色氨酸营养研究进展

合集下载

色氨酸的研究与应用进展

色氨酸的研究与应用进展

色氨酸的研究与应用进展作者:王仁华刘晓兰喻兵权等来源:《湖南饲料》 2013年第1期王仁华1 刘晓兰1 喻兵权2 王王争韦华3(1.江西农业大学动物科学技术学院南昌 330045;2.建明工业(珠海)有限公司珠海 519040;3.江西省兽药饲料监察所南昌 330029)摘要:色氨酸是一种必需氨基酸,有着重要的营养作用。

文章就色氨酸的概况、代谢及营养功能进行了综述。

关键词:色氨酸;营养1.色氨酸的概况色氨酸又名2-氨基-3-吲哚基丙酸,是一种芳香族、杂环、非极性α氨基酸,有DL-、D-、L-色氨酸三种异构体,天然存在的只有L-色氨酸。

L-色氨酸是组成蛋白质的常见20种氨基酸中的一种,是哺乳动物的必需氨基酸和生糖氨基酸。

分子式为C11H12N2O2,分子量204.23。

本品为白色或微黄色结晶或结晶性粉末;无臭,味微苦。

熔点281~282℃(右旋体),289℃分解,左旋体。

外消旋体微溶于水(0.4%,25℃)和乙醇,溶于甲酸、稀酸和稀碱,不溶于氯仿和乙醚。

0.2%的水溶液pH为5.5~7.0。

色氨酸(tryptophan,Trp)是动物维持和生长的必需氨基酸,是构成机体蛋白质的基本组成成分之一,具有多种生理功能,但动物体内不能合成,须从饲料中供给。

色氨酸是玉米的第一限制性氨基酸,通常义是谷物饲料的第一、第二限制性氨基酸,在仔猪的玉米-鱼粉型饲粮、玉米-肉骨粉饲粮和低蛋白玉米-豆粕型饲粮中往往是第二限制性氨基酸。

在玉米-豆粕型配合日粮中,色氨酸较易缺乏,需要额外添加。

随着赖氨酸和蛋氨酸在饲料中的广泛应朋,色氨酸存仔猪日粮中的限制作用日益明显,且色氨酸在动物体内具有重要的代谢作用,因而仔饲粮中适宜的色氨酸水平对生产具有重要的实际意义。

2.色氨酸的代谢色氨酸是一种特殊的氨基酸,作为蛋白质的氨基酸组成成分之一,在生长猪日娘中添加色氨酸提高肝脏、皮肤和整体的蛋自质合成率,是通过刺激胰岛素释放而增加肌肉和肝脏蛋白质合成。

发酵法生产色氨酸

发酵法生产色氨酸

发酵法生产色氨酸的研究刘辉 047111230摘要:色氨酸是人和动物生命活动中8种必需氨基酸之一,对人和动物的生长发育、新陈代谢起着非常重要的作用。

随着市场需求的不断增加,提高色氨酸生产能力成为全球热点。

本文综述了色氨酸应用及生产技术包括发酵生产色氨酸的菌种选育、发酵培养基原料和发酵工艺等方面的研究进展。

关键词:发酵法色氨酸1、发酵法生产色氨酸过程中的菌种选育生产菌种选育是发酵工业中最为关键的工作,受到普遍的重视。

过去发酵法生产色氨酸采用的是在培养基中添加吲哚或邻氨基苯甲酸的方法,此法因必须采用高价的吲哚或邻氨基苯甲酸做前体物质,使色氨酸的生产存在着成本高的缺点。

而且由于这些前体物质对微生物的生长有毒害作用,故不能大量使用[1]。

目前,利用糖质原料直接发酵生产色氨酸的国内外报道不多[2-3],主要是因为色氨酸在微生物体内代途径较长且存在着多种严格的调节机制,致-色氨酸的生产菌种产酸较低,达不到工业化生产的要求。

色氨酸的生产菌种有谷氨酸棒杆菌(Corynebacterium glutanicum)、黄色短杆菌(Bre-vibacteriumflavum)、枯草芽孢杆菌(Bacillus sub-tilis)、大肠杆菌(Escherichia coli)、产朊假丝酵母(Candida utilis)等,其中绝大多数为细菌[1]。

2、发酵法生产色氨酸过程中的发酵条件的选择色氨酸发酵过程中菌种的质粒稳定性对发酵水平高低有严重影响,维持发酵高产酸就要保证发酵过程菌种质粒稳定。

在培养过程可以通过调节适当罐压、培养温度、溶氧控制水平、底料中酵母抽提物添加量等方面进行控制,保证发酵过程中不发生质粒丢失现象。

色氨酸发酵液中乙酸浓度高时对色氨酸生产菌的生长和产酸均有抑制作用,发酵过程中可以通过调节溶氧控制水平、初始葡萄糖浓度、发酵葡萄糖浓度及控制菌体比生长速率等方面进行控制,减少发酵液中乙酸的生成。

色氨酸发酵过程中产大量的热,为了维持发酵温度的稳定,必须采取适当的降温措施,在发酵罐外部加上冷却盘管,采用冰水降温,控制发酵温度33℃左右。

色氨酸对动物生理功能调节的研究进展

色氨酸对动物生理功能调节的研究进展

色氨酸对动物生理功能调节的研究进展张雪蕾;李仁德;王静;黄胜广;李光玉;王守富;王峰;张铁涛【摘要】色氨酸是一种功能性必需氨基酸, 对动物的生长性能、氧化应激、免疫、基因表达以及蛋白质合成等功能均有调节作用, 并且色氨酸是生成烟酸、辅酶Ⅰ、辅酶Ⅱ、褪黑激素、5-羟色胺、犬尿氨酸、喹啉酸等的前体物质, 具有多种生理功能和生物活性.本文将有关色氨酸生理功能及在家禽、家畜等动物上的研究进行了综述, 对进一步研究色氨酸对动物的调控作用具有一定的意义.%Tryptophan, a functional essential amino acid, regulates growth performance, oxidative stress and immunity, gene expression and protein synthesis for animal, and it is the production of nicotinic acid as well.Tryptophan has many physiological functions and biological activities, which as the precursors of CoenzymeⅠ, coenzymeⅡ, melatonin, 5-hydroxytryptamine, canine uric acid, quinolinic acid and so on.The paper summaried the physiological function of tryptophan and the studies on animals such as poultry and livestock, which is significant to further study the regulation of tryptophan on animals.【期刊名称】《特产研究》【年(卷),期】2019(041)001【总页数】5页(P104-108)【关键词】色氨酸;生理功能;调节作用【作者】张雪蕾;李仁德;王静;黄胜广;李光玉;王守富;王峰;张铁涛【作者单位】中国农业科学院特产研究所,长春 130112;中国农业科学院特产研究所,长春 130112;中国农业科学院特产研究所,长春 130112;中国农业科学院特产研究所,长春 130112;中国农业科学院特产研究所,长春 130112;吉林农业大学,长春130118;中国农业科学院特产研究所,长春 130112;中国农业科学院特产研究所,长春 130112【正文语种】中文【中图分类】Q517色氨酸(Tryptophan)化学名称是-氨基- -吲哚丙酸,分为L 型、D 型和DL 型。

