明理由. (3)如图 2,点 P 以 1 个单位/s 的速度从点 D 向右运动,同时点 A 以 5 个单位/s 的速度向左运动,点 B 以 20 个单
(3)由已知可得出:PM= PA,PN= PB, 当①PM÷PN 的值不变时,PM÷PN=PA÷PB.
②|PM﹣PN|的值不变成立.
故当 P 在线段 AB 上时, PM+PN= (PA+PB)= AB=2, 当 P 在 AB 延长线上或 BA 延长线上时, |PM﹣PN|= |PA﹣PB|= |AB|=2.
一个 结论是正确的,请你找出正确的结论并求值.
5.如图 1,已知数轴上有三点 A、B、C,AB= 1 AC,点 C 对应的数是 200. 2
(1)若 BC=300,求点 A 对应的数; (2)如图 2,在(1)的条件下,动点 P、Q 分别从 A、C 两点同时出发向左运动,同时动点 R 从 A 点出发向右运 动,点 P、Q、R 的速度分别为 10 单位长度每秒、5 单位长度每秒、2 单位长度每秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,多少秒时恰好满足 MR=4RN(不考虑点 R 与点 Q 相遇之后的情形); (3)如图 3,在(1)的条件下,若点 E、D 对应的数分别为﹣800、0,动点 P、Q 分别从 E、D 两点同时出发向左 运动,点 P、Q 的速度分别为 10 单位长度每秒、5 单位长度每秒,点 M 为线段 PQ 的中点,点 Q 在从是点 D 运动
沪科版七年级数学上册第二章培优测试卷含答案

沪科版七年级数学上册第二章培优测试卷一、选择题(每题4分,共40分)1.“比m 的12大3的数”用代数式表示是( )A.12m -3B.72mC .2m +3D.12m +32.下列各组式子中,是同类项的是( )A .3a 3b 与-3ba 3B .a 3与b 3C .abc 与acD .a 5与253.关于多项式3x 2+x -2,下列说法错误的是( )A .这是一个二次三项式B .二次项系数是3C .一次项系数是1D .常数项是24.下列各式中与a -b -c 的值不相等的是( )A .a -(b +c )B .a -(b -c )C .(a -b )+(-c )D .(-c )-(b -a ) 5.下列各式的计算结果正确的是( )A .2x +3y =5xyB .5x -3x =2x 2C .7y 2-5y 2=2D .9a 2b -4ba 2=5a 2b6.一个多项式与x 2-2x +1的差是3x -2,则这个多项式是( )A .x 2-5x +3B .x 2+x -1C .-x 2+5x -3D .-x 2+x -17.如果A =3m 2-m +1,B =2m 2-m -7,且A -B +C =0,那么C =( )A .-m 2-8B .-m 2-2m -6C .m 2+8D .5m 2-2m -68.一家商店以每包a 元的价格购进了30包甲种茶叶,又以每包b 元的价格购进了60包乙种茶叶(a >b ).若以每包a +b2元的价格卖出这两种茶叶,则卖完后这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚9.如图,从边长为m +3的正方形纸片上剪下一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙).已知拼成的长方形的一边长为3,则其周长是( )(第9题)A .2m +6B .4m +12C .2m +3D .4m +610.图1表示1张餐桌和6把椅子(一个三角形表示一张餐桌,一个小圆表示一把椅子),图2表示2张餐桌和8把椅子,图3表示3张餐桌和10把椅子,….若按这种方式摆放25张餐桌,则需要的椅子数是( )(第10题)A .50B .52C .54D .56二、填空题(每题5分,共25分)11.下列式子:23a +b ,S =12ab ,5,m ,8+y ,m +3=2,23<57中,代数式有________个.12.数轴上表示a ,b 两数的点的位置如图所示,那么|a -b |+|a +b |的结果是________.(第12题)13.如图是一数值转换器,若开始输入的x 值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是__________,…,第2 023次输出的结果是__________.(第13题)14.