八年级数学直角三角形性质和应用练习含答案
上海初中数学八年级上---19.8直角三角形的性质(含答案)

19.8(1)直角三角形的性质一、填空题1.若直角三角形的两个锐角之差为24度,则较大的锐角的度数是_________ . 2. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D , (1)若∠B =50°,则∠A =__________; (2)若∠B -∠A =50°,则∠A =__________; (3)与∠A 互余的角有________________;(4)与∠A 相等的角有________________. 第2题图3.已知直角三角形面积等于24平方厘米,斜边上的高为4厘米,则斜边上的中线长 为 厘米.4.等腰直角三角形中,若斜边和斜边上的高的和是6cm ,则斜边长是 cm . 5. 若直角三角形的斜边上的高与斜边上的中线长分别为2 cm 和3 cm ,则这个直角三角形的面积为__________cm 2.6. 在Rt △ABC 中,∠C =90°,周长为24 cm ,三边长的比为3∶4∶5,则斜边上的中线长为__________cm ,斜边上的高为__________cm.二、解答题7.如图,已知△ABC 中,∠ ABC=∠ ACB ,D 、E 为△ABC 外两点,AD ⊥BD ,AE ⊥CE ,F 、G 分别为AB 、AC 的中点.求证:DF =GE .8.如图,已知:在ABC ∆中,D BC AC AD C B 于交,,⊥=∠=∠2040. 求证:AB CD 2=.ABCD9. 如图,已知在Rt △ABC 中,∠C =90°,M 是AB 的中点,AM =AN ,MN ∥AC . 求证:MN =AC .10. 如图,已知HE 、AG 相交于点D ,点B 、C 、F 分别是线段DG 、HD 、AE 的中点,若AH =AD ,DE =EG .求证:CF =BF .三、提高题11.如图,已知:在ΔABC 中, ∠ABC=2∠C,AD ⊥BC 于D,E 是AC 中点,ED 的延长线与AB 的延长线交于点F .求证:BF=BD .CBAEDF19.8(2)直角三角形的性质一、填空题1. 在Rt△ABC中,∠C=90°,∠B=60°,若BC=4 cm,则AB=__________cm.2. 在△ABC中,若∠C∶∠B∶∠A=1∶2∶3,BC=16,则AB=__________.3.在Rt△ABC中,若∠ACB=90°,CD⊥AB于D,∠A=30°,若BD=4cm,则BC=__________cm,AD=__________cm.4. 等腰三角形的顶角为30°,腰长为4 cm,则这个等腰三角形的面积为__________cm 5.△ABC中,AB=AC,∠BAC=120°,AB=12cm,则BC边上的高AD= cm..6.等腰三角形一腰上的高等于腰长的一半,则此等腰三角形的顶角度数是__________.7.如图,在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿CM翻折,点A落在点D处,如果CD恰好与AB垂直,那么∠A=__________度.二、解答题8.已知:如图,△ABC中,AB=AC,点D在BC边上,∠DAC=90° , AD= 12 CD.求:∠BAC的度数.9.已知:如图,在△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12 AB.AB CDAB CD10. 如图,已知等边三角形中,E 是AC 上的一点,CE =14AC ,过E 作DE ⊥AC 交BC 于点D . 求证:D 是BC 的中点.11. 如图,已知△ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 为AB 边上的中线,若AC =AE .求证:BC =2CD .三、提高题12.已知:等腰三角形一腰上的高是另一腰长度的12,求这个等腰三角形的底角的度数。
沪教版数学(上海)八年级第一学期课时练:19.8直角三角形的性质(含答案)

19.8(1)直角三角形的性质一、填空题1.若直角三角形的两个锐角之差为24度,则较大的锐角的度数是_________ .2. 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,(1)若∠B=50°,则∠A=__________;(2)若∠B-∠A=50°,则∠A=__________;(3)与∠A互余的角有________________;(4)与∠A相等的角有________________.第2题图3.已知直角三角形面积等于24平方厘米,斜边上的高为4厘米,则斜边上的中线长为厘米.4.等腰直角三角形中,若斜边和斜边上的高的和是6cm,则斜边长是 cm.5. 若直角三角形的斜边上的高与斜边上的中线长分别为2 cm和3 cm,则这个直角三角形的面积为__________cm2.6. 在Rt△ABC中,∠C=90°,周长为24 cm,三边长的比为3∶4∶5,则斜边上的中线长为__________cm,斜边上的高为__________cm.二、解答题7.如图,已知△ABC中,∠ ABC=∠ ACB,D、E为△ABC外两点,AD⊥BD,AE⊥CE,F、G 分别为AB、AC的中点.求证:DF=GE.8.如图,已知:在ABC ∆中,D BC AC AD C B 于交,,⊥=∠=∠2040. 求证:AB CD 2=.9. 如图,已知在Rt △ABC 中,∠C =90°,M 是AB 的中点,AM =AN ,MN ∥AC . 求证:MN =AC .10. 如图,已知HE 、AG 相交于点D ,点B 、C 、F 分别是线段DG 、HD 、AE 的中点,若AH =AD ,DE =EG .求证:CF =BF .ABCD三、提高题11.如图,已知:在ΔABC 中, ∠ABC=2∠C,AD ⊥BC 于D,E 是AC 中点,ED 的延长线与AB 的延长线交于点F .求证:BF=BD .19.8(2)直角三角形的性质一、填空题1. 在Rt △ABC 中,∠C =90°,∠B =60°,若BC =4 cm ,则AB =__________cm.2. 在△ABC 中,若∠C ∶∠B ∶∠A =1∶2∶3,BC =16,则AB =__________.3.在Rt △ABC 中,若∠ACB =90°,CD ⊥AB 于D ,∠A =30°,若BD =4cm ,则BC =__________cm ,AD =__________cm.4. 等腰三角形的顶角为30°,腰长为4 cm ,则这个等腰三角形的面积为__________cm 5.△ABC 中,AB=AC,∠BAC=120°,AB=12cm,则BC 边上的高AD= cm..CBAEDF6.等腰三角形一腰上的高等于腰长的一半,则此等腰三角形的顶角度数是__________.7.如图,在Rt△ABC中,∠A<∠B,CM是斜边AB上的中线,将△ACM沿CM翻折,点A落在点D处,如果CD恰好与AB垂直,那么∠A=__________度.二、解答题8.已知:如图,△ABC中,AB=AC,点D在BC边上,∠DAC=90° , AD= 12 CD.AB CD1 2AB.9.已知:如图,在△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=AB CD10. 如图,已知等边三角形中,E 是AC 上的一点,CE =14AC ,过E 作DE ⊥AC 交BC 于点D . 求证:D 是BC 的中点.11. 如图,已知△ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 为AB 边上的中线,若AC =AE .求证:BC =2CD .三、提高题12.已知:等腰三角形一腰上的高是另一腰长度的12,求这个等腰三角形的底角的度数。
专题2.6含30°的直角三角形的性质【十大题型】-2024-2025学年八年级数学上(1)[含答案]
![专题2.6含30°的直角三角形的性质【十大题型】-2024-2025学年八年级数学上(1)[含答案]](https://img.taocdn.com/s3/m/d57e8dd8b8d528ea81c758f5f61fb7360b4c2bc0.png)
专题2.6含30°的直角三角形的性质【十大题型】【苏科版】专题2.6 含30°的直角三角形的性质【十大题型】【题型1 由含30°的直角三角形的性质求线段长度】【题型2 由含30°的直角三角形的性质求角度】【题型3 由含30°的直角三角形的性质求面积】【题型4 由含30°的直角三角形的性质求最值】【题型5 由含30°的直角三角形的性质求坐标】【题型6 由含30°的直角三角形的性质进行证明】【题型7 由含30°的直角三角形的性质解决折叠问题】【题型8 由含30°的直角三角形的性质解决旋转问题】【题型9 由含30°的直角三角形的性质解决动点问题】【题型10 含30°的直角三角形的性质的实际应用】知识点:含30°的直角三角形的性质在直角三角形中,30°角所对的边等于斜边的一半.【题型1 由含30°的直角三角形的性质求线段长度】【例1】(23-24八年级·山东济宁·期末)1.如图,在等边ABC V 中,点D E 、分别在边BC AC 、上,且AE CD =,BE 与AD 相交于点P ,BQ AD ^于点Q .(1)求证:BE AD =;(2)若4PQ =,求BP 的长.【变式1-1】(23-24八年级·黑龙江牡丹江·期中)2.在等边三角形ABC V ,若AB 边上的高CD 与边BC 所夹得角为30°,且3BD =,则ABC V 的周长为( )A .18B .9C .6D .4.5【变式1-2】(23-24八年级·山东泰安·期末)3.如图所示,ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为E .若3AE =,则ABC V 的边长为( )A .12B .10C .8D .6【变式1-3】(2024八年级·江苏·专题练习)4.如图,在ABC V 中,60ABC Ð=°,以AC 为边在ABC V 外作等边ACD V ,过点D 作DE BC ^.若 5.4AB =,3CE =,则BE = .【题型2 由含30°的直角三角形的性质求角度】【例2】(2024·吉林长春·八年级期末)5.如图所示,把两块完全相同的等腰直角三角板如图所示的方式摆放,线段AC 在直线MN 上.若点F 恰好是线段AB 中点,则AFD Ð的大小为 °.【变式2-1】(23-24八年级·湖北武汉·期中)6.如图,在ABC V 中,45ACB Ð=°,点M 为边BC 上的动点,当2AM CM +最小时,则CAM Ð的度数为( )A .60°B .45°C .30°D .15°【变式2-2】(2024八年级·江苏·专题练习)7.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.【变式2-3】(2024·安徽·八年级期末)8.已知在等腰ABC V 中,AD BC ^,垂足为点D ,12AD BC =,则C Ð的度数有( )A .5种B .4种C .3种D .2种【题型3 由含30°的直角三角形的性质求面积】【例3】(2024·山东聊城·八年级期末)9.