谷氨酸、色氨酸、丝氨酸发酵进展

谷氨酸、色氨酸、丝氨酸发酵进展

万方数据万方数据万方数据谷氨酸、色氨酸、丝氨酸发酵进展作者:刘贤雪, 雷建湘, 郭跃平, 汪钊作者单位:浙江工业大学生环学院,杭州,310014刊名:发酵科技通讯英文刊名:FAJIAO KEJI TONGXUN年,卷(期):2009,38(3)参考文献(16条)1.JP9-2852932.JPll-92963.JP9-2852944.KocabasP,CalikP,OzdamarTH5.刘晓婷;黄耀辉黄色短杆菌L-色氨酸产生菌的选育 1989(06)6.张素珍产L2色氨酸菌株的诱变选育 1984(03)7.张克旭氨基酸发酵工艺学 19918.张炳荣氨基酸工业大全(技术与市场) 19919.Serpil Takae Metabolic flux distribution for the optiminzed production of L-Glutamate[外文期刊] 1998(01)10.I Sunitha Optimmization of medimm constituents and formentation conditions for the production of L-Glutamlc acid by the co immobilized whole cells of mierococcus Glutamicns and Pseudomonns reptilivora 1998(05)11.I Sunitha Coimmobilized whole cells of Pseudomonas reptil-ivom and Micrococcus Glutamicus in caleium alginate gel for the production of L-Glutamic acid 1998(01)12.NampoothiriM K;Pandey A Immobilization Of Brevibacterium cells for the production of L-Glutamie acid[外文期刊] 1998(01)13.NampoothiriM K;PondeyA Genetie of cory noform bacteria for the overproduction of aminoacids[外文期刊] 1998(02)14.WO 99/O269215.WO 99/0269216.王宏龄;富春江近年来国内外主要发酵类氨基酸产品发展状况[期刊论文]-发酵科技通讯 2008(03)本文链接:/Periodical_fxkjtx200903014.aspx。

NAD+/NADH代谢机制研究进展

NAD+/NADH代谢机制研究进展

NAD+/NADH代谢机制研究进展李达,伦永志,周士胜【摘要】[摘要]NAD+/NADH是细胞能量代谢所必需的辅酶,小到细胞的各种生命活动,大到整个生命结构的平衡,都需要能量来维持。

同时,细胞的氧化还原状态,特别是NAD+/NADH的水平直接影响着细胞的节律、衰老、癌变和死亡等重大生命过程。

故而有关细胞内NAD+或NADH代谢的研究近年在国际上形成了一个新的热点。

我们以NAD+/NADH代谢为重点,综述国内外关于该机制的研究现状。

【期刊名称】生物技术通讯【年(卷),期】2010(021)001【总页数】5【关键词】[关键词]NAD+;NADH;代谢NAD+和NADH参与的多酶氧化还原体系是生物体细胞呼吸链中电子传递过程的主要生物氧化体系,糖、脂、蛋白质三大代谢物质分解中的氧化反应绝大部分也都是通过这一体系完成的。

因此,研究NAD+的代谢机制,对于分析衰老、癌变和死亡等重大生命活动的产生原因具有重要意义。

1 NAD+的生物特性和生物合成NAD+、NADP、NADH和NADPH共同作为氢化物的受体和供体,在细胞的能量代谢中起着关键的作用。

同许多磷酸化产物一样,NAD+由一些更小的单位从头合成产生。

NAD+的分解曾经被认为是一种非特异的过程,而现在认识到NAD+的分解与细胞内外控制细胞基因表达的信号、Ca2+的活化、细胞的凋亡密切相关。

据大量文献报道,在脊椎动物和几乎所有的真核生物中,色氨酸是NAD+的前体物质。

饮食中色氨酸缺乏的人们面临患糙皮病的危险,除非他们的食物中含有充足的NAD+的前提物质烟酰胺(Nam)和烟酸(Na)。

如图1所示,色氨酸在一系列酶[如吲哚胺双加氧酶(Ido)或色氨酸双加氧酶(Tdo)等]的作用下,转变为烟酸单核苷酸(NaMN)[1]。

NaMN同烟酰胺单核苷酸(NMN)一样,在被烟酰胺单核苷酸腺苷酰(基)转移酶(Nmnats)腺苷化后转变为烟酸腺嘌呤辅酶Ⅰ(NaAD),NaAD依靠NAD +谷氨酰胺合成酶(Nadsyn1)的作用转变成NAD+[2]。

氨基酸的生物活性及其营养调控功能的研究进展

氨基酸的生物活性及其营养调控功能的研究进展
营 养调 节 作 用 的 研 究 进 展 , 为 通 过 氨 基 酸 的 营 养 调控 作 用 来 改 善动 物 生 产 提供 参 考 。
1 精 氨 酸
1 . 1 精 氨酸 的代 谢 途径
1 . 2 . 1 改 善 动 物 采食 量 及 畜禽 产 品 品质
精氨酸及其代谢产物可通过影 响外周激素 的
合 成 一 氧化 氮 ( NO) 、 多胺 、 谷 胱甘肽 、 核 酸 激 素 和 神 经 递质 , 影 响神 经 和 内 分 泌 , 调 控 细 胞 的 基 因 表
达 和 信 号转 导 、 免疫 、 抗氧化 、 抗应激等功 能 , 这 些
调 节作 用 最 终 可 影 响 到 动 物 的 生 长 发 育 、 生 产 性
神 经 系 统 的健 康 J 。
1 . 2 精 氨 酸 的 营 养调 控 功 能
能 以及 健 康 状 况 。 目前 研 究 较 多 的具 有 明 显 生 物 活 性 的氨 基 酸 包 括 精 氨 酸 、 谷氨 酰胺 、 亮氨酸、 色 氨酸 、 苏氨酸等 , 本 文 总 结 了它 们 的代 谢 内 某 些 氨
基 酸 不 仅 仅 作 为 蛋 白质 合 成 的底 物 原 料 , 它 们 还
能 够 通 过 自身 及 其 代 谢 产 物 所 具 有 的生 物 活 性 对
酸 是 内源 性 NO 的 唯一 前 体 , 可 在一 氧化 氮 合成 酶 的作 用 下 生 成 NO, NO在 血 管 扩 张过 程 中作 为 信 号 分子 物 质 来 促 进 血 管 的 舒 张 , 提 高 胰 岛 素 敏 感 组 织 的血 流 量 。NO 参 与 调 节 产 能 底 物 代 谢 ( 图 2 ) , 可 降 低 与 脂 肪 合 成 和 糖 异 生 作 用 相 关 基 因 的