若m 2+mn =-6,n 2-3mn =55,则m 2+4mn -n 2的值为________. 15.如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为2 m ,丙没有与乙重叠的部分的长度为3 m .若乙的长度最长且甲、乙的长度相差x m ,乙、丙的长度相差y m ,则乙的长度为____________ m(用含有x ,y 的代数式表示).(第15题)三、解答题(20,21题每题12分,22题14分,23题15分,其余每题8分,共85分)16.化简: 5(a 2b -3ab 2)-2(a 2b -7ab 2).17.先化简,再求值:5x 2y -[2x 2y -(xy 2-2x 2y )-4]-2xy 2,其中(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0.18.果果同学做一道数学题:已知两个多项式A ,B ,计算2A +B ,他误将“2A+B ”看成“A +2B ”,求得的结果是9x 2-2x +7,已知B =x 2+3x -2,求2A +B 的正确结果.19.多项式(x 2+ax -y +6)-(bx 2-3x +5y -1)的值与字母x 的取值无关,试求多项式13a 3-2b 2-⎝ ⎛⎭⎪⎫14a 3-3b 2的值.20.如图所示,将边长为a 的正方形和边长为b 的正方形放在同一水平面上(b >a >0).(1)用含a ,b 的代数式表示阴影部分的面积; (2)当a =3,b =5时,求阴影部分的面积.(第20题)21.小丽放学回家后准备完成下面的题目:化简(□x2-6x+8)+(6x-5x2-2)时,发现系数“□”印刷不清楚.(1)若她把“□”猜成3,请你化简(3x2-6x+8)+(6x-5x2-2);(2)她妈妈说:“你猜错了,我看到该题的标准答案是6.”请计算原题中“□”是几?22.小亮用火柴棒按如图所示的方式搭图形.(第22题)(1)把下表填写完整;图形编号①②③…火柴棒根数7…(2)设第n(n为正整数)个图形需要火柴棒的根数为s,则s=________(用含字母n的代数式表示);(3)是否存在一个图形,共有117根火柴棒?若存在,求出是第几个图形;若不存在,请说明理由.23.某超市在春节期间对顾客实行优惠,规定如下:(1)王老师一次性购物600元,他实际付款______元.(2)若顾客在该超市一次性购物x元,当x小于500但不小于200时,他实际付款________元;当x大于或等于500时,他实际付款________元(用含x的代数式表示).(3)如果王老师两次购物合计820元,第一次购物a元(200<a<300).用含a的式子表示两次购物王老师实际共付款多少元.答案一、1.D 2.A 3.D 4.B 5.D 6.B 7.A 8.A 点拨:这家商店获得的利润为a +b2×(30+60)-30a -60b =15(a -b )(元). 因为a >b ,所以15(a -b )>0,所以这家商店赚了. 9.B 10.C二、11.4 12.-2a 13.3;1 14.-61 15.(x +y +5) 三、16.解:原式=5a 2b -15ab 2-2a 2b +14ab 2=3a 2b -ab 2.17.解:原式=5x 2y -2x 2y +xy 2-2x 2y +4-2xy 2=x 2y -xy 2+4.因为(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0, 所以x =-2,y =12.所以原式=2+12+4=612.18.解:因为A =(A +2B )-2B =(9x 2-2x +7)-2(x 2+3x -2)=9x 2-2x +7-2x 2-6x +4=7x 2-8x +11,所以2A +B =2(7x 2-8x +11)+(x 2+3x -2)=14x 2-16x +22+x 2+3x -2=15x 2-13x +20.19.解:(x 2+ax -y +6)-(bx 2-3x +5y -1)=x 2+ax -y +6-bx 2+3x -5y +1 =(1-b )x 2+(a +3)x -6y +7.因为该多项式的值与字母x 的取值无关, 所以1-b =0,a +3=0.所以b =1,a =-3. 所以13a 3-2b 2-⎝ ⎛⎭⎪⎫14a 3-3b 2 =112a 3+b 2 =112×(-3)3+12=-54.20.