如图,在ABC V 中,90ABC Ð=°,60BAC Ð=°,以点A 为圆心,以AB 的长为半径画弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12B D 的长为半径画弧,两弧交于点P ,作射线AP 交BD 于点M ,交BC 于点E ,连接DE ,则:CDE ABC S S △△的值是( )A .1:2B 3C .2:5D .1:3【变式3-1】(23-24八年级·重庆·期末)10.如图,在Rt ABC △中,90A Ð=°,点D 是AB 上一点,且6,15BD CD DBC ==Ð=°,则BCD △的面积为( )A .9B .12C .18D .6【变式3-2】(23-24八年级·辽宁辽阳·期末)11.如图,在ABC V 中,90,30C B Ð=°Ð=°,D 是BC 上一点,连接AD ,若AD 平分BAC Ð,设ADB V 和ADC △的面积分别是1S ,2S ,则12:S S =( )A .1:1B .2:1C .3:1D .3:2【变式3-3】(23-24八年级·湖南永州·期中)12.如图,在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,求阴影部分的面积.【题型4 由含30°的直角三角形的性质求最值】【例4】(23-24八年级·湖北荆门·期末)13.如图,CA ^直线l 于点A ,4CA =,点B 是直线l 上一动点,以CB 为边向上作等边MBC △,连接MA ,则MA 的最小值为( )A .1B .2C .3D .4【变式4-1】(23-24八年级·黑龙江齐齐哈尔·期末)14.如图,已知60AOB Ð=°,OC 平分AOB Ð,点P 在OC 上,PD OA ^于点D ,6OP =,点E 是射线OB 上的动点,则PE 的最小值为( )A .4B .2C .5D .3【变式4-2】(23-24八年级·江苏苏州·期中)15.如图,边长为6的等边三角形ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是 .【变式4-3】(23-24八年级·浙江金华·期末)16.如图,在等腰三角形ABC 中,4AB AC ==,30BAC Ð=°,AG 是底边BC 上的高,在AG 的延长线上有一个动点D ,连接CD ,作150CDE Ð=°,交AB 的延长线于点E ,CDE Ð的角平分线交AB 边于点F ,则在点D 运动的过程中,线段EF 的最小值( )A .6B .4C .3D .2【题型5 由含30°的直角三角形的性质求坐标】【例5】(23-24八年级·北京朝阳·期末)17.如图,在平面直角坐标系xOy 中,Rt OAB V 的斜边OB 在x 轴上,30ABO Ð=°,若点A 的横坐标为1,则点B 的坐标为 .【变式5-1】(23-24八年级·湖南长沙·期中)18.如图,等边ABC V 的三个顶点都在坐标轴上,()30A -,,过点B 作BD AB ^,交x 轴于点D ,则点D 的坐标为 .【变式5-2】(2024·山东泰安·八年级期末)19.如图,在平面直角坐标系中,点O 的坐标为()00,,点M 的坐标为()30,,N 为y 轴上一动点,连接MN .将线段MN 绕点M 逆时针旋转60°得到线段MK ,连接NK OK ,.求线段OK 长度的最小值( )A .32B C .2D .【变式5-3】(23-24八年级·广东东莞·期末)20.如图,在平面直角坐标系xOy 中,已知点A 的坐标是(0,1),以OA 为边在右侧作等边三角形1OAA ,过点1A 作x 轴的垂线,垂足为点1O ,以11O A 为边在右侧作等边三角形112O A A ,再过点2A 作x 轴的垂线,垂足为点2O ,以22O A 为边在右侧作等边三角形223O A A L ,按此规律继续作下去,得到等边三角形202120212022O A A ,则点2021A 的纵坐标为 .【题型6 由含30°的直角三角形的性质进行证明】【例6】(23-24八年级·山东烟台·期末)21.在Rt ABC △中,90ACB Ð=°,30BAC Ð=°,AD 平分BAC Ð,交BC 于点D .(1)用尺规作出线段AD 的垂直平分线交AD 于点M ,交AB 于点N .(保留作图痕迹,不写作法);(2)在(1)的条件下,求证:12CD AN =.【变式6-1】(23-24八年级·重庆江津·期中)22.如图,在等腰ABC V 中,AC BC =,4ACB B =∠∠,点D 是AC 边的中点,DE AC ^,交AB 于点E ,连接CE .(1)求BCE Ð的度数;(2)求证:3AB CE =.【变式6-2】(2024八年级·江苏·专题练习)23.如图,在ABC V ,90ACB Ð=°,30A Ð=°,AB 的垂直平分线分别交AB 和AC 于点D E ,.(1)若6cm AC =,求CE 的长度;(2)连接CD ,请判断BCD △的形状,并说明理由.【变式6-3】(23-24八年级·安徽阜阳·开学考试)24.如图,已知在等边三角形ABC 中,D ,E 分别是边BC ,AC 上的点,且AE DC =,连接AD ,BE 相交于点P ,过点B 作BQ AD ^,Q 为垂足,求证:2BP PQ =.【题型7 由含30°的直角三角形的性质解决折叠问题】【例7】(23-24八年级·山东济宁·期末)25.如图,三角形纸片ABC 中,90BAC Ð=°,4AB =,30C Ð=°.沿过点A 的直线将纸片折叠(折痕为AF ),使点B 落在边BC 上的点D 处;再折叠纸片,使点C 与点D 重合,折痕交AC 于点E (折痕为EG ),则FG 的长是( )A .3B .4C .6D .8【变式7-1】(23-24八年级·湖北武汉·期中)26.如图所示,在ABC V 中,9030C A Ð=°Ð=°,,将BCE V 沿BE 折叠,使点C 落在AB边D 点,若6cm EC =,则AC =( )cm .A .12B .16C .18D .14【变式7-2】(2024·山东滨州·八年级期末)27.如图,点O 是矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合.若3BE =,则折痕AE 的长为 .【变式7-3】(23-24八年级·广西南宁·阶段练习)28.如图,在ABCD Y 中,将ADC △沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若602B AB Ð=°=,,则BC 为 .【题型8 由含30°的直角三角形的性质解决旋转问题】【例8】(23-24八年级·陕西西安·阶段练习)29.如图,在ABC V 中,90C Ð=°,30ABC Ð=°,5cm AC =,将ABC V 绕点A 逆时针旋转至AB C ¢¢△的位置,点B 的对应点为点B ¢,点C 的对应点C ¢恰好落在边AB 上.设旋转角为a .(1)a 的度数为 °;(2)求ABB ¢V 的周长.【变式8-1】(2024·新疆乌鲁木齐·三模)30.如图,将ABC V 绕点A 旋转得到ADE V ,若90B Ð=°,30C Ð=°,2AB =,则AE 的长为 .【变式8-2】(2024八年级·浙江·专题练习)31.如图,AB C ¢¢△是ABC V 绕点A 旋转180°后得到的,已知90B Ð=°,1AB =,30C Ð=°,则CC ¢的长为 .【变式8-3】(2024·河北秦皇岛·八年级期末)32.如图,在等边ABC V 中,10AB =,P 为BC 上一点(不与点B ,C 重合),过点P 作PM BC^于点P ,交线段AB 于点M ,将PM 绕点P 顺时针旋转60°,交线段AC 于点N ,连接MN ,有三位同学提出以下结论:嘉嘉:PNC △为直角三角形.淇淇:当2AM =时,7AN =.珍珍:在点P 移动的过程中,MN 不存在平行于BC 的情况.下列说法正确的是( )A .只有嘉嘉正确B .嘉嘉和淇淇正确C .淇淇和珍珍正确D .三人都正确【题型9 由含30°的直角三角形的性质解决动点问题】【例9】(23-24八年级·湖南岳阳·期中)33.如图:ABC V 是边长为3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动,它们的速度都是1cm/s ,当点P 到达B 时,P 、Q 两点停止运动,当点P 到达B 时,P 、Q 两点停止运动.设点P 运动的时间为(s)t .当t 为 时,PBQV 是直角三角形.【变式9-1】(23-24八年级·山西晋中·期中)34.如图,在ABC V 中,90,30,8cm B A AC Ð=°Ð=°=,动点P 、Q 同时从A 、C 两点出发,分别在AC 、BC 边上匀速移动,它们的速度分别为2cm /s,1cm /s P Q v v ==,当点P 到达点C 时,P 、Q 两点同时停止运动,设点P 的运动时间为s t .(1)当t 为何值时,PCQ △为等边三角形?(2)当t 为何值时,PCQ △为直角三角形?【变式9-2】(2024八年级·全国·专题练习)35.已知:如图,ABC V 是边长3cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB BC 、方向匀速移动,它们的速度都是1cm/s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为s t .(1)当动点P 、Q 同时运动2s 时,则BP = cm ,BQ = cm .(2)当动点P 、Q 同时运动s t 时,分别用含有t 的式子表示;BP = cm ,BQ = cm .(3)当t 为何值时,PBQ V 是直角三角形?【变式9-3】(23-24八年级·辽宁朝阳·期末)36.如图,在ABC V 中,60A Ð=°,4cm AB =,12cm AC =.动点P 从点A 开始沿AB 边以1cm/s 的速度运动,动点Q 从点C 开始沿CA 边以3cm/s 的速度运动.点P 和点Q 同时出发,当点P 到达点B 时,点Q 也随之停止运动.设动点的运动时间为()s 04t t <<,解答下列问题:(1)用含t 的代数式表述AQ 的长是______.(2)在运动过程中,是否存在某一时刻t ,使APQ △是直角三角形?若存在,求出t 的值;若不存在,请说明理由.【题型10 含30°的直角三角形的性质的实际应用】【例10】(23-24八年级·安徽合肥·期末)37.如图①,设计一张折叠型方桌,其示意图如图②,若50cm AO BO ==,30cm CO DO ==.现将桌子放平,两条桌腿需要叉开的角度AOB Ð应为120°,则AB 距离地面CD 的高为 cm .【变式10-1】(23-24八年级·广西玉林·期中)38.某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ^.测得A 处与E 处的距离为70m ,C 处与E 处的距离为35m ,90C Ð=°,30BAE Ð=°.(1)请求出旋转木马E 处到出口B 处的距离;(2)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.【变式10-2】(23-24八年级·河北廊坊·期末)39.如图,嘉琪想测量一座古塔CD 的高度,在A 处测得15CAD Ð=°,再往前行进60m 到达B 处,测得30CBD Ð=°,点 A ,B ,D 在同一条直线上,根据测得的数据,这座古塔CD 的高度为( )A .40mB .30mC .D .50m【变式10-3】(23-24八年级·山东济宁·期中)40.