色氨酸的研究与应用进展

色氨酸的研究与应用进展王仁华1刘晓兰1喻兵权2王王争韦华3(1.江西农业大学动物科学技术学院南昌330045;2.建明工业(珠海)有限公司珠海519040;3.江西省兽药饲料监察所南昌330029)摘要:色氨酸是一种必需氨基酸,有着重要的营养作用。

文章就色氨酸的概况、代谢及营养功能进行了综述。

关键词:色氨酸;营养1.色氨酸的概况色氨酸又名2-氨基-3-吲哚基丙酸,是一种芳香族、杂环、非极性α氨基酸,有DL-、D-、L-色氨酸三种异构体,天然存在的只有L-色氨酸。

L-色氨酸是组成蛋白质的常见20种氨基酸中的一种,是哺乳动物的必需氨基酸和生糖氨基酸。

分子式为C11H12N2O2,分子量204.23。

本品为白色或微黄色结晶或结晶性粉末;无臭,味微苦。

熔点281~ 282℃(右旋体),289℃分解,左旋体。

外消旋体微溶于水(0.4%,25℃)和乙醇,溶于甲酸、稀酸和稀碱,不溶于氯仿和乙醚。

0.2%的水溶液pH为5.5~ 7.0。

色氨酸(tryptophan,Trp)是动物维持和生长的必需氨基酸,是构成机体蛋白质的基本组成成分之一,具有多种生理功能,但动物体内不能合成,须从饲料中供给。

色氨酸是玉米的第一限制性氨基酸,通常义是谷物饲料的第一、第二限制性氨基酸,在仔猪的玉米-鱼粉型饲粮、玉米-肉骨粉饲粮和低蛋白玉米-豆粕型饲粮中往往是第二限制性氨基酸。

在玉米-豆粕型配合日粮中,色氨酸较易缺乏,需要额外添加。

随着赖氨酸和蛋氨酸在饲料中的广泛应朋,色氨酸存仔猪日粮中的限制作用日益明显,且色氨酸在动物体内具有重要的代谢作用,因而仔饲粮中适宜的色氨酸水平对生产具有重要的实际意义。

2.色氨酸的代谢色氨酸是一种特殊的氨基酸,作为蛋白质的氨基酸组成成分之一,在生长猪日娘中添加色氨酸提高肝脏、皮肤和整体的蛋自质合成率,是通过刺激胰岛素释放而增加肌肉和肝脏蛋白质合成。

至于这种调节功能的详细机理还有待于进一步研究。

色氨酸在动物体内除参与体蛋白合成外还作为重要的神经递质5-羟色胺(5-hydrox-ytryptamine)的前体,参与一系列代谢活动。

色氨酸在家禽营养中的研究进展

食 等多 种功 能 的调节I 。 I
12 2 烟 酸 ..
动物体 内的色氨酸一部分用于合成组织蛋 白
收 稿 日期 :2 1一)— l 0 1 ( 2 3
炯酸 又 叫尼 克 酸 ,主要通 过烟 酰胺腺 嘌 呤二核
作者简介 :张瑞霜( 9 5 ) 18一 ,女,黑龙江斗 丹江人 ,硕士 ,主要从事动物动物营养与饲料科学方面 的研究T作 、 十
活性作用 ;犬尿酸 、黄尿酸 、吲哚乙酸和 5 羟吲 一
哚 乙酸 自尿 中排 出 。
1 . 5 羟 色胺 .1 一 2
米 、大麦等原料的第二限制性氨基酸 ,是大豆粕的
第 三 限制 性 氨 基 酸 。 因此 ,在 玉 米 一 粕 型配 合 豆 饲料 中 ,色 氨酸 已成 为第三 限制 性氨 基酸 。随 着商 品蛋 氨 酸 、赖 氨酸 在饲 料 中 的普 遍添 加 ,色氨 酸对 动 物生产 的限制作 用也 日益 突 。
说 明饲粮 中补充色氨酸有利 于提高机体蛋 白质 的 沉积 。余东游等研究表明 ,色氨酸还能促进蛋 白
质在 鸡 蛋 中 的沉积 。色 氨 酸不仅 作 为原 料 参 与蛋
量为 00 %的 日粮 中额 外添 加色 氨酸 O0 %、0 6 . 6 . 3 . % 0
白质 的合成 ,还可以调控蛋 白质的合成。Wo gn l ag f
羟色胺很难 进入 中枢神经系统 ,因此 ,中枢神经 系统 和外 周 的 5 羟 色胺 分 属两 个独 立 的系统 。当 一 1
大 脑 中 枢 中 色 氨 酸 缺 乏 时 ,将 导 致 5 羟 色 胺 耗 一
竭 ,动物采 食量 急剧下 降 ;色 氨酸水平 过高 时 , 大脑 中5 羟色胺合成增加 ,由于 5 羟色胺可增加 一 一