解:(1)阴影部分的面积为12b 2+12a (a +b ).(2)当a =3,b =5时,12b 2+12a (a +b )=12×52+12×3×(3+5)=492,即阴影部分的面积为492.21.解:(1)(3x2-6x+8)+(6x-5x2-2)=3x2-6x+8+6x-5x2-2=-2x2+6.(2)设“□”是a,则(ax2-6x+8)+(6x-5x2-2)=ax2-6x+8+6x-5x2-2=(a-5)x2+6.因为标准答案是6,所以a-5=0,解得a=5.故原题中“□”是5.22.解:(1)12;17(2)5n+2(3)存在.根据题意,得5n+2=117,解得n=23.故第23个图形共有117根火柴棒.23.解:(1)530(2)0.9x;(0.8x+50)(3)0.9a+0.8(820-a)+50=0.1a+706(元).答:王老师实际共付款(0.1a+706)元.。
【新人教版七年级数学上册培优强化训练及答案全套15份】培优强化训练11及答案

培优强化训练111、(10分)小明从A 处向北偏东0'7238方向走10m 到达B 处,小亮也从A 处出发向南偏西0'1538方向走15m 到达C 处,则∠BAC 的度数为 度。
2、(10分)平面内三条直线两两相交,最多有a 个交点,最少有b 个交点,则a+b=_____.3、(10分)某水果公司以2元/千克的单价新进了10000千克柑橘,为了合理定出销售价格,水果公司需将运输中损坏的水果成本折算到没有损坏的水果售价中.销售人员从柑橘中随机抽取若干柑橘统计柑橘损坏情况,结果如下表.如果公司希望全部售完这批柑橘能够获得5000元利润,那么在出售柑橘时,每千克大约定价 元. 柑橘质量(千克) 50200 500 损坏的质量(千克)5.519.42 51.54 4、(10分)计算2a -3(a -b)的结果是 ( )A.-a -3b B.a -3b C.a+3b D.-a+3b 5、(10分)汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x 米,根据题意,列出方程为 ( )A.24204340x +⨯=⨯B.24724340x -⨯=⨯ C.24724340x +⨯=⨯ D.24204340x -⨯=⨯6、(10分)有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价降价20%以96元出售,很快就卖掉了.则这次生意的赢亏情况为 ( )A .亏4元 B.亏24元 C.赚6元 D.不亏不赚.7、(每题10分,共20分)(1)计算(-10)3+[]2)31()4(22⨯--- ; (2)解方程:6751413-=--y y 。
8. (20分)某市水果批发部门欲将A 市的一批水果运往本市销售,有火车和汽车两种运输方式,运输过程中的损耗均为200元/时。
人教版七年级数学上册期末培优提升训练题

人教版七年级数学上册期末培优提升训练题1.东方商场以进价1980元的商品打八折后仍可获利10%,求该商品的标价。
答案:2200元。
2.某商店有两个计算器,售价都为64元,一个盈利60%,另一个亏本20%,这次买卖中该商店赚了多少元?答案:亏了6.4元。
3.XXX在银行一年定期储蓄,年利率为2.25%,取出本息后交纳了13.5元的利息税,求XXX一年前存入银行的本金。
答案:6000元。
4.某乡中学现有学生500人,计划一年后女生增加3%,男生在校生增加4%,这样在校学生将增加3.6%,求该校现有女生和男生的人数。
答案:女生为165人,男生为335人。
6.XXX购买2B铅笔,店主说多买一些打八折,如果买50支比按原价购买便宜6元,求每支铅笔的原价。
答案:每支铅笔的原价为0.3元。
7.某人以4千米/时的速度步行由甲地到乙地,然后以6千米/时的速度从乙地返回甲地,求此人往返一次平均速度。
答案:4.8千米/时。
8.一个画家有14个边长为1米的正方体,他在地面上把它们摆成某种形状,然后把露出的表面涂上颜色,求被涂上颜色的总面积。
答案:82平方米。
9.根据给定的三视图数据,求该几何体的体积。
答案:216立方厘米。
10.求无盖长方体盒子的容积。
答案:120立方厘米。
11.某人特制了4个同样的立方块,并将它们放置成不同的形状,求图中(b)中四个底面正方形中的点数之和。
答案:28个点。
12.已知手表早上9时20分,求时针和分针所成的角的度数。