图①所示的是某超市入口的双翼闸门,如图②,当它的双翼展开时,双翼边缘的端点A 与B 之间的距离为7cm ,双翼的边缘80cm AC BD ==,且与闸机侧立面夹角30ACP BDQ Ð=Ð=°,求当双翼收起时,可以通过闸机的物体的最大宽度.1.(1)见解析(2)8【分析】本题考查了全等三角形的判定和性质、含30°角的直角三角形的性质、等边三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)证明ABE CAD V V ≌即可得证;(2)求出30PBQ Ð=°,再根据含30°角的直角三角形的性质即可得出答案.【详解】(1)证明:∵ABC V 为等边三角形,∴60AB AC BAC C =Ð=Ð=°,,在ABE V 和CAD V 中AB AC BAE ACD AE CD =ìïÐ=Ðíï=î,∴()SAS V V ≌ABE CAD ,∴BE AD =.(2)解:∵ABE CAD V V ≌,∴ABE CAD Ð=Ð,∴60BPQ ABP BAP CAD BAP BAC Ð=Ð+Ð=Ð+Ð=Ð=°,又∵BQ AD ^,∴90BQP Ð=°,∴18030PBQ BPQ BQP Ð=°-Ð-Ð=°,∴2BP PQ =,又∵4PQ =,∴8BP =.2.A【分析】由30度角的性质可求出26BC AB ==,然后利用等边三角形的性质求解即可.【详解】解:如图,∵CD AB ^,∴90CDB Ð=°.∵30BCD Ð=°,3BD =,∴26BC AB ==.∵ABC V 是等边三角形,∴ABC V 的周长为6318´=.故选A .【点睛】本题考查了等边三角形的性质,含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解答本题的关键.3.A【分析】本题主要考查了等边三角形的性质:等边三角形的三个内角都相等,且都等于60°;在直角三角形中30°角所对应的边是斜边的一半是解题的关键.根据题意可知60A Ð=°,在直角三角形ADE 中求得AD 的长,即可求得AC 的长.【详解】解:∵ABC V 是等边三角形,D 为AC 的中点,DE AB ^,垂足为点E .若3AE =,∴在直角三角形ADE 中,60A Ð=°,90AED Ð=°,30ADE Ð=°,∴26AD AE ==,又∵D 为AC 的中点,∴212AC AD ==,∴等边三角形ABC 的边长为12,故选:A .4.7.8【分析】此题主要考查了等边三角形的性质,熟练掌握等边三角形的性质,正确地作出辅助线,构造全等三角形和含有30°角的直角三角形是解决问题的关键.过点C 作CP AB ^于P ,根据60ABC Ð=°得120BAC BCA Ð+Ð=°,再根据等边三角形性质得AC CD =,60ACD Ð=°,则120DCE BCA Ð+Ð=°,由此得BAC DCE Ð=Ð,据此可依据“AAS ”判定APC △和CED △全等,从而得3AP CE ==,则 2.4BP AB AP =-=,进而在根据直角三角形性质得2 4.8BC BP ==,据此可得BE 的长.【详解】解:过点C 作CP AB ^于P ,如图所示:60ABC Ð=°Q ,180120BAC BCA ABC \Ð+Ð=°-Ð=°,ACD QV 为等边三角形,AC CD \=,60ACD Ð=°,180120DCE BCA ACD Ð+Ð=°-Ð=°Q ,BAC DCE \Ð=Ð,CP AB ^Q ,DE BC ^,90APC CED \Ð=Ð=°,在APC △和CED △中,90APC CED BAC DCEAC CD Ð=Ð=°ìïÐ=Ðíï=î,(AAS)APC CED \V V ≌,3AP CE \==,5.43 2.4BP AB AP \=-=-=,在Rt BCP △中,60ABC Ð=°,30BCP \Ð=°,22 2.4 4.8BC BP \==´=,4.837.8BE BC CE \=+=+=.故答案为:7.85.15【分析】本题考查了三角形中位线,含30°的直角三角形,平行线的性质,熟练掌握以上知识是解题的关键.过点F 作CD 的垂线,垂足为H ,先证明FH 为ABC V 的中位线,和45B HFA Ð=Ð=°,再根据直角三角形中30°所对的直角边为斜边的一半即可得出30FDH Ð=°,继而求出HFD Ð,以及AFD Ð的度数.【详解】过点F 作CD 的垂线,垂足为H ,如图:∵点F 恰好是线段AB 中点,FH AC ^,90BCA Ð=°,∴BC FH ∥,2BC FH =,∴45B HFA Ð=Ð=°,∵两块等腰直角三角板完全相同,∴BC FD =,∴2BC FD FH ==,∵90FHD Ð=°,∴30FDH Ð=°,∴60HFD Ð=°,∵45B HFA Ð=Ð=°,∴604515AFD HFD HFA Ð=Ð-Ð=°-°=°,故答案为:15.6.D【分析】本题主要考查了直角三角形的性质,垂线段最短,三角形内角和定理的应用,解题的关键是作出辅助线,熟练掌握相关的性质.在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,根据含30度角的直角三角形的性质得出12ME CM =,根据()12222AM CM AM CM AM ME æö+=+=+ç÷èø,两点之间线段最短,且垂线段最短,得出当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,求出此时CAM Ð的度数即可.【详解】解:在BC 下方作30BCN Ð=°,过点A 作AF CN ^于点F ,过点M 作ME CN ^于点E ,如图所示:则12ME CM =,∴()12222AM CM AM CM AM ME æö+=+=+ç÷èø,∵两点之间线段最短,且垂线段最短,∴当A 、M 、E 三点共线,且AE CN ^时,AM ME +最小,即2AM CM +最小,∴当点E 在点F 时,2AM CM +最小,∵90AFC Ð=°,453075ACE ACB BCE Ð=Ð+Ð=°+°=°,∴=9075=15CAF а-°°,即此时15CAM Ð=°.故选:D .7.72【分析】过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,证明()Rt Rt HL DNC DMC V V ≌,得12DCM ACD Ð=Ð=°,求出ACB Ð的度数,则根据等腰三角形的内角和,可求出A Ð的度数.【详解】解:如图,过C 作CM BD ^,交BD 的延长线于M ,过D 作DN AC ^于N ,∵点D 在AC 的垂直平分线上,∴DN 垂直平分AC ,∴12NC AC =,∵AC BC =,∴12NC BC =,在Rt BMC △中,30DBC Ð=°,∴12CM BC =,∴CM CN =,在Rt DNC △和Rt DMC V 中,∵CD CD CN CM =ìí=î,∴()Rt Rt HL DNC DMC V V ≌,∴12DCM ACD Ð=Ð=°,∵30DBC Ð=°,∴60MCB Ð=°,∴6012236ACB Ð=°-°´=°,又∵AC BC =,∴()118036722A Ð=´°-°=°,故答案为:72.【点睛】本题考查了等腰三角形的性质,含30°角直角三角形的性质,全等三角形的判定与性质,解题时要熟知等腰三角形的两个底角相等,需要作辅助线,构建全等三角形,利用全等三角形的对应角相等.8.A【分析】根据题意分两种情况:AD 落在ABC V 内部和AD 落在ABC V 外部,然后分别根据等腰三角形的概念和三角形内角和定理求解即可.【详解】(1)当AD 落在ABC V 内部时,①如图,当AB AC =时,∵AD BC ^,12AD BC =,∴AD BD DC ==,即45C Ð=°.②如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30B Ð=°,∴()()11180180307522C B Ð=´°-Ð=´°-°=°③如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30C Ð=°.(2)当AD 落在ABC V 外部时,④当AB AC =时,此时不存在.⑤如图,当AB CB =时,∵AD BC ^,12AD BC =,∴12AD AB =.∴30ABD Ð=°,则11301522C ABD Ð=Ð=´°=°.⑥如图,当AC BC =时,∵AD BC ^,12AD BC =,∴12AD AC =.∴30ACD Ð=°,则18030150ACB Ð=°-°=°,即150C Ð=°.综上,C Ð的度数可能为15°,30°,45°,75°,150°,共5种可能,故选:A .【点睛】此题考查了等腰三角形的性质,含30°角直角三角形的性质,三角形内角和定理等知识,解题的关键是根据题意分情况讨论.9.D【分析】先根据30°角的直角三角形的性质得到12AB AC =,证明()SAS ABE ADE △≌△,再根据全等三角形的判定和性质定理即可得到结论.【详解】解:∵90ABC Ð=°,60BAC Ð=°,∴90906030C BAC Ð=°-Ð=°-°=°,∴12AB AC =,由题意得:AB AD =,AP 平分BAC Ð,∴BAE DAE Ð=Ð,在ABE V 与ADE V 中,AB AD BAE DAE AE AE =ìïÐ=Ðíï=î,∴()SAS ABE ADE △≌△,∴ABE ADE S S =△△,∵12AD AB AC ==,∴AD CD =,∴ADE CDE S S =V V ,∴3ABC CDE S S =△△,∴:1:3CDE ABC S S =△△.故选:D .【点睛】本题考查作图—基本作图,直角三角形两锐角互余,30°角的直角三角形,全等三角形的判定和性质,角平分线的定义,等底同高的三角形面积相等.掌握基本作图及全等三角形的判定和性质是解题的关键.10.A【分析】本题考查等边对等角,三角形的外角,含30度角的直角三角形,根据等边对等角结合三角形的外角,求出30ADC Ð=°,进而求出AC 的长,利用三角形的面积公式求出BCD △的面积即可.【详解】解:∵6,15BD CD DBC ==Ð=°,∴15DCB B Ð=Ð=°,∴30ADC B BCD Ð=Ð+Ð=°,∵90A Ð=°,∴132AC CD ==,∴BCD △的面积为1163922BD AC ×=´´=;故选A .11.B【分析】本题考查了直角三角形的性质,等角对等边,三角形的面积等知识,先求出30BAD CAD Ð=Ð=°,得出AD BD =, 从而1122CD AD BD ==,然后根据三角形面积公式可得结论.【详解】解:∵90,30C B Ð=°Ð=°,∴903060BAC Ð=°-°=°.∵AD 平分BAC Ð,∴1302BAD CAD BAC Ð=Ð=Ð=°,∴B BAD Ð=Ð,∴AD BD =, ∴1122CD AD BD ==,∴1211::2:122S S BD AC CD AC =××=.故选B .12.9【分析】根据旋转的性质得到11ABC A BC V V ≌,16A B AB ==,所以1A BA V 是等腰三角形,依据130A BA Ð=°得到等腰三角形的面积,由图形可以知道1111A BA A BC ABC A BA S S S S S =+-=V V V V 阴影,最终得到阴影部分的面积.