L-色氨酸研究进展

关键词 : L一色氨 酸 ;生产 方 式 ; 谢 工 程 ; 用 代 应 中 图分 类 号 Q3 96 文献标识码 A 文章编号 10 7 3 ( oo o 3 0 07- 7 1 2 l )7- 8- 3
P o r s fsu y o —t y t p a r g e s o t d n L — r p o h n
色氨酸学 名 p一吲哚基 丙氨酸 ( B—idll aie , n oy lnn ) 首 a 先于 12 8 5年被发 现 ,8 2年 由 N u es r 19 e m i e 定名 为 色 氨 酸 t ( rpo hn ,9 2年 由 H knt 酪蛋 白中分 离获得 。 Ty t a ) 10 p o is从
1 1 蛋 白质 水解及 化学合成 法 .
早期 色氨 酸生产 方法 主
要 为化 学合成 法及蛋 白质水解法 。蛋 白质 水解 法 以毛发 、
血粉 、 丝等为 原料 , 废蚕 通过酸 、 碱或酶 水解成 氨基 酸混合 物, 再分离纯 化得 到各种氨基 酸 。化学 合成法 就是 利用有 机合成 和化学 工程相结 合的技术 , 主要 以吲 哚及苯肼 为原 料 的合 成氨基酸 的方法 。化 学合成 法须经 多步骤 合成 , 且
白色 晶体 , 特殊甜 味 , 点 2 1 22C( 有 熔 8 ~ 8 ̄ 分解 ) 溶 于水 、 ,
Zu Zu he e 1 o z n t a .
( ol eo lesineF j nN r a U i r t,uhu3 00 ,hn ) C l g fi c c ,ui om l nv sy F zo 5 18 C ia e f e a ei
Ab t a t As a n c s ay a n cd,L —t p o h n i w d l p l d i d cn sr c : e e s r mio a i r t a s i ey a p i n me i ie,fo n e d t f y p e o d a d f e suf .W i h e eo — t t e d v lp h me to t d n L—t p o h n,t e meh d fi rd cin c a g s f m r ti y r lz t n a d c e c ls nh sst n fsu y o r tp a y h t o s o sp o u t h n e r p oe n h d o y ai n h mia y t e i o t o o o dr c eme tt n f m c o ra ims Wi h e e o me to e ei n i e r g i t r nai r e f o o mir og n s . t t e d v lp n f g n t e gn e n ,mea oi n i e r g i b c mi g h c i tb l e g n e n s e o n c i moe a d mo e i o t n h s a c f r d c in sri .T i a e e iwste n t r rd cin a d a pia in f r n r mp ra t n t e r e r h o o u t tan h sp p rrv e a n eo p o u t n p l t so i e p o h f o c o L—t p o h n r tp a . y k y r s L—ty tp a e wo d : rp o h n;P o u t n;Mea o i e gn e n ;Ap l ai n r d ci o tb l n i e r g c i pi t c o