答案:150度。
13.已知线段AB=10cm,M为AB的中点,在AB所在直线上有一点P,N为AP的中点,若MN=1.5cm,求AP的长。
答案:7.5厘米。
14、从A车站到B车站方向发出的车辆,经过3个车站,即共有4个车站,因此一共有4种不同的车票。
15、根据勾股定理,AC的长度可以通过计算AB和BC的长度得到。
根据勾股定理,$AC=\sqrt{AB^2+BC^2}=\sqrt{5^2+3^2}= \sqrt{34}$,即AC的长度为$\sqrt{34}$,无法确定选项中的任何一个。
七年级上册数学同步培优:第10讲 一元一次方程的应用二--尖子班

第10讲 一元一次方程的应用二⎧⎪⎨⎪⎩工程问题一元二次方程的应用利润问题其他问题知识点1 一元一次方程的实际问题-工程问题1、工程问题的基本量有:工作量、工作效率、工作时间。
公式为:①工作量=工作效率×工作时间,②=工作量工作时间工作效率,③=工作量工作效率工作时间。
2、工程问题中,一般常将全部工作量看作整体1,如果完成全部工作的时间为t ,则工作效率为1t。
3、常用列式依据:“甲的工作量+乙的工作量+丙的工作量=1”,有些工程问题也可以分阶段“第一阶段工作量+第二阶段工作量=1”。
【典例】1.一项工程,甲单独完成需要9天,乙单独完成需要12天,丙单独完成需要15天,若甲、丙先做3天,甲因故离开,由乙接替甲的工作,如果要求这个工程6天完成,问此工程是否能按期完成?【方法总结】1、本题可以分两个阶段:第一阶段“甲、丙合做3天”,第二阶段“乙、丙合做x 天”,可得“甲、丙合做3天”的工作量+“乙、丙合做x 天”的工作量=工作总量2、对于问是否能按时完成任务的问题,先求实际完成任务的时间,再与规定时间做比较,得出是否能按时完成2. 甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需多少天?【方法总结】1、分析表格,找出有用信息,求出甲、乙的工作效率是解本题的关键:由甲做3天,完成工作进度的14,可求出甲的工作效率为114312;由第三天到第五天,甲乙合作两天时间,完成工作进度的14,列式可求乙的工作效率为124。
2、此题是典型的工程问题,需要分段分析,分清每段的情况【随堂练习】1.(2017秋•鞍山期末)一项工程,甲单独做12小时完成,乙单独做8小时完成,甲先单独做9小时,后因甲由其他任务调离,余下的任务由乙单独完成,那么乙还要多少小时完成?2.(2017秋•黄石期末)一项工程,由甲、乙、丙三人完成,甲单独做需10天完成,乙单独做需12天完成,丙单独需15天完成.现计划7天完成,乙、丙先合做3天后,乙有事,由甲、丙完成剩下工程,问:能否按计划完成?3.(2018春•唐河县期中)现加工一批机器零件,甲单独完成需4天,乙单独完成需6天,现由乙先做1天,然后两人合作完成,共付给报酬600元,若按个人完成的工作量付给报酬,该如何分配?知识点2 一元一次方程的实际问题-利润问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。
部编数学七年级上册培优专题11线段的动点问题解析版含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!培优专题11 线段的动点问题【专题精讲】1.总体来讲,解决数轴上的动点问题分为两步:(1)用未知数表示动点;(2)结合数轴,列方程.2.具体来讲,要注意以下几个问题:(1)表示动点:用未知数表示动点,常常把运动时间设为t,把握动点的出发点,运动方向和运动速度,这三个条件,例如:点A 从表示1的点M 出发,向右运动,速度是3个单位长度每秒,则动点A 表示为:1 +3t; .点B 从表示-2的点N 出发,向左运动,速度是2个单位长度每秒,则动点B 表示为:-2-2t;(2)求中点:利用中点公式即可;(3)求距离:数轴上,表示两点的距离常常用右边的数减去左边的数,例如,上题动点A 和B 之间的距离是:(1 +3t)-( -2-2t) =5t+3;(4)列方程:常见等量关系:一是行程中的相遇追及问题,二是线段间的和差倍分关系;(5)易错点:注意动点问题的分类讨论.类型一:线段动点与线段求值问题1.(2022·山东青岛·期末)如图,动点B 在线段AD 上,沿A D A ®®以2cm/s 的速度往返运动1次,C 是线段BD 的中点,10cm AD =,设点B 的运动时间为t 秒()010t ££.