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.运用面积的和差关系解决不规则图形的面积是解决此题的关键.【详解】解:在ABC V 中,6AB =,将ABC V 绕点B 按逆时针方向旋转30°后得到111A B C △,∴11ABC A BC V V ≌16A B AB \==,\1A BA V 是等腰三角形,130A BA Ð=°,如图,过1A 作1A D AB ^于D ,则11132A D AB ==,116392A BA S \=´´=△,又1111A BA A BC ABC A BA S S S S S =+-=V V V V Q 阴影,11A BC CBA S S =V V ,19A BA S S \==V 阴影.13.B【分析】本题考查了等边三角形的性质,旋转的性质,全等三角形的判定与性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,证明(SAS)BCA MCE V V ≌,由全等三角形的性质得出BA ME =,90BAC MEC Ð=Ð=°,由直角三角形的性质可得出答案.【详解】解:如图,以AC 为边作等边三角形ACE ,连接ME ,过点A 作AF ME ^于点F ,MBC QV 和ACE △为等边三角形,BC CM \=,AC CE =,60BCM ACE Ð=Ð=°,BCA MCE \Ð=Ð,在BCA V 和MCE △中,BC MC BAC MCE AC CE =ìïÐ=Ðíï=î,(SAS)BCA MCE \V V ≌,BA ME \=,90BAC MEC Ð=Ð=°,906030AEF \Ð=°-=°,B Q 是直线l 的动点,M \在直线ME 上运动,MA \的最小值为AF ,4AE AC ==Q ,122AF AE \==.故选:B14.D【分析】题考查了垂线段最短以及角平分线的性质,解题的关键是掌握角平分线的性质及垂线段最短的实际应用.过P 作PH OB ^,根据垂线段最短即可求出PE 最小值.【详解】解∶∵60AOB Ð=°,OC 平分AOB Ð,∴30AOC Ð=°,∵PD OA ^,6OP =,∴132PD OP ==,过P 作PH OB ^于点H ,∵PD OA ^,OC 平分AOB Ð,∴3PD PH ==,∵点E 是射线OB 上的动点,∴PE 的最小值为3,故选:C .15.32【分析】取BC 的中点,连接MG ,根据等边三角形的性质和旋转可以证明MBG NBH V V ≌,可得MG NH =,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,进而根据30度角所对直角边等于斜边的一半即可求得线段HN 长度的最小值.本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质、垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.【详解】解:如图,取BC 的中点,连接MG ,Q 线段BM 绕点B 逆时针旋转60°得到BN ,60MBH HBN \Ð+Ð=°,又ABC QV 是等边三角形,60ABC \Ð=°,即60MBH MBC Ð+Ð=°,HBN GBM \Ð=Ð,CH Q 是等边三角形的高,12BH AB \=,BH BG \=,又BM Q 旋转到BN ,BM BN \=,(SAS)MBG NBH \△≌△,MG NH \=,根据垂线段最短,当MG CH ^时,MG 最短,即HN 最短,此时160302BCH Ð=´°=°,116322CG BC ==´=,1322MG CG \==,32HN \=.\线段HN 长度的最小值是32.故答案为:3216.D 【分析】此题考查了全等三角形的判定即性质,等腰三角形的三线合一的性质,角平分线的性质,含30度角的直角三角形的性质.作DM AB ^于M ,作DN AC ^于N ,证明()ASA MDE NDC V V ≌,推出DE DC =,再证明()SAS EDF CDF V V ≌,推出EF CF =,得到当CF AB ^时CF 有最小值,即EF 有最小值,由30BAC Ð=°,4AC =,求出CF .【详解】解:作DM AB ^于M ,作DN AC ^于N ,AB AC =Q , AG BC ^,AG \平分BAC Ð,即AD 平分BAC Ð,DM AB ^Q ,DN AC ^,DM DN \=,30BAC Ð=°Q ,90AMD AND Ð=Ð=°,150MDN Ð\=° ,150CDE Ð=°Q ,150MDE CDM ÐÐ\=°- NDC Ð=,(ASA MDE NDC \V V ≌),DE DC \=,DF Q 平分CDE Ð,EDF CDF \Ð=Ð,连接CF ,DF DF =Q ,()SAS EDF CDF \V V ≌,EF CF \=,\当CF AB ^时CF 有最小值,即EF 有最小值,此时,30BAC Ð=°Q ,4AC =,\122CF AC ==,故选:D .17.()4,0【分析】本题主要考查了含30度角直角三角形的特征,解题的关键是掌握含30度角的直角三角形,30度角所对的边是斜边的一半.过点A 作x 轴的垂线,垂足为点C ,先得出30OAC Ð=°,则22OA OC ==,进而得出24OB OA ==,即可解答.【详解】解:过点A 作x 轴的垂线,垂足为点C ,∵Rt OAB V 中30ABO Ð=°,∴60AOB Ð=°,∵AC OB ^,∴30OAC Ð=°,∵点A 的横坐标为1,∴1OC =,∴22OA OC ==,∵30ABO Ð=°,∴24OB OA ==,∴点B 的坐标为()4,0,故答案为:()4,0.18.()90,【分析】本题考查了坐标与图形,等边三角形的性质,含30度角的直角三角形的性质.利用等边三角形的性质求得AB 的长,再利用含30度角的直角三角形的性质求得AD 的长,继而求得OD 的长,即可求解.【详解】解:∵ABC V 是等边三角形,且BO AC ^,∴60AO OC BAC =Ð=°,,∵()30A -,,∴3AO =,∴26AB AC AO ===,∵BD AB ^,∴90ABD Ð=°,∴30ADB Ð=°,∴212AD AB ==,∴9OD AD OA =-=,∴点D 的坐标为()90,.故答案为:()90,.19.A【分析】如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,证明OMQ V 是等边三角形,得到60QOM OQ OM =°=∠,,推出30NOQ Ð=°;由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,由此即可得到答案.【详解】解:如图所示,将MOK V 绕点M 顺时针旋转60度得到MQN △,连接OQ ,由旋转的性质可得60OK NQ OM QM OMQ ===°,,∠,∴OMQ V 是等边三角形,∴60QOM OQ OM =°=∠,,∴30NOQ Ð=°,∵点M 的坐标为()30,,∴3OQ OM ==,由垂线段最短可知,当NQ y ^轴,NQ 最小,即OK 最小,此时点N 与点N ¢重合,∴1322OK NQ OQ ===最小值最小值,故选A .【点睛】本题主要考查了旋转的性质,等边三角形的性质与判定,坐标与图形,含30度角的直角三角形的性质,正确作出辅助线是解题的关键.20.202112【分析】此题主要考查了点的坐标,等边三角形的性质,直角三角形的性质,熟练掌握等边三角形的性质,理解在直角三角形中, 30°的角所对的边等于斜边的一半是解决问题的关键.首先根据点A 的坐标及等边三角形的性质得111,60,OA OA AOA ==Ð=°进而得1130,A OO Ð=°再根据直角三角形的性质得 11111,22A O OA ==点1A 的纵坐标为 12,依次类推得到点n A 的纵坐标为 12næöç÷èø即可解题.【详解】∵点A 的坐标是()0,1,1OAA V 是等边三角形,111,60OA OA AOA \==Ð=°,1111906030A OO AOO AOA \Ð=Ð-Ð=°-°=°,11A O x ^Q 轴,∴在11Rt A OO V 中, 1130,A OO Ð=°则 1111122A O OA ==,∴点1A 的纵坐标为 12,同理:2221111,22A O A O æö==ç÷èø 3332211,22A O A O æö==ç÷èø 4443311,22A O A O æö==ç÷èø...,以此类推, 12n n n A O æö=ç÷èø,∴点2A 的纵坐标为 21,2æöç÷èø点 A ₃的纵坐标为31,2æöç÷èø点 A ₄的纵坐标为 41,2æöç÷èø……,以此类推,点n A 的纵坐标为 12n æöç÷èø,∴点 2021A 的纵坐标为 202120211122æö=ç÷èø.故答案为: 202112.21.(1)见解析(2)见解析【分析】(1)根据尺规作一条线段垂直平分线的方法,进行作图即可;(2)过D 点作DE AB ^于E 点,连接DN ,由角平分线的性质和定义得到1152BAD BAC ==°∠,DC DE =,再由线段垂直平分线的性质得到NA ND =,进而得到30DNE NDA NAD Ð=Ð+Ð=°,则12DE DN =,由此即可证明结论.【详解】(1)解:如图,MN 为所求作的线段AD 的垂直平分线;(2)证明:过D 点作DE AB ^于E 点,连接DN ,∵30BAC Ð=°,AD 平分BAC Ð,DC AC ^,DE AB ^,∴1152BAD BAC ==°∠,DC DE =,∵MN 是AD 的垂直平分线,∴DN AN =,∴15NDA NAD Ð=Ð=°,∴30DNE NDA NAD Ð=Ð+Ð=°,在Rt DNE △中,12DE DN =,∵DN AN =,DC DE =,∴12CD AN =.【点睛】本题主要考查了,尺规作一条线段的垂直平分线,角平分线的性质,含30度角的直角三角形的性质,线段垂直平分线的性质,等边对等角,三角形外角的性质,解题的关键是作出辅助线,熟练掌握相关的性质.22.(1)90BCE °Ð=;(2)证明见解析.【分析】(1)证明ECD EAD V V ≌,可得A ECD Ð=Ð,设B x Ð=,可得2BEC x Ð=,得出23180x x x ++=°,解得30x =°,则BCE Ð可求出;(2)由直角三角形的性质可得2BE CE =,AE CE =,则结论可得出.【详解】(1)解: Q 点D 是AC 边的中点,DE AC ^,90EDC EDA \Ð=Ð=°,DC DA =,ED ED =Q ,()SAS ECD EAD \V V ≌,A ECD \Ð=Ð,设B x Ð=,∵AC BC =,B A x \Ð=Ð=,2BEC A ECA x \Ð=Ð+Ð=,4ACB B Ð=ÐQ ,3BCE x \Ð=,180B BEC BCE Ð+Ð+Ð=°Q ,23180x x x \++=°,解得30x =°,90BCE \Ð=°;(2)解:30B Ð=°Q ,90BCE Ð=°,2BE CE \=,CE AE =Q ,3AB BE AE CE \=+=.【点睛】考查了全等三角形的判定与性质,等腰三角形的判定与性质,直角三角形的性质,三角形内角和定理等知识.