色氨酸代谢研究进展

㊀㊀基金项目:国家自然科学基金资助项目(82074083);上海市宝山区科技创新专项基金资助项目(18-E -13)作者单位:201999㊀上海市宝山区中西医结合医院(苟小军㊁杨艳㊁杨晓露㊁曹姗);712046㊀西安,陕西中医药大学药学院(高珊珊)通讯作者:高珊珊,电子信箱:2392059931@;曹姗,电子信箱:caoshan -33@色氨酸代谢研究进展苟小军㊀杨㊀艳㊀杨晓露㊀曹㊀姗㊀高珊珊摘㊀要㊀色氨酸(tryptophan,Trp)是人体无法合成的必需氨基酸,对人体的新陈代谢至关重要,通过多种途径进行广泛的代谢,产生多种生物活性代谢产物,对生理过程产生重要影响㊂它在人体的多个器官例如脑㊁胃㊁肠道㊁肝脏㊁免疫细胞等具有重要的代谢作用,本文综述了历年来人们对Trp 的代谢生理作用的研究,阐述了Trp 在人体发挥的重要作用及近年来Trp 的研究进展㊂关键词㊀Trp㊀生理作用㊀代谢作用㊀研究进展中图分类号㊀R575.5㊀㊀㊀㊀文献标识码㊀A㊀㊀㊀㊀DOI ㊀10.11969/j.issn.1673-548X.2021.03.030㊀㊀Trp 也称为α-氨基-β-吲哚丙酸,自从1910年阐明其作用以来,受到了越来越多的关注㊂近几十年来,人们对Trp 进行了大量研究,国外不仅在Trp 的合成㊁营养㊁代谢及其生理生化特性方面进行了大量研究,而且在生产㊁医药㊁健康等方面也被广泛应用[1]㊂Trp 作为一种营养物质,是唯一通过非共价键与血清蛋白结合的氨基酸,这种结合与其分子结构有关[2]㊂Trp 是细胞激活和增殖所必需的氨基酸㊂Trp 沿犬尿氨酸(kynurenine,KYN)途径分解的代谢产物有3-羟基犬尿氨酸㊁邻氨基苯甲酸㊁3-HAA㊁哇琳酸(quinolinic acid,QA)㊁KYN 等㊂在这种特殊的微环境下,导致必需氨基酸的功能减弱,其分解可抑制T 细胞的增殖[3]㊂Trp 是一种必需的氨基酸,在蛋白质合成中起着重要作用,但其比例非常低(<1%)㊂此外,Trp 及其代谢产物在其他生物功能中也有重要作用,包括产生5-羟色胺(5-HT)㊁褪黑激素等生物活性分子㊂研究证明含有5-HT㊁褪黑激素㊁酪氨酸(tyrosine,KYNA)㊁烟酰胺腺嘌呤二核苷酸(nicotin-amide adenine dinucleotide,NAD)㊁烟酰胺腺嘌呤二核苷酸磷酸酯(nicotinamide adenine dinucleotide phos-phate,NADP)等的Trp 代谢物对正常代谢和器官功能至关重要[4]㊂一㊁Trp 的生理作用Trp 是一种芳香族氨基酸代谢物,在调节生长和摄食㊁情绪和行为以及免疫反应等方面具有广泛的生理功能,它是人体必需的氨基酸之一,人体不能合成,必须从日常饮食(植物和细菌)中获取[5]㊂Trp 代谢的KYNA 途径激活导致潜在的抑制性Trp 分解代谢产物的增加和Trp 合成5-HT 的可用性降低[6]㊂另有研究发现,与氨基酸生物合成相关的基因中至少有5%是Trp 基因,这也证明了Trp 在人体生理功能中的作用[7]㊂KYN 途径中的第1步和限速步骤是Trp吲哚环的氧化裂解,形成了正甲酰犬尿氨酸,后者会自发分解为KYN,由干扰素(interferon,IFN)-γ19诱导的吲哚胺2,3-双加氧酶-1(indoleamine -2,3-dioxygenase,IDO -1)催化该步骤,Trp 失调可能在谷氨酸(glutamate,Glu)系统中也具有极其重要的作用㊂Trp 途径中的关键代谢产物KYN 与精神分裂症有密切关系,Trp 可以通过两种途径进行代谢,即甲氧吲哚和犬尿氨酸酶(kynurenase,KYNs)途径[8]㊂Trp 沿甲氧吲哚途径进行代谢,形成了5-HT /血清素和5-甲氧基-N -乙酰色胺(褪黑素),KYN 途径是Trp 的主要降解代谢途径,是免疫应答的关键调节因子[9]㊂色氨酸羟化酶(tryptophan hydroxylase,TPH)亚型分为两种,即TPH1和TPH2,TPH1主要在胃肠道表达,TPH2仅在神经细胞表达,除大脑外,肠嗜铬细胞(en-terochromaffin cells,EC)和肥大细胞中也产生大量5-HT,并储存在血小板中[10]㊂Trp 衍生的尿毒症毒素具有促氧化㊁促炎性㊁促凝血作用以及促凋亡作用[11]㊂二㊁Trp 在人体器官中的代谢作用1.Trp 在肝中代谢:Trp 的生理功能有多个,其中一个重要的生理功能是用来合成蛋白质,除了合成蛋白质外,Trp 还是许多重要生理代谢产物的前体,饮㊃621㊃㊀㊃综述与进展㊃J Med Res,March 2021,Vol.50No.3㊀㊀食中有1%的Trp用于蛋白质合成,合成的蛋白质可以补偿降解的蛋白质㊂因此,大多数膳食Trp通过4条途径代谢,其中最重要的是肝氧化KP,大于Trp降解部分的95%以上,色氨酸2,3-双加氧酶(TDO)是该途径的第一个限速酶[12]㊂Trp氧化成N-甲酰犬尿氨酸(N-formylkynurenine,N-KYN)的主要途径存在于肝脏中,并由TDO催化㊂Trp分解代谢的肝途径依赖于磷酸吡哆醛(pyridoxal phosphate,PLP)的双功能酶犬尿氨酸酶(kynureninease,KYNU)和犬尿氨酸氨基转移酶(kynurenine aminotransferase,KAT),并受到维生素B6缺乏的影响[13],这两种酶都能通过复杂的代谢途径催化Trp转化为轧花碱㊁QA和轧花酸,通过TDO途径增加的Trp消耗增加了抑制T细胞反应并导致具有耐受性树突状细胞发育的KYNA的产生;缺乏Trp的饮食会增加血浆皮质酮水平,降低慢性应激大鼠中缝背侧和正中的血浆5-HT水平[14]㊂Trp通过转运体从肠腔转运到血液循环,Trp输送到肝脏,以及Trp参与肌肉和大脑的循环交换[15]㊂2.Trp在肠道参与的代谢作用:Trp作为某些微生物(如大肠杆菌和肺炎克雷伯菌)生长的氮源,是其重要的生理功能之一,因此,血清Trp水平的变化是肠道微生物群发酵的标志[5]㊂Trp及其内源性代谢产物是哺乳动物体内必需的营养物质,参与肠道免疫稳态和多种免疫疾病㊂血浆中Trp和Trp代谢物的浓度可以通过控制肠道微生物成分来调节[16]㊂在肠道和中枢神经系统中,细菌对Trp的代谢与5-HT 合成所必需的Trp之间保持平衡,肠道内的Trp和5-HT由宿主菌群直接和间接调节㊂肠道微生物群对Trp代谢和5-HT合成的间接调节主要通过KY-NA途径实现,如前所述,合成的Trp约占Trp代谢的90%,肠内细菌的Trp代谢产物I3P有助于抗生素和富含Trp饮食引起的体重增加的变化[17]㊂Trp不仅可以通过内源性合成的媒介物如KYNA和5-HT发挥生物学效应,还可以通过Trp衍生的肠道细菌产物,即吲哚类发挥生物学效应[18]㊂3.Trp在胃中代谢作用:Trp刺激血浆胆囊收缩素和幽门压力,减缓胃排空,胃排空调节餐后血糖㊂据报道,Trp可以减少能量的摄入,如胃内Trp对混合营养饮料的血糖反应㊁胃排空以及随后的能量摄入的影响[19]㊂5-HT作为Trp的前体,是一种单胺类激素和神经递质,是一种必需的胃肠调节剂,能调节肠道的生理,如蠕动和运动㊁分泌㊁营养吸收㊂5-HT在中枢神经系统和胃肠道中合成,由肠内分泌细胞分泌,其生物合成受TPH的两种亚型调节,其中TPH1主要定位于胃肠道内分泌细胞[20]㊂4.Trp在脑中代谢:研究表明,调节Trp代谢和血清素系统的KYN途径被认为在介导促炎性细胞因子对大脑的影响方面有重要作用㊂在炎性状态下,促炎性细胞因子上调了IDO的表达,从而激活了KYN的另一个代谢途径㊂在这种情况下,KYN很可能被代谢为喹啉酸(quinolinic acid,QA),QA是一种神经毒性代谢物[21]㊂L-Trp在扣带皮质的默认模式网络和双侧岛叶的显著性网络中具有更高的连接性㊂大脑区域调节食欲的活动受不同营养素的影响,L-Trp 可能是一种关键的氨基酸,增加了控制个体代谢状态区域的大脑连接性[22]㊂Trp缺乏和脑内Trp代谢不平衡在很大程度上与重度抑郁症有关,Trp是5-HT 和KYN的前体,转运体介导的血浆中必需氨基酸Trp 的摄取是脑内Trp代谢的决定因素㊂血浆Trp水平降低总是伴随着大脑Trp利用率和5-HT合成的不足,Trp-KYN和Trp-5-HT途径是抑郁症的主要Trp代谢途径,5%的Trp通过TPH2的5-HT途径代谢[23]㊂5.Trp在免疫细胞中的代谢作用:免疫系统的T 细胞通常识别并破坏异常细胞,包括癌组织和移植组织,这个过程需要氨基酸Trp㊂一个L-氨基酸转运蛋白(L-amino acid transporter,LAT1)交换Trp作为其KYNA降解产物,LAT1与IDO形成一个代谢小循环,将Trp饥饿与KYNA诱导的细胞死亡结合起来,提供相邻细胞双管齐下的失活,IDO1消耗Trp,同时产生Trp代谢产物(如KYNA),从而诱导免疫T淋巴细胞发生凋亡[24]㊂在免疫抑制酶IDO1介导下的Trp 耗竭和Trp代谢产物的积累,触发了免疫细胞的凋亡,炎症信号诱导的IDO1不仅通过Trp耗竭改变炎症过程,而且通过形成具有免疫调节作用的蛋白代谢产物,如KYNA和黄嘌呤酸通过限制免疫细胞产生IFNγ来减少炎症[25]㊂三、展㊀㊀望Trp作为人体必需氨基酸之一,人体本身不能合成,必须通过食物来获得㊂它在人体的情绪㊁免疫细胞反应㊁生理代谢以及氧化应激的炎性反应中具有重要作用㊂研究发现,IDO激活和刺激KYN途径发挥免疫功能可能是损害抗肿瘤免疫反应的调节机制[26]㊂Trp自身的代谢产物也会对人体的器官产生一定的影响,5-HT是调节肠道蠕动的重要介质㊂Trp在人体中具有不可替代的作用,对人体的器官以㊃721㊃㊀㊀医学研究杂志㊀2021年3月㊀第50卷㊀第3期㊃综述与进展㊃㊀及组织都具有重要的生理功能作用㊂综上所述,对于Trp的作用应进行深层次的研究以及验证,例如Trp 对抑郁症的治疗,Trp与肝硬化疾病的相关关系等都需要开展进一步的研究,为将来治疗肝硬化㊁抑郁症等疾病奠定基础㊂参考文献1㊀景寒松,徐淼,杨桂芹.色氨酸的来源㊁代谢途径及其在家禽生产上的应用[J].动物营养学报,2018,30(12):4813-4820 2㊀Stevens EA,Mezrich JD,Bradfield CA.The aryl hydrocarbon recep-tor:a perspective on potential roles in the immune system[J].Immu-nology,2009,127(3):299-3113㊀郑洪友,杨瑞利,苏光森.