(1)当2t =时,①AB =________cm ;②求线段CD 的长度.(2)用含t 的代数式表示运动过程中线段AB 的长度.【答案】(1)①4;②3cm(2)别从点P,B同时出发沿射线BA向左运动,到达点A处即停止运动.(1)若点C,D的速度分别是1cm/s,2cm/s.①当动点C,D运动了2s,且点D仍在线段PB上时,AC+PD=_________cm;②若点C到达AP中点时,点D也刚好到达BP的中点,则AP∶PB=_________;(2)若动点C,D的速度分别是1cm/s,3cm/s,点C,D在运动时,总有PD=3AC,求AP 的长度.【答案】(1)①12;②1:2x ,y 满足()2540x y -+-=,一动点P 从A 出发以每秒1米的速度沿着A D C B®®®运动,另一动点Q 从B 出发以每秒2米的速度沿B C D A ®®®运动,P ,Q 同时出发,运动时间为t .(1)x =______________,y =______________.(2)当 4.5t =时,求APQ V 的面积;(3)当P ,Q 都在DC 上,且PQ 距离为1时,求t 的值点C 在线段AM 上,点D 在线段BM 上,C 、D 两点分别从M 、B 出发以cm /s cm /s 、a b 的速度沿直线BA 运动,运动方向如箭头所示,其中a 、b 满足条件:|1||3|0a b -+-=.(1)直接写出:=a ____________,b =_____________;(2)若2cm 4cm <<AM ,当点C 、D 运动了3s ,求AC MD +的值;(3)如图2,若13AM AB =,点N 是直线AB 上一点,且AN BN MN -=,求MN 与AB 的数量关系.类型二:线段动点与判断说理问题5.(2022·陕西咸阳·七年级期末)线段AB=16,C,D是线段AB上的两个动点(点C在点D的左侧),且CD=2,E为BC的中点.(1)如图1,当AC=4时,求DE的长.(2)如图2,F为AD的中点.点C,D在线段AB上移动的过程中,线段EF的长度是否会发生变化,若会,请说明理由;若不会,请求出EF的长.,,点M、N分别从A、B两点同时出发向点C运动.当其中一动点到达==2080AB BCC点时,M、N同时停止运动.已知点M的速度为每秒2个单位长度,点N速度为每秒1个单位长度,设运动时间为t秒.(1)用含t的代数式表示线段AM的长度为________;(2)当t为何值时,M、N两点重合?(3)若点Р为AM中点,点Q为BN中点.问:是否存在时间t,使PQ长度为5?若存在,请说明理由.【答案】(1)2t(2)20(3)30或50【分析】(1)由点M的速度为2即可得出答案;(2)根据题意可得出BM t=,当M、N两点重合时,根据线段之间的数量关系即可列出关于t的等式,解出t即可;故存在时间t,使PQ长度为5,此时t的值为30或50.【点睛】本题考查与线段有关的动点问题,线段的和与差,与线段中点有关的计算以及解发,以每秒2个单位长度的速度沿射线AB运动,M为AP的中点,设P的运动时间为x 秒.(1)P 在线段AB 上运动,当2PB AM =时,求x 的值.(2)当P 在线段AB 上运动时,求()2BM BP -的值.(3)如图2,当P 在AB 延长线上运动时,N 为BP 的中点,MN 的长度是否发生变化?如不变,求出MN 的长度.如变化,请说明理由.所以MN的长度无变化是定值.【点睛】本题是动点问题,考查了两点间的距离,解答的关键是用含时间x的式子表示出各线段的长度.8.(2022·全国·七年级课时练习)如图,线段AB=5cm,AC:CB=3:2,点P以0.5cm/s 的速度从点A沿线段AC向点C运动;同时点Q以1cm/s从点C出发,在线段CB上做来回往返运动(即沿C→B→C→B→…运动),当点P运动到点C时,点P、Q都停止运动,设点P运动的时间为t秒.(1)当t=1时,PQ= cm;(2)当t为何值时,点C为线段PQ的中点?(3)若点M是线段CQ的中点,在整个运动过程中,是否存在某个时间段,使PM的长度保持不变?如果存在,求出PM的长度;如果不存在,请说明理由.类型三:线段动点与存在性问题9.(2021·山东师范大学第二附属中学七年级期末)已知有理数a,b,c在数轴上对应的点从左到右顺次为A,B,C,其中b是最小的正整数,a在最大的负整数左侧1个单位长度,BC=2AB.