熟练掌握运用基础知识是解题的关键.23.(1)2cm(2)等边三角形,理由见解析【分析】本题主要考查线段垂直平分线的性质、含30°角的直角三角形,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.(1)连接BE ,由垂直平分线的性质可求得30CBE ABE A Ð=Ð=Ð=°,在Rt BCE V 中,由直角三角形的性质可证得2BE CE =,则可得出结果;(2)由垂直平分线的性质可求得AD BD =,根据含30°角的直角三角形可得12BC AB =,因此BCD △为等腰三角形,进一步由题意可知60ABC Ð=°,即可证明BCD △为等边三角形.【详解】(1)解:如图,连接BE ,DE Q 是AB 的垂直平分线,AE BE \=,30ABE A \Ð=Ð=°,30CBE ABC ABE \Ð=Ð-Ð=°,在Rt BCE V 中,2BE CE =,2AE CE \=,6cm AC =Q ,2cm CE \=.(2)BCD △是等边三角形,理由如下:连接CD ,DE Q 垂直平分AB ,∴D 为AB 中点,AD BD \=,在Rt ABC △中,30A Ð=°,12BC AB =∴,AD BD BC \==,又60ABC Ð=°Q ,∴BCD △是等边三角形.24.见详解【分析】根据全等三角形的判定定理SAS 可判断两个三角形全等;根据全等三角形的对应角相等,以及三角形外角的性质,可以得到30PBQ Ð=°,根据直角三角形的性质即可得到.本题考查了全等三角形的判定与性质、等边三角形的性质以及含30度角直角三角形的性质,熟记全等三角形的判定与性质是解题的关键.【详解】解:ABC QV 为等边三角形.AB AC \=,60BAC ACB Ð=Ð=°,在BAE V 和ACD V 中,AE CD BAC ACB AB AC =ìïÐ=Ðíï=î,(SAS)BAE ACD \V V ≌,ABE CAD \Ð=Ð,BPQ ÐQ 为ABP V 外角,60BPQ BAD ABE CAD BAD BAC \Ð=Ð+Ð=Ð+Ð=Ð=°,BQ AD ^Q ,30PBQ \Ð=°,2BP PQ \=.25.B【分析】根据折叠的性质可得,BF FD =,CG GD =,即12FG BC =,再由30°角所对的直角边是斜边的一半,即可求解,本题考查了折叠的性质,含30°角的直角三角形的性质,解题的关键是:熟练掌握折叠的性质.【详解】解:由折叠可知,BF FD =,CG GD =,12FG BC \=,在ABC V 中,90BAC Ð=°,4AB =,30C Ð=°,2248BC AB \==´=,118422FG BC \==´=,故选:B .26.C【分析】本题主要考查了折叠的性质,含30°角的直角三角形的直角.理解直角三角形中30°角所对边是斜边的一半是解题的关键.【详解】解:根据折叠的性质6cm DE EC ==,90EDB C Ð=Ð=°,∴90EDA Ð=°,∵30A Ð=°,∴212cm AE DE ==,∴18cm AC AE EC =+=,故选C .27.6【分析】此题考查了中心对称,矩形的性质,以及翻折变换,熟练掌握各自的性质是解本题的关键.由折叠的性质及矩形的性质得到OE 垂直平分AC ,得到AE EC =,根据AB 为AC 的一半确定出30ACE Ð=°,进而得到OE 等于EC 的一半,求出EC 的长,即为AE 的长.【详解】解:由题意得:AB AO CO ==,即2AC AB =,且OE 垂直平分AC ,AE CE \=,30ACB Ð=°,在Rt OEC △中,30OCE Ð=°,12OE EC BE \==,3BE =Q ,3OE \=,6EC =,则6AE =,故答案为:6.28.4【分析】本题考查了折叠的性质,平行四边形的性质,三角形内角和定理,含30°的直角三角形.解题的关键在于对知识的熟练掌握与灵活运用.由折叠的性质与题意可得,=90ACD а,由ABCD Y ,可知260BC AD CD AB D B ===Ð=Ð=°,,,则18030CAD ACD D Ð=°-Ð-Ð=°,24AD CD ==,进而可求BC 的值.【详解】解:由折叠的性质可得,=90ACD а,∵ABCD Y ,∴260BC AD CD AB D B ===Ð=Ð=°,,,∴18030CAD ACD D Ð=°-Ð-Ð=°,∴24AD CD ==,∴4BC =,故答案为:4.29.(1)60(2)30cm【分析】本题主要考查了旋转的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握旋转的性质.(1)根据90C Ð=°,30ABC Ð=°,求出903060BAC Ð=°-°=°,即可求出结果;(2)根据直角三角形的性质得出210cm AB AC ==,根据旋转得出60BAB ¢Ð=°,AB AB ¢=,证明ABB ¢V 是等边三角形,求出结果即可.【详解】(1)解:∵在ABC V 中,90C Ð=°,30ABC Ð=°,∴903060BAC Ð=°-°=°,根据旋转可知:60BAB BAC a =Ð=Ð=¢°;(2)解:∵90C Ð=°,30ABC Ð=°,5cm AC =,∴()22510cm AB AC ==´=,∵将ABC V 绕点A 逆时针旋转a 角度至AB C ¢¢△的位置,∴60BAB ¢Ð=°,AB AB ¢=,∴ABB ¢V 是等边三角形,∴ABB ¢V 的周长是()331030cm AB =´=.30.4【分析】由直角三角形的性质可得24AC AB ==,由旋转的性质可得4AE AC ==.本题考查了旋转的性质,直角三角形的性质,掌握旋转的性质是解题的关键.【详解】解:90B Ð=°Q ,30C Ð=°,24AC AB \==,Q 将ABC V 绕点A 旋转得到ADE V ,4AE AC \==,故答案为:431.4【分析】本题考查了旋转的性质,含30度角的直角三角形的性质,根据题意得出2AC =,进而根据旋转的性质,即可求解.【详解】在Rt ABC △中,1AB =,30C Ð=°,∴22AC AB ==.。
《常考题》初中八年级数学上册第十一章《三角形》经典练习题(含答案解析)

一、选择题1.将一副直角三角板如图放置,使两直角重合DFB ∠的度数为( )A .145︒B .155︒C .165︒D .175︒C解析:C【分析】 根据三角形的内角和定理可求45E ∠=︒,利用补角的定义可求120FBE ∠=︒,再根据三角形的一个外角等于与它不相邻的两个内角的和即可求出DFB ∠的度数【详解】解:在DEC ∆中∵90C ∠=︒,45CDE ∠=︒∴45E ∠=︒又∵60ABC ∠=︒∴120FBE ∠=︒由三角形的外角性质得DFB E FBE ∠=∠+∠45120=︒+︒165=︒故选:C【点睛】本题考查了三角形的内角和定理,互为补角的定义及三角形的外角性质,解题的关键是掌握三角形的外角性质2.如图,AD 是ABC 的外角CAE ∠的平分线,35B ∠=︒,60=︒∠DAC ,则ACD ∠的度数为( )A .25︒B .85︒C .60︒D .95︒D解析:D【分析】根据角平分线的定义可得∠DAC =∠DAE ,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠D ,然后利用三角形的内角和定理列式计算即可得解.【详解】解:∵AD 是∠CAE 的平分线,60=︒∠DAC ,∴∠DAC =∠DAE =60°,又∵35B ∠=︒由三角形的外角性质得,∠D =∠DAE−∠B =60°−35°=25°,∴在△ACD 中,∠ACD =180°−∠DAC -∠D =180°−60°−25°=95°.故选:D .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和,三角形的内角和定理,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.3.下列长度的线段能组成三角形的是( )A .2,3,5B .4,6,11C .5,8,10D .4,8,4C解析:C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:A 、2+3=5,不能组成三角形,不符合题意;B 、4+6<11,不能组成三角形,不符合题意;C 、5+8>10,能组成三角形,符合题意;D 、4+4=8,不能够组成三角形,不符合题意.故选:C .【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.若多边形的边数由3增加到n (n 为大于3的正整数),则其外角和的度数( ) A .不变B .减少C .增加D .不能确定A 解析:A【分析】利用多边形的外角和特征即可解决问题.【详解】解:因为多边形外角和固定为360°,所以外角和的度数是不变的.故选:A .【点睛】此题考查多边形内角与外角的性质,容易受误导,注意多边形外角和等于360°. 5.已知直线//a b ,含30角的直角三角板按如图所示放置,顶点A 在直线a 上,斜边BC与直线b交于点D,若135∠=︒,则2∠的度数为()A.35︒B.45︒C.65︒D.75︒C解析:C【分析】如图,根据三角形外角的性质可得出∠3,再根据平行线的性质可得出∠2.【详解】解:如图,∠=︒,∠B=30°∵135∴∠3=∠1+∠B=35°+30°=65°a b∵//∴∠2=∠3=65°故选:C【点睛】此题考查了平行线的性质以及三角形外角的性质.解题时注意掌握平行线的性质以及三角形外角的性质的应用.6.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是()A.4、5、6 B.3、4、5 C.2、3、4 D.1、2、3D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D、4+5>6,能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项错误;A、2+3>4,能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项正确;故选:D.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.7.下列四个图形中,线段CE 是ABC 的高的是( )A .B .C .D . B解析:B【分析】利用三角形高的定义逐一判断选项,可得答案.【详解】A .CE 不垂直AB ,故CE 不是ABC 的高,不符合题意,B .CE 是ABC 中AB 边上的高,符合题意,C .CE 不是ABC 的高,不符合题意,D .CE 不是ABC 的高,不符合题意.故选B .【点睛】此题主要考查了三角形的高,关键是掌握从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.8.设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( ). A .a b =B .180a b =+°C .180b a =+︒D .360b a =+︒A 解析:A【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论.