血清L-犬尿氨酸浓度作为R-CHOP方案治疗弥漫大B细胞淋巴瘤的预后因素[J].中国医药指南,2011,9(9):266-2684㊀KangX,Liu HN,Bai MM,et al.Redox properties of tryptophan metabolism and the concept of tryptophan use in pregnancy[J].Int J Mol Sci,2017,18(7):15955㊀Chen TL,Zheng XJ,Huang FJ,et al.Tryptophan predicts the risk for future type2diabetes[J].PLoS One,2016,11(9):e0162192 6㊀Neupane SP,Lien L,Martinez P,et al.The relationship of alcohol -use disorders and depressive symptoms to tryptophan metabolism: cross-sectional data from a Nepalese alcohol treatment sample[J]. Alcohol Clin Exp Res,2015,39(3):514-5217㊀Juliana K,Oded B,Jonathan CK,et al.The tryptophan pathway genes of the sargasso sea metagenome:new operon structures and the prevalence of non-operon organization[J].Genome Biol,2008,9 (1):R208㊀Yao JK,Reddy RD,Dougherty GG,et al.Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia[J].Mol Psychiatry,2010,15(9):938-953 9㊀Monic W,Elizabeth N,Sujatha K,et al.Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and fetal brain[J].Dev Neurosci,2017,39(5):399-41210㊀Katsuhiko F.Etiological classification of depression based on the en-zymes of tryptophan metabolism[J].BMC Psychiatry,2014,14: 37211㊀Laetitia D,Claire C,Stephane P,et al.The aryl hydrocarbon re-ceptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease[J].Toxins(Basel),2014,6(3):934-949 12㊀Badawy AAB.Tryptophan metabolism,disposition and utilization in pregnancy[J].Biosci Rep,2015,35(5):1-1613㊀Luisa RA,Maria AR,Susan SP,et al.Metabolite profile analysis reveals functional effects of28-day vitamin B-6restriction on one-carbon metabolism and tryptophan catabolic pathways in healthy men and women[J].J Nutr,2013,143(11):1719-172714㊀Luana GB,Beatriz SB,Matheus JC,et al.Exogenous tryptophan promotes cutaneous wound healing of chronically stressed mice throughinhibition of TNF-αand IDO activation[J].PLoS One,2015,10 (6):1-1915㊀Rios-Avila L,Nijhout HF,Reed MC,et al.A mathematical mod-el of tryptophan metabolism via the kynurenine pathway provides in-sights into the effects of vitamin B-6deficiency,tryptophan loading, and induction of tryptophan2,3-dioxygenase on tryptophan metabo-lites[J].J Nutr,2013,143(9):1509-151916㊀Gao J,Xu K,Liu G,et al.Impact of the gut microbiota on intesti-nal immunity mediated by tryptophan metabolism[J].Front Cell In-fect Microbiol,2018,8:1317㊀Trisha A Jenkins,Jason CD Nguyen,Kate E Polglaze,et al.Influ-ence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis[J].Nutrients,2016,8(1):5618㊀Piotr K,Marek K,Marta GK,et al.Indole-3-propionicAcid,a tryptophan-derived bacterial metabolite,reduces weight gain in rats [J].Nutrients,2019,11(3):59119㊀Ullrich SS,Fitzgerald CE,Giesbertz P,et al.Effects of intragastric administration of tryptophan on the blood glucose response to a nutrient drink and energy intake,in lean and obese men[J].Nutrients, 2018,10(4):46320㊀Wang X,Zhang C,Zheng MY,et al.Metabolomics analysis of L-arginine induced gastrointestinal motility disorder in rats using UPLC-MS after magnolol treatment[J].Front Pharmacol,2019, 10:18321㊀Liu FH,Chen ZW,Zheng JJ,et al.Role of the indoleamine-2, 3-dioxygenase/kynurenine pathway of tryptophan metabolism in be-havioral alterations in a hepatic encephalopathy rat model?[J].J Neuroinflammation,2018,15(1):322㊀Claudia S,Stefan B,Katharina J,et al.Differential effects of L-tryptophan and L-leucine administration on brain resting state func-tional networks and plasma hormone levels[J].Sci Rep,2016, 1020(6):3572723㊀Li H,Xia X,Zhang JB,et al.Therapeutic duration and extent af-fect the effect of moxibustion on depression-like behaviour in rats via regulating the brain tryptophan transport and metabolism[J].Evid Based Complement Alternat Med,2019,2019(7592124):1-10 24㊀Thijs K,Loren LL,Hitomi T,et al.Nanosensor detection of an im-munoregulatory tryptophan influx/kynurenine efflux cycle[J].PLoS Biol,2007,5(10):e25725㊀Deac OM,Mills JJ,Gardiner CM,et al.Serum immune system bi-omarkers neopterin and interleukin-10are strongly related to trypto-phan metabolism in healthy young adults[J].J Nutr,2016,146 (9):1801-180626㊀Lukas L,Patricia K,Eva ME,et al.Inflammation-induced trypto-phan breakdown is related with anemia,fatigue,and depression in cancer[J].Front Immunol,2020,11(249):1-21(收稿日期:2020-09-07)(修回日期:2020-09-29)㊃821㊃㊀㊃综述与进展㊃J Med Res,March2021,Vol.50No.3㊀㊀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