(1)填空:a= ,b= ,c= (2)点D从点A开始,点E从点B开始,点F从点C开始,分别以每秒1个单位长度、1个单位长度、4个单位长度的速度在数轴上同时向左运动,点F追上点D时停止动,设运动时间为t秒.试问:①当三点开始运动以后,t为何值时,这三个点中恰好有一点为另外两点的中点?②F在追上E点前,是否存在常数k,使得DF k EF+×的值与它们的运动时间无关,为定值.若存在,请求出k和这个定值;若不存在,请说明理由.如图,当EF=DF,即F为DE中点时,综上所述,当t1秒和t=5时,满足题意.()()DF k EF t k t k k t+×=-+-=+-+,93639633当DF k EF+×与t无关时,需满足3+3k=0,即k=-1时,满足条件.【点睛】本题考查了数有理数的性质,数轴上点与数的对应关系及两点的距离,点的平移及线段的中点及分类讨论思想,正确理解点的运动与点的平移的关系是解本题的关键.10.(2021·河北唐山·七年级期中)如图,已知线段AB,按下列要求完成画图和计算:(1)延长线段AB到点C,使BC=3AB(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,如果点D为线段BC的中点,且AB=2,求线段AD的长度;(3)在以上的条件下,若点P从A点出发,以每秒1个单位长度的速度向点C移动,到点C时停止.设点P的运动时间为t秒,是否存在某时刻t,使得PB=PA﹣PC?若存在,求出时间t:若不存在,请说明理由.OA:OB=2:1,点P从点B以每秒4个单位的速度向右运动.(1)A、B对应的数分别为 、 ;(2)当点P运动时,分别取BP的中点E,AO的中点F,请画图,并求出AP OB EF+的值;(3)若当点P开始运动时,点A、B分别以每秒2个单位和每秒5个单位的速度同时向右运动,是否存在常数m,使得3AP+2OP﹣mBP为定值?若存在,请求出m的值以及这个定值;若不存在,请说明理由.秒2个单位的速度沿射线AB运动,运动时间为t秒(t>0),点M为AP的中点.(1)当点P在线段AB上运动时.当t为多少时,AM=6.(2)当点P在AB延长线上运动时,点N为BP的中点,求出线段MN的长度.(3)在P点的运动过程中,点N为BP的中点,是否存在这样的t的值,使M、N、B三点中的一个点是以其余两点为端点的线段的中点,若有,请求出t的值;若没有,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、(10分)在研究运算(+8)-(+10)时,一学生进行了如下探索:因为(-2)+(+10)=+8,所以(+8)-(+10)=-2;另一方面(+8)+(-10)=-2,于是(+8)-(+10)=(+8)+(-10),由此概括出有理数的一个运算法则,这个法则是,用字母可以表示成__________.
2、(10分)小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,费用为4800元,粉刷面积是150m 2
,最后结算时,有以下几种方案:
方案一:按工计算,每个工30元(1个人干一天是1个工); 方案二:按涂料费用算,涂料费用的30%作为工钱; 方案三:按粉刷面积算,每平方米付工钱12元; 请你帮小红家出主意,选择方案_____付钱最合算.
3、(10分)如图,是一个正方体纸盒的表面展开图,请在其余三个正方形
内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数.
4、(10分)两个角大小的比为7﹕3,它们的差是72°,则这两个角的数量关系是( ) A. 相等 B. 互补 C. 互余 D. 无法确定
5、(10分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则从正面看该几何体得到的平面图形为( )
6、(16分)我国宋朝数学家杨辉在他的著作《详解九章 算法》中提出“杨辉三角”(如下图),此图揭示了
(a+b)n
(n 为非负整数)展开式的项数及各项系数的 有关规律.例如:
0()1a b +=,它只有一项,系数为1;
1()a b a b +=+,它有两项,系数分别为1,1,系数
和为2;
222()2a b a ab b +=++,它有三项,系数分别为1,2,1,系数和为4;
33223()33a b a a b ab b +=+++,它有四项,系数分别为1,3,3,1,系数和为8;……
根据以上规律......