【详解】∵四边形的内角和等于a ,∴a=(4-2)•180°=360°;∵五边形的外角和等于b ,∴b=360°,∴a=b .故选:A .【点睛】本题考查了多边形的内角与外角,熟知多边形的内角和定理是解答此题的关键. 9.某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A .5B .6C .7D .8D 解析:D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×3,解得n=8.故选:D .【点睛】本题考查了多边形的内角和与外角和,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.10.如图,在ABC 中,70B ∠=,D 为BC 上的一点,若ADC x ∠=,则x 的度数可能为( )A .30°B .60°C .70°D .80°D解析:D【分析】 根据三角形的外角的性质得到∠ADC=∠B+∠BAD ,得到x >70°,根据平角的概念得到x <180°,计算后进行判断得到答案.【详解】解:∵∠ADC=∠B+∠BAD ,∴x >70°,又x <180°,∴x 的度数可能为80°,故选:D .【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.二、填空题11.如图,点D ,E ,F 分别是边BC ,AD ,AC 上的中点,若图中阴影部分的面积为3,则ABC 的面积是________.8【分析】利用三角形的中线将三角形分成面积相等的两部分S △ABD=S △ACD=S △ABCS △BDE=S △ABDS △ADF=S △ADC 再得到S △BDE=S △ABCS △DEF=S △ABC 所以S △ABC=解析:8【分析】利用三角形的中线将三角形分成面积相等的两部分,S △ABD =S △ACD =12S △ABC ,S △BDE =12S △ABD ,S △ADF =12S △ADC ,再得到S △BDE =14S △ABC ,S △DEF =18S △ABC ,所以S △ABC =83S 阴影部分.【详解】解:∵D 为BC 的中点,∴12ABD ACD ABC S S S ==△△△, ∵E ,F 分别是边,AD AC 上的中点, ∴111,,222BDE ABD ADF ADC DEF ADF SS S S S S ===, ∴111,448BDE ABC DEF ADC ABC S S S S S ===, ∵113488BDE DEF ABC ABC ABC S SS S S S =+=+=阴影部分, ∴888333ABC S S ⨯===阴影部分, 故答案为:8.【点睛】本题考查了三角形的面积:三角形的面积等于底边长与高线乘积的一半,即S △=12×底×高.三角形的中线将三角形分成面积相等的两部分.12.已知三角形三边长分别为m ,n ,k ,且m 、n 满足2|9|(5)0n m -+-=,则这个三角形最长边k 的取值范围是________.【分析】根据求出mn 的长根据三角形三边关系求出k 的取值范围再根据k 为最长边进一步即可确定k 的取值【详解】解:由题意得n-9=0m-5=0解得m=5n=9∵mnk 为三角形的三边长∴∵k 为三角形的最长边解析:914k ≤<【分析】根据2|9|(5)0n m -+-=求出m 、n 的长,根据三角形三边关系求出k 的取值范围,再根据k 为最长边进一步即可确定k 的取值.【详解】解:由题意得n-9=0,m-5=0,解得 m=5,n=9,∵m ,n ,k ,为三角形的三边长,∴414k ≤<,∵k 为三角形的最长边,∴914k ≤<.故答案为:914k ≤<【点睛】本题考查了绝对值、偶次方的非负性,三角形的三边关系,根据题意求出m 、n 的长是解题关键,确定k 的取值范围时要注意k 为最长边这一条件.13.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.14.一个三角形的三条高的长都是整数,若其中两条高的长分别为4和12,则第三条高的长为_____.5或4【分析】先设长度为412的高分别是ab 边上的边c 上的高为h △ABC 的面积是S 根据三角形面积公式可求结合三角形三边的不等关系可得关于h 的不等式组解即可【详解】解:设长度为412的高分别是ab 边上 解析:5或4.【分析】先设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,根据三角形面积公式,可求222,,412S S S a b c h===,结合三角形三边的不等关系,可得关于h 的不等式组,解即可.【详解】解:设长度为4、12的高分别是a ,b 边上的,边c 上的高为h ,△ABC 的面积是S ,那么 222,,412S S S a b c h===, 又∵a-b <c <a+b , ∴2222412412S S S S c -<<+, 即2233S S S h <<,解得3<h<6,∴h=4或h=5,故答案为:5或4.【点睛】本题考查了三角形面积、三角形三边之间的关系、解不等式组.求出整数值后,能根据三边关系列出不等式组是解题关键.15.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H的度数为___________.360°【分析】根据三角形的外角等于不相邻的两个内角的和以及多边形的内角和即可求解【详解】解:∵∠1=∠A+∠B∠2=∠C+∠D∠3=∠E+∠F∠4=∠G+∠H∴∠A+∠B+∠C+∠D+∠E +∠F+解析:360°【分析】根据三角形的外角等于不相邻的两个内角的和,以及多边形的内角和即可求解.【详解】解:∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故选:D..【点睛】本题考查了三角形的外角的性质以及多边形的外角和定理,正确转化为多边形的外角和是关键.16.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.72020【分析】连接AB1BC1CA1根据等底等高的三角形面积相等可得=7S △ABC 由此即可解题【详解】连接AB1BC1CA1根据等底等高的三角形面积相等△A1BC △A1B1C △AB1C △AB1C解析:72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S △ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等,所以,111A B C S △=7S △ABC ,同理222A B C S △=7111A B C S △=72S △ABC ,依此类推,△A 2020B 2020C 2020的面积为=72020S △ABC ,∵△ABC 的面积为1,∴202020202020A S B C ∆=72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.17.ABC 中,,AB AC 边上的高,CE BD 相交于点F ,,ABC ACB ∠∠的角平分线交于点G ,若=125CGB ∠︒,则CFB ∠=______.110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB 根据角平分线的定义求出∠ABC +∠ACB 从而求出∠A 根据三角形高的定义可得∠AEC=∠FDC=90°然后根据三角形的内角和定理求出∠ACE 解析:110°【分析】根据三角形的内角和定理求出∠GBC +∠GCB ,根据角平分线的定义求出∠ABC +∠ACB ,从而求出∠A ,根据三角形高的定义可得∠AEC=∠FDC=90°,然后根据三角形的内角和定理求出∠ACE ,最后利用三角形外角的性质即可求出结论.【详解】解:∵=125CGB ∠︒∴∠GBC +∠GCB=180°-∠CGB=55°∵,ABC ACB ∠∠的角平分线交于点G ,∴∠ABC=2∠GBC ,∠ACB=2∠GCB∴∠ABC +∠ACB=2∠GBC +2∠GCB=2(∠GBC +∠GCB )=110°∴∠A=180°-(∠ABC +∠ACB )=70°∵,AB AC 边上的高,CE BD 相交于点F ,∴∠AEC=∠FDC=90°,∴∠ACE=180°-∠AEC-∠A=20°∠=∠FDC+∠ACE=110°∴CFB故答案为:110°.【点睛】此题考查的是三角形内角和定理、三角形外角的性质、三角形的高和角平分线,掌握三角形内角和定理、三角形外角的性质、三角形的高的定义和角平分线的定义是解题关键.18.已知等腰三角形的一边长等于11cm,一边长等于5cm,它的周长为______.【分析】题目给出等腰三角形有两条边长为11和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】分两种情况:当腰为11时11+11>511-11<5所以能构成三解析:27cm【分析】题目给出等腰三角形有两条边长为11和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】分两种情况:当腰为11时,11+11>5,11-11<5,所以能构成三角形,周长是:11+11+5=27cm;当腰为5时,5+5<11,所以不能构成三角形,故答案为:27cm.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.19.如图,把正三角形、正四边形、正五边形按如图所示的位置摆放,若∠=︒∠=︒,则3150,222∠=_______.30°【分析】通过正三角形正四边形正五边形的内角度数结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°正方形的内角度数是90°正五边形的内角的度数是:(5﹣2)×180°=10解析:30°【分析】通过正三角形、正四边形、正五边形的内角度数,结合三角形内角和定理进行计算即可;【详解】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是:15(5﹣2)×180°=108°,则∠3=360°﹣60°﹣90°﹣108°﹣∠1﹣∠2==360°﹣60°﹣90°﹣108°﹣50°﹣22°=30°. 故答案是:30°.【点睛】本题主要考查了多边形内角和与外角定理的应用,准确分析图形中角的关系式解题的关键.20.如图,ABC ∆的面积是2,AD 是BC 边上的中线,13AE AD =,12BF EF =.则DEF ∆的面积为_________.【分析】直接根据高相等的三角形面积之比等于底之比【详解】解:∵是边上的中线∴BD=DC 又∵的面积是2和的高相等∴∵和的高相等∴∴又∴同理:故答案为:【点睛】此题主要考查根据高相等的三角形面积之比等于解析:49【分析】直接根据高相等的三角形,面积之比等于底之比.【详解】解:∵AD 是BC 边上的中线∴BD=DC又∵ABC ∆的面积是2,D AB ∆和D A C ∆的高相等∴D DC S =S =1AB A ∆∆∵13AE AD = E AB ∆和BDE ∆的高相等∴E BDE ABD 11S =S =S 23AB ∆∆∆ ∴BDE 2S =3∆ 又12BF EF =,∴1B 3BF E =,同理: DEF BFD BDE 24S =2S =S =39∆∆∆ 故答案为:49. 