色氨酸营养研究进展四川农业大学动物营养所 崔 芹南京农业大学动物科学院 崔 山1 色氨酸的代谢动物体色氨酸代谢池内的色氨酸有两个来源:一个是组织蛋白质分解的内源氨基酸,约占2/3;另外一个是从日粮中消化吸收的外源性氨基酸,约占1/3。

色氨酸代谢途径也有两个:一个是合成组织蛋白质,另一个则是分解代谢。

色氨酸的吸收半周期为1 73h,清除半周期为0 73~0 74h,其生物利用率为76%。

1 1 5-羟色胺 色氨酸经氧化脱羧后可转变为5-羟色胺,主要存在于脑组织、胃肠壁中,血液中含量较少。

5-羟色胺的生理作用是使微血管收缩和血压升高,亦有作为神经递质、中和肾上腺素和去甲肾上腺素等作用。

当色氨酸代谢失调时,可引起神经系统的功能障碍。

血清尿素氮水平是衡量猪、鸡色氨酸需要量的一个敏感指标。

当日粮中色氨酸水平适宜时,血清尿素氮的水平最低。

色氨酸通过血脑屏障不只与血液中的色氨酸的浓度有关,还与其他支链氨基酸和芳香族氨基酸(亮氨酸、异亮氨酸、缬氨酸、苯丙氨酸和酪氨酸等中性氨基酸)的量有关。

这些氨基酸与色氨酸发生竞争性吸收,影响色氨酸进入脑中的量及其代谢产物5-羟色胺的量(Fernstrom,1985)。

尽管色氨酸进入脑中的量及其代谢产物的量变化范围很大,但是对动物的行为影响很小,皮质醇的变化也不大(Meunier等, 1991)。

隔日限饲能引起肉用畜禽持续的血浆皮质酮的增长,增加日粮中的色氨酸可控制它的分泌模式。

这可能是血清素激活系统和下丘脑-垂体-肾上腺的相互作用的结果(Mench,1991)。

Herry等(1992)研究指出,色氨酸与LNAA(大分子中性氨基酸)的比值不平衡时,下丘脑中的5-羟色胺的总浓度降低,这在母鸡身上体现最为明显。

但当色氨酸与LNAA的比值减小时,去势猪的生长性能最好。

这可能与血清素激活作用有关(Herry等,1995)。

Angel指出,5-羟色胺是促性腺激素释放和青春期开始的重要因子。

色氨酸急性或严重缺乏,对转甲状腺素和白蛋白的水平无影响,但转铁蛋白水平稍微下降(Bleiberg等, 1990)。

补加色氨酸可使脑中色氨酸、5-羟色胺和5-羟基吲哚乙酸的浓度增加,后者对睡眠潜伏期有积极作用,从而影响神经行为(Sar war等, 2001)。

色氨酸对肝核蛋白合成的促进作用是与L-色氨酸在体内分配后与特殊的核酸色氨酸受体的结合能力有关(Sidransky等,1996)。

Corta mita 等(1991)认为,日粮色氨酸缺乏降低了肌肉和肝蛋白的合成率,这与营养素吸收率下降而使饭后胰岛素的释放减少有关。

在亚硝酸盐作用下,色氨酸的吲哚环或苯环中引入一个羟基会增加其诱变功能,诱发多种疾病。

1 2 烟酸 色氨酸经氧化可转变为烟酸,它是合成NAD和NADP的前体,NAD和NADP是不需氧的脱氢酶的辅酶,参与体内氧化还原反应。

在人和动物体内,色氨酸可转化为烟酸,不同品种动物、不同生长阶段转化率有所不同。

雏鸡转化率为45 1,种母鸡转化率为187 1;反刍动物可把50 mg色氨酸转化成1mg烟酸。

在种蛋内烟酰胺含量为0 73mg/kg时,转化率可达18 1。

在一定范围内,种蛋内较高的烟酰胺含量对色氨酸-烟酰胺转化有一定的诱导作用。

日粮中烟酸水平会直接影响蛋中的烟酸量。

当色氨酸向烟酸的转化量减少时,糖原的分解速度减慢,腺苷酸环化酶的活性受到抑制,但磷酸二酯酶的活性却提高了(Shi bata,1995)。

当饲喂色氨酸与烟酸缺乏的日粮时,动物生长会受到抑制,补加其中任何一种都会改善动物的生长状况并可使尼克酸的缺乏症状消失。

2 色氨酸与其他营养素代谢的关系色氨酸在代谢过程中与碳水化合物、蛋白质、脂肪、维生素和微量元素等各种营养素之间有十分密切的关系。

2 1 碳水化合物 所有碳水化合物都能促进L -色氨酸从胃肠道进入门静脉。

在体外试验中发现,淀粉和二糖能促进肠道L-色氨酸转运,但在单胃动物中却没有此作用(Kushak等,1984)。

果糖的吸收情况与血液中色氨酸浓度的关系十分密切。

在果糖吸收不良的患者中,血液中色氨酸浓度非常低。

若肠道内果糖浓度较高,则会干扰L -色氨酸的代谢,同时会降低色氨酸在5-羟色胺生物合成时的可利用性(Lesocho wski等,2001)。

2 2 蛋白质及氨基酸 色氨酸的多少直接影响蛋白质的合成率。

当体内色氨酸浓度高时,合成蛋白质的速度加快,反之当色氨酸缺乏时,由于氨基酸不平衡会导致蛋白质合成速度下降。

当日粮蛋白质浓度与色氨酸浓度不同时,动物采食量也不同,并且伴随着神经递质浓度的变化(Rosebrough等,1996)。

日粮富含色氨酸时,血清色氨酸与LNAA比值升高,可提高应激敏感群体的抗应激能力(Markus等,2000)。

由含色氨酸的肽引起的脑部5-羟色胺浓度变化与单体色氨酸非常相似。

给鼠饲喂不同含色氨酸的肽时,脑部5-羟色胺和5-羟基吲哚乙酸显著增加;当色氨酸与亮氨酸或它的肽一起口服时,脑部的5-羟色胺浓度下降(Yokogoshi等,1998)。