,解答下列问题: 2
1
-5
1 1 1 1 1 1 1
2 3 3 …
1 2
1 2 4 3 第5题 A . B .
C.
(1)4
()a b +展开式共有项,系数分别为; (2)()n
a b +展开式共有项,系数和...为.
7、计算:(每小题10分,共20分)
(1) 19
14
726235|263131959
|-+-
(2) ⎥⎦
⎤
⎢⎣⎡-+-⨯-⨯-
522)2()32(323
8、(14分)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km 的记为“+”,不足50km 的记为“-”,刚好50k m 的记为“0”.
第一天
第二天
第三天
第四天
第五天
第六天
第七天
路程(km )
-8 -11 -14 0 -16 +41 +8 (1)请你用所学的统计知识,估计小明家一月(按30天计)要行驶多少千米?
(2)若每行驶100km 需用汽油8L ,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?
数学培优强化训练(十)(答案)
1、(10分)在研究运算(+8)-(+10)时,一学生进行了如下探索:因为(-2)+(+10)=+8,所以(+8)
-(+10)=-2;另一方面(+8)+(-10)=-2,于是(+8)-(+10)=(+8)+(-10),由此概括出有理数的一个运算法则,这个法则是,用字母可以表示成__________. 1、有理数减法法则 a -b=a+(-b) 2、(10分)小红家粉刷房间,雇用了5个工人,干了10天完成,用了某种涂料150升,费用为4800元,粉
刷面积是150m 2
,最后结算时,有以下几种方案:
方案一:按工计算,每个工30元(1个人干一天是1个工); 方案二:按涂料费用算,涂料费用的30%作为工钱; 方案三:按粉刷面积算,每平方米付工钱12元; 请你帮小红家出主意,选择方案_____付钱最合算. 2、 方案二
3、(10分)如图,是一个正方体纸盒的表面展开图,请在其余三个正方形内分别填入适当的数,使得折成正方体后相对面上的两个数互为相反数.
3、第二行依次填0和5 ,第三行填-0.5
4、(10分)两个角大小的比为7﹕3,它们的差是72°,则这两个角的数量关系是( B ) A. 相等 B. 互补 C. 互余 D. 无法确定
5、(10分)图表示从上面看一个由相同小立方块搭成的几何体得到的平面图形,小正方形中的数字表示该位置上小立方块的个数,则从正面看该几何体得到的平面图形为( C )
6、(16分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了
(a+b)n
(n 为非负整数)展开式的项数及各项系数的有关规律. 例如: 0()1a b +=,它只有一项,系数为1;
1()a b a b +=+,它有两项,系数分别为1,1,系数和为2; 2
2
2
()2a b a ab b +=++,它有三项,系数分别为1,2,1,
系数和为4;
33223()33a b a a b ab b +=+++,它有四项,系数分别为1,
3,3,1,系数和为8;…… 根据以上规律......
,解答下列问题: (1)4
()a b +展开式共有项,系数分别为; (2)()n a b +展开式共有项,系数和...为. 4. (1)5;1,4,6,4,1; (2)1n +,2n
.
7、计算:(每小题10分,共20分)
(1) 19
14
726235|263131959
|-+- (2) ⎥⎦
⎤
⎢⎣⎡-+-⨯-⨯-
522)2()32(323 =219
14726235195926313
=-+-=-23
⨯[])32(4-+-
=54
21 -5 0
1
2
1 2 4 3
第18
A .
B . C. 1
1 1 1 1 1 1
2
3 3
……
8、(14分)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“-”,刚好50km的记为“0”.
第一天第二天第三天第四天第五天第六天第七天
路程(km)-8 -11 -14 0 -16 +41 +8
(1)请你用所学的统计知识,估计小明家一月(按30天计)要行驶多少千米?
(2)若每行驶100km需用汽油8L,汽油每升4.74元,试求小明家一年(按12个月计)的汽油费用是多少元?
5. (1)1500米;(2)6825.6元。