【点睛】此题主要考查根据高相等的三角形,面积之比等于底之比求三角形的面积,解题的关键是正确理解高相等的三角形之间的关系.三、解答题21.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C=60°,求∠DAE 的度数;(2)如图2,∠B <∠C ,则DAE 、∠B ,∠C 之间的数量关系为___________;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,求∠G 的度数.解析:(1)10°;(2)∠DAE =12(∠C−∠B);(3)45°. 【分析】 (1)根据三角形的内角和定理可求得∠BAC =80°,由角平分线的定义可得∠CAD 的度数,利用三角形的高线可求∠CAE 得度数,进而求解即可得出结论;(2)根据(1)的推理方法可求解∠DAE 、∠B 、∠C 的数量关系;(3)设∠ACB =α,根据角平分线的定义得∠CAG =12∠EAC =12(90°−α)=45°−12α,∠FCG =12∠BCF =12(180°−α)=90°−12α,再利用三角形外角的性质即可求得结果.【详解】解:(1)∵∠B =40°,∠C =60°,∠BAC +∠B +∠C =180°,∴∠BAC =80°,∵AD 平分∠BAC ,∴∠CAD=∠BAD=12∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°−60°=30°,∴∠DAE=∠CAD−∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°−∠B−∠C,∵AD平分∠BAC,∴∠CAD=∠BAD=12∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°−∠C,∴∠DAE=∠CAD−∠CAE=12∠BAC−(90°−∠C)=12(180°−∠B−∠C)−90°+∠C=1 2∠C−12∠B,即∠DAE=12(∠C−∠B).故答案为:∠DAE=12(∠C−∠B).(3)设∠ACB=α,∵AE⊥BC,∴∠EAC=90°−α,∠BCF=180°−α,∵∠CAE和∠BCF的角平分线交于点G,∴∠CAG=12∠EAC=12(90°−α)=45°−12α,∠FCG=12∠BCF=12(180°−α)=90°−12α,∵∠FCG=∠G+∠CAG,∴∠G=∠FCG −∠CAG=90°−12α−(45°−12α)=45°.【点睛】本题考查了三角形的内角和定理、三角形的高及角平分线等知识,熟练掌握三角形内角和定理并能灵活运用三角形的高、角平分线这些知识解决问题是关键.22.如图,在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,FC的延长线与五边形ABCDE外角平分线相交于点P,求∠P的度数解析:∠P=25°.【分析】延长ED ,BC 相交于点G .由四边形内角和可求∠G=50°,由三角形外角性质可求∠P 度数.【详解】解:延长ED ,BC 相交于点G .在四边形ABGE 中,∵∠G=360°-(∠A+∠B+∠E )=50°,∴∠P=∠FCD-∠CDP=12(∠DCB-∠CDG ) =12∠G=12×50°=25°. 【点睛】本题考查了三角形内角和定理,三角形角平分线性质,外角的性质,熟练运用外角的性质是本题的关键.23.在ABC ∆中,已知3,7AB AC ==,若第三边BC 的长为偶数,求ABC ∆的周长. 解析:周长为16或18.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边BC 的长为偶数求出符合条件的BC 值,即可求出周长.【详解】 解:在ABC ∆中,3,7AB AC ==,∴第三边BC 的取值范围是:410,BC <<∴符合条件的偶数是6或8,∴当6BC =时,ABC ∆的周长为:36716++=;当8BC =时,ABC ∆的周长为:37818++=.ABC ∆∴的周长为16或18.【点睛】此题主要考查了三角形三边关系,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.24.如图,在ABC 中,30A ∠=︒,80ACB ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.解析:(1)55CBE ∠=︒;(2)25F ∠=︒.【分析】(1)利用三角形的外角性质和角的平分线性质求解即可;(2)根据三角形外角的性质和两直线平行,同位角相等求解.【详解】(1)在ABC 中,30A ∠=︒,80ACB ∠=︒,3080110CBD A ACB ∴∠=∠+∠=︒+︒=︒, BE 是CBD ∠的平分线, 111105522CBE CBD ∴∠=∠=⨯︒=︒;(2)80ACB ∠=︒,55CBE ∠=︒,805525CEB ACB CBE ∴∠=∠--︒∠=︒=︒,//DF BE ,25F CEB ∴∠=∠=︒.【点睛】本题考查了运用三角形外角性质,角平分线性质,平行线的性质求角的度数,熟练并灵活运用这些性质是解题的关键.25.已知,a,b,c为ABC的三边,化简|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|.解析:﹣2a+4b﹣2c【分析】根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负值,然后去绝对值进行计算即可.【详解】解:∵a,b,c为ABC的三边,∴a+b>c,b+c>a,a+c>b∴|a﹣b﹣c|﹣2|b﹣c﹣a|+|a+b﹣c|=|a-(b+c)|-2|b-(c+a)|+ |a+b﹣c|=﹣[a﹣(b+c)]+2[b﹣(c+a)]+(a+b﹣c)=-a+(b+c)+2b-2(c+a)+a+b-c=﹣a+b+c+2b﹣2c﹣2a+a+b﹣c=﹣2a+4b﹣2c.【点睛】此题主要考查了三角形三边关系,以及绝对值的性质,关键是掌握三边关系定理.26.如图,直线AB与直线MN相交,交点为O,OC⊥AB,OA平分∠MOD,若∠BON=20°,求∠COD的度数.解析:∠COD=70°【分析】利用对顶角相等可得∠AOM的度数,再利用角平分线的定义和垂线定义进行计算即可.【详解】解:∵∠BON=20°,∴∠AOM=20°,∵OA平分∠MOD,∴∠AOD=∠MOA=20°,∵OC⊥AB,∴∠AOC=90°,∴∠COD=90°﹣20°=70°.【点睛】本题考查了垂线,关键是掌握对顶角相等,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.27.如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.解析:(1)证明见解析;(2)110°【分析】(1)延长BP 交AC 于D ,根据△PDC 外角的性质知∠BPC >∠1;根据△ABD 外角的性质知∠1>∠A ,所以易证∠BPC >∠A .(2)由三角形内角和定理求出∠ABC +∠ACB =140°,由角平分线和三角形内角和定理即可得出结果.【详解】(1)延长BP 交AC 于D ,如图所示:∵∠BPC 是△CDP 的一个外角,∠1是△ABD 的一个外角,∴∠BPC >∠1,∠1>∠A ,∴∠BPC >∠A ;(2)在△ABC 中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵PB 平分∠ABC ,PC 平分∠ACB ,∴∠PBC=12∠ABC ,∠PCB=12∠ACB , 在△PBC 中,∠P=180°﹣(∠PBC+∠PCB ) =180°﹣(12∠ABC+12∠ACB ) =180°﹣12(∠ABC+∠ACB ) =180°﹣12×140° =110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.28.观察探究及应用.(1)如图,观察图形并填空:一个四边形有_______条对角线;一个五边形有_______条对角线;一个六边形有_______条对角线;(2)分析探究:由凸n边形的一个顶点出发,可作_______条对角线,多边形有n个顶点,若允许重复计数,共可作_______条对角线;(3)结论:一个凸n边形有_______条对角线;(4)应用:一个凸十二边形有多少条对角线?解析:(1)2;5;9;(2)(n-3);n(n-3);(3)(3)2n n-;(4)54【分析】(1)根据图形数出对角线条数即可;(2)根据所画图形可推导出凸n边形从一个顶点出发可引出(n-3)条对角线,进而可得共可作n(n-3)条对角线;(3)由(2)可知,任意凸n边形的对角线有条(3)2n n-,即可解答;(4)把n=12代入(3)计算即可.【详解】解:(1)根据图形数出对角线条数,一个四边形有2条对角线,一个五边形有5条对角线,一个六边形有9对角线;故答案为:2;5;9;(2)∵从凸4边形的一个顶点出发,可作1条对角线,从凸5边形的一个顶点出发,可作2条对角线,从凸6边形的一个顶点出发,可作3条对角线,从凸7边形的一个顶点出发,可作4条对角线,…∴从凸n边形从一个顶点出发可引出(n-3)条对角线,若允许重复计数,共可作n(n-3)条对角线;故答案为:(n-3);n(n-3).(3)由(2)可知,任意凸n边形的对角线有条(3)2n n-,故答案为:(3)2n n-.(4)把n=12代入(3)2n n-计算得:1292⨯=54.故一个凸十二边形有54条对角线.【点睛】本题考查了多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.。
人教版八年级数学上册含30度角的直角三角形的性质

B
D
C
如图,△ABC中,AC⊥BC,
∠B= 60 ° .延长BC到D使BD=AB,连接AD.
1
1
则△ABC是 等边 是三角形,BC= 2 BD = 2 AB .
探索分析,解决问题
在直角三角形中,如果一个锐角等
于30°,那么它所对的直角边等于斜
边的一半.
A
30°
数学符号表示
在Rt△ABC中
B┓
∵∠A=30° C ∴AC=2BC
交BC于D,交AB于M,且BD=8㎝,求AC
之长.
A
M
C
D
B
练习
3、 如图,在△ABC 中,AB=AC, ∠A=120°,AB的垂直平分线
MN交BC于M,交AB于N,知识梳理
通过这节课的学习,你又学到关于直角三 角形的哪些知识?
课堂练习,反馈调控
1.如图,在△ABC中, ∠ACB=90 ° ,∠A=30 °,
CD⊥AB,AB=4.则BC = ,2BD= .1
C
B
D
A
2.小明沿倾斜角为30 °的山坡从山脚步行到山顶,
共走了200 m,求山的高度.
综合应用,巩固提高
例.下图是屋架设计图的一部分,点
D是斜梁AB的中点,立柱BC, DE 垂直于横梁AC,AB=7.4 m, ∠A=30°.立柱BC ,DE要多长?
将两个含有30°角的三角尺摆放在一起,
你能借助这个图形,找到Rt△ABD的直角边BD与 斜边AB之间的数量关系吗?
A
B
D
C
探索分析,解决问题
A
你还能用其他 方法证明吗?