Baker等(1996)研究发现,在赖氨酸充足但色氨酸缺乏的玉米-豆粕型日粮中,补充色氨酸时,体增重和饲料转化率随补充量的增加呈线性增长。

但当色氨酸与赖氨酸都充足时,再补充赖氨酸或色氨酸,体增重与摄食量随二者添加量的增加而呈线性下降。

李艳玲报道,苏氨酸与色氨酸之间存在交互作用,且对体增重和饲料转化率有显著影响。

2 3 脂肪 日粮添加色氨酸,可降低肝脂总量(Roger等,1991;1992),但如果添加到含有黄曲霉毒素的饲料中时,色氨酸会和黄曲霉毒素联合在一起对机体造成更为严重的损害(Roger等, 1991)。

色氨酸的添加会影响脂的代谢,同时影响血浆皮质醇浓度和肝微粒体中氧化酶体系的联合作用(Takahashi等,1991)。

当色氨酸添加量高于或低于营养需要时都会使肝重和肝内脂肪含量减少,并且L-色氨酸能够减轻产蛋鸡的脂肪肝和肝中微粒体的氧化酶的联合作用(Akiba等, 1992)。

随脂肪摄入量的增加,由色氨酸到尼克酰胺的转化率上升;若在脂肪摄入量增加的同时增加蛋白质的摄入量,则转化率会降低(Shibata等, 1992)。

2 4 维生素 在烟酸缺乏的日粮中含有维生素B6时,色氨酸向烟酸的转化速度较快(Shibata等, 1995)。

在日粮添加尼克酰胺的同时补加色氨酸,则饲料的摄入量、生长和饲料转化率都显著提高。

N-甲基尼克酰胺分泌随尼克酰胺的添加而增长(Markant等,1993)。

感染了HI V的人群血浆色氨酸浓度下降,以口服的方式服用尼克酰胺可使血浆色氨酸的浓度提高40%,改善由HIV引起的代谢异常(Murray等,2001)。

2 5 矿物质 NaCl和KCl可以促进鸡肠道内色氨酸的吸收,但不同的年龄与肠道不同的位点,吸收速度不同(Iji等,2001)。

Basova等(1999)发现, Zn2+能够作用于游离的色氨酸和肽形式的载体,保护它们不被降解,但当Zn2+浓度过高时则会部分抑制小肠游离色氨酸的吸收。

色氨酸作为吡啶羧酸的前体物促进动物对锌的吸收。

铁缺乏会降低色氨酸的利用率,而对烟酸无影响。

3 饲料中色氨酸的供给3 1 天然来源 色氨酸通常是谷物类饲料的第二或第三限制性氨基酸,尤其在以高粱和玉米为基础的饲料中显得更为明显。

Batterhan等(1997)测定了生长猪常用的饲料中色氨酸含量:相对饲料中蛋白质含量,色氨酸在各种饲料的含量(g/16 gN)以玉米较低为0 43,其他谷物饲料中等为0 71~0 98,高粱粗蛋白质水平较低,色氨酸处于临界缺乏状态。

在蛋白质原料中,肉骨粉的色氨酸含量较低,为0 29~0 47;血粉最高,为1 39,但利用率低。

其他动、植物性蛋白质饲料中色氨酸含量较高。

3 2 合成色氨酸 作为饲料添加剂的色氨酸有DL-色氨酸(主要是以 -氯己基己内酰脲和苯肼为原料的化学合成法)和L-色氨酸(用氨茴酸的间接发酵法和用吲哚和丙酮酸为原料的酶法)。

目前正在研究的是用糖蜜作原料的直接发酵法。

色氨酸的分解温度与溶解度因结构的不同而存在一定差异。

分解温度:L-色氨酸为290~292 ,DL-色氨酸为285~290 ;溶解度:L-色氨酸为1 1g/100m L 水(25 ),DL -色氨酸为0 25g/100mL 水(30 )。

L-色氨酸的利用率为100%,DL-色氨酸的生物学有效性对猪相当于L-色氨酸的80%~85%,对鸡相当于L-色氨酸的55%~56%(张艳云等,1996)。

Samarasinghe 等(1990)却指出,在鸡生长率、饲料摄入量和氮保留量方面,L-色氨酸与DL-色氨酸无区别。

3 3 D-色氨酸 有些饲料在加工过程中,少部分L-色氨酸经消旋作用以后变成D-色氨酸。

动物利用D-色氨酸的能力存在较大的种间差异。

对生长猪,D-色氨酸的生物学活性是L-色氨酸的60%~70%;雏鸡D-色氨酸生物学活性为L-色氨酸的15%左右;大鼠D-色氨酸作为烟酸前体物的利用率与L-色氨酸的利用率几乎相同,且D-色氨酸对L-色氨酸的利用无影响(Shibata 等,2000)。

Samarasinghe 等(1990)指出,当日粮中有足够的色氨酸时,烟酸需要量可通过L -色氨酸得到满足,L-色氨酸比D-色氨酸转化成烟酸的效率高得多。

4 色氨酸的作用4 1 抗应激 研究发现,注射色氨酸可减少白鼠断食期间相互攻击、残杀,减少的程度与色氨酸注射量呈正比。

这可能是由于血液和脑中色氨酸通过其代谢产物5-羟色氨酸起到了这种生理作用。

同样,猪因断奶、密饲而产生的咬尾现象也可通过补充色氨酸得到解决。

添加色氨酸可降低鸡的攻击性,减少啄羽、啄肛现象(Savory 等,1999;Shea 等,1990)。

4 2 提高抗病力 色氨酸可使动物 -球蛋白含量增加,从而增强抗病力。

5 色氨酸的需要量色氨酸同赖氨酸和蛋氨酸一样也是日粮中容易缺乏的氨基酸。

在低蛋白水平的玉米-豆粕型日粮中,赖氨酸为第一限制性氨基酸,其次为色氨酸,再次为苏氨酸(满足生长需要)。

色氨酸在体组织内可转化为烟酸,因此决定色氨酸需要时应考虑烟酸的需要。

动物对色氨酸的需要量不但受品种类型、性别、生长阶段、饲养密度、环境温度、光照及饲料氨基酸平衡情况的影响,同时与日粮烟酸水平显著相关。

1998年NRC 推荐,生长肥育猪日粮中应含色氨酸0 11%~0 17%;1981年ARC 推荐为0 12%~0 16%。

张克英等报道,25~35kg 生长猪达到最大生产性能的D-色氨酸需要量为0 17%,粗蛋白质水平为17 92%。

B urgoon 等(1992)报道,猪在开食期(6~16kg)、生长期(22~50kg)和育成期(55~97kg)3个阶段色氨酸需要量分别为0 15%、0 10%和0 06%,其平均消化率为97%。

相关文档
最新文档