B
DC
如图,△ABC是等边三角形,
人教版八年级数学-三角形-知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
八年级数学上册直角三角形与勾股定理专项练习 【含答案】

八年级数学上册直角三角形与勾股定理专项练习【知识梳理】1.若 a 、b 、c 是Rt △ABC 的三边,,则a 2+b 2= 。
90=∠C 2.若 a 、b 、c 是△ABC 的三边,且a 2+b 2=c 2,则∠C= 。
3.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为________.4.直角三角形斜边上的中线等于 ;三角形中一条边上的中线等于这条边的一半,那么这条边所对的角是。
5.直角三角形中,30°的角所对的边等于 ;一直角边等于斜边的一半,这条直角边所对的角等于度。
【名题点拔】考点1 “双垂图”中的计算问题例1 已知:在Rt △ABC 中,∠C=90°,CD ⊥BA 于D ,∠A=60°,CD=,求线3段AB 的长。
练习已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,BC =4,AC =3,求线段AB 、CD 、BD 的长。
考点2 勾股定理在轴对称问题中的应用例2 如图,有一个直角三角形纸片,两直角边AC =6c m ,BC =8c m ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,求CD 的长。
考点3 勾股定理逆定理的应用例3 一个零件的形状如右图,按规定这个零件中∠A 与∠BDC 都应为直角, 工人师傅量得零件各边尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,请你判断这个零件符合要求吗? 为什么?CC练习1、等腰三角形的周长是20 cm,底边上的高是6 cm,求它的面积.2、(1)在△ABC中,∠C=90°,AB=6,BC=8,DE垂直平分AB,求BE的长.(2)在△ABC中,∠C=90°,AB=6,BC=8,AE平分∠CAE,ED⊥AB,求BE的长.(3)如图,折叠长方形纸片ABCD,是点D落在边BC上的点F处,折痕为AE,AB=CD=6,AD=BC=10,试求EC的长度.例1:(1)一轮船以16 n mi1e/h的速度从港口A出发向东北方向航行,另一轮船以12 n mi1e/h的速度同时从港口出发向东南方向航行,那么离开港口A2h后,两船相距(2)一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5 m,消防车的云梯最大升长为13 m,则云梯可以达到该建筑物的最大高度是(3)一棵树在离地面9m处断裂,树的顶部落在离底部12 m处,树折断之前有_______m.例2:如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为7m,梯子的顶端B到地面的距离为24 m,现将梯子的底端A向外移动到A',使梯子的底端A'到墙根O的距离等于15 m.同时梯子的顶端B下降至B',那BB'等于( )A.3m B.4 m C.5 m D.6 m例3:(1)在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲吹到一边,花朵齐及水面,已知红莲移动的水平距离为2m,求这里的水深是多少米?(2)学校旗杆顶端垂下一绳子,小明把它拉直到旗杆底端,发现绳子还多2米,他把绳子全部拉直且使绳的下端接触地面,绳下端离开旗杆底部6米,则旗杆的高度是多少米?例4:《中华人民共和国道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过70千米/时.一辆“小汽车”在一条城市街道上直道行驶,如图某一时刻刚好行驶到路对面“车速检测仪A”正前方50米C处,过了6秒后,测得“小汽车”位置B与“车速检测仪A”之间的距离为130米,这辆“小汽车”超速了吗?请说明理由.例6、如图,∠AOB=90°,OA=45cm,OB=15cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?例7、如图,在一棵树的10 m高的D处有两只猴子,其中一只猴子爬下树走到离树20 m处的池塘A处,另一只爬到树顶后直接跃向池塘A处,如果两只猴子所经过的距离相等,试问这棵树有多高?例8、如图,点P是等边△ABC内的一点,分别连接PA、PB、PC,以BP为边作∠PBQ=60°,且BQ=BP,连接OQ.(1)观察并猜想AP与CQ之间的大小关系,并说明你的结论;(2)已知PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,请说明理由.例9、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km,A、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图1是方案一的示意图(AP与直线X垂直,垂足为P),P到A、B的距离之和S1=PA+PB,图2是方案二的示意图(点A关于直线X的对称点是A′,连接BA′交直线X于点P),P到A、B的距离之和S2=PA+PB.(1)求S1、S2,并比较它们的大小;(2)请你说明S2=PA+PB的值为最小;(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图3所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.一、选择题(每小题6分,共36分)1.在中,,,( )Rt ABC △90C ∠=BC =AC =A ∠=A .B .C .D .906045302.如图,已知中,,,是高和的交点,ABC △45ABC ∠=4AC =H AD BE 则线段的长度为( )BH AB .4C .D .53.如图4,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .34C .D .2234.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕的长是PQ ( )A BC cmD .2cm5.如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是 ()A .B . 17252C .D .7246.如图,在等腰Rt △ABC 中,∠C=90º,AC=8,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE ,连接DE 、DF 、EF 。
八上数学每日一练:含30度角的直角三角形练习题及答案_2020年解答题版

八上数学每日一练:含30度角的直角三角形练习题及答案_2020年解答题版答案解析答案解析答案解析2020年八上数学:图形的性质_三角形_含30度角的直角三角形练习题1.(2020历下.八上期末)如图,在等边中,点(2,0),点 是原点,点 是 轴正半轴上的动点,以 为边向左侧作等边 ,当时,求 的长.考点: 坐标与图形性质;等边三角形的性质;含30度角的直角三角形;勾股定理;2.(2020厦门.八上期中) 如图,在平面直角坐标系中,点A 在y 轴上,点B 在x 轴上,∠OAB =30°.(Ⅰ)若点C 在y 轴上,且△ABC 为以AB 为腰的等腰三角形,求∠BCA 的度数;(Ⅱ)若B (1,0),沿AB 将△ABO 翻折至△ABD . 请根据题意补全图形,并求点D的横坐标.考点: 坐标与图形性质;等腰三角形的性质;含30度角的直角三角形;翻折变换(折叠问题);3.(2020重庆.八上期中) 如图所示,测量旗杆AB的高度时,先在地面上选择一点C,使∠ACB=15°.然后朝着旗杆方向前进到点D,测得∠ADB=30°,量得CD=13 m,求旗杆AB 的高.考点: 等腰三角形的性质;含30度角的直角三角形;4.(2020安陆.八上期末)如图, 中,,,一同学利用直尺和圆规完成如下操作:分别以点 、 为圆心,以大于的长为半径画弧,两弧交于点,两点,直线 交 于 ,交 于 .请你观察图形,猜想 与 之间的数量关系,并证明你的结论.答案解析答案解析考点: 线段垂直平分线的性质;含30度角的直角三角形;5.(2017卢龙.八上期中) 如图,在Rt △ABC 中,∠C=90°,BD 平分∠ABC 交AC 于D ,DE ⊥AB 于E ,若DE=1cm ,∠CBD =30°,求∠A 的度数和AC 的长.考点: 角平分线的性质;含30度角的直角三角形;2020年八上数学:图形的性质_三角形_含30度角的直角三角形练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E N
M D
C
B
A 直角三角形性质和应用练习
班级姓名 一、填空题 1、“内错角相等,两直线平行”的逆命题:________. 2、“直角三角形两锐角互余”逆定理。
(填:“有”或“没有”)。
3、在Rt ΔABC 中,∠A=30°则∠B=60°最直接的理由是 .
4、 在直角三角形中,斜边长为6cm ,则斜边上的中线为 cm.
5、在Rt △ABC 中,∠C=90度,∠B=15度,则∠A=______度
6、在Rt △ABC 中,∠C=90º,∠A=30º,AB=10cm ,则BC=_____cm 。
7、如图,在△ABC 中,AB=AC=10,CE=4,MN 是AB 的垂直平分线, BE =
8、如图,已知Rt △ABC 中,∠B AC=90º ,AD 是上的中线,AB=12,AC=5 那么AD = ,
9、如图:OC 是∠AOB 的平分线,点P 是OC 上的一点,PD ⊥OA ,PE ⊥OB ,
垂足分别为点D 、E ,若PD+PE =6,则PE = .
第7题 第8题 第9题
10、到一条线段两端点距离相等的点的轨迹是____.
11、在Rt △ABC 中,∠C=90°若a=5,b=12,则c=__________
12、已知A(2,-3)和B(4,2)二点,那么AB = ___________
二、选择题
1、下列定理中,没有逆定理的是 ……………………………… ( ) A 、两直线平行,同旁内角互补。
B 、等边对等角。
C 、全等三角形对应角相等。
D 、有一个角是60°的等腰三角形是等边三角形。
D
2
1
P C
A
B
E
O
D
B
A
E N M
D
C
B
A 2、如图,∠BCA=90,CD ⊥A
B ,则图中与∠A 互余的角
有( )个
A .1个
B 、2个
C 、3个
D 、4个
3、如图,在Rt △ABC 中,∠ACB=90°,CD 、CE ,
分别是斜边AB 上的高与中线,CF 是∠ACB 的平分线。
则∠1与∠2的关系是( )
A .∠1<∠2
B .∠1=∠2;
C .∠1>∠2
D .不能确定
4、在直角三角形ABC 中,若∠C=90°,D 是BC 边上的 一点,且AD=2CD , 则∠ADB 的度数是( )
A .100°
B .110°
C .120°
D .150°
5、三角形ABC 中,AB=AC ,AB 的垂直平分线MN 交AB ,
AC 于D,E ,若∠A=400,则∠EBC=( )。
A:150 B:200 C:300 D:无法判断。
6、已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )
A 、25
B 、14
C 、7
D 、7或25
三、计算和证明
1、已知:CD 垂直平分线段AB ,E 是CD 上一点,分别联结CA 、CB 、EA 、EB . 求证:∠CAE =∠CBE .
2、已知:如图,在△ABC 中,AB = AC , 点D 在BC 上 , ∠DAC = 90°, AD = 2
1
CD.
求:∠
BAC 的度数
E C B
D A A D
3、如图,在△ABC 中,∠B=∠C ,D 、E 分别是BC 、AC 的中点,AB=6,求DE 的长。
4、已知:∠ABC=∠ADC=90度,E 是AC 中点。
求证:(1)ED=EB (2)图中有哪些等腰三角形?
5、如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
A
D
E
B
C
第7题图
答案与提示: 一、填空题:
1. 两直线平行,内错角相等。
2. 有。
3. 直角三角形两锐角互余。
4. 3。
5. 75。
6. 5
7. 6
8. 6.5
9. 3 10. 这条线段的中垂线 11. 13 12. 29
二、选择题
1. C
2.B
3.B.4C. 5.C 6.D 三、计算和证明
1. 先证∠CAB=∠CBA ,∠EAD=∠EBD ,两边相减得∠CAE=∠CBE 。
2. 120°
3. 3
4. (1)ED=21AC ,EB=2
1
AC ,所以ED=EB 。
(2)△EAD ,△EDC ,△EAB ,△EBC ,△EDB 。
5.10km 处。
由题意得222210BE 15AE +=+,且AE+BE=25,解得AE=10.。