毕业设计外文翻译

合集下载

毕业论文(设计)外文文献翻译及原文

毕业论文(设计)外文文献翻译及原文

金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。

一、引言各个国家的企业在显著不同的金融体制下运行。

金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。

然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。

这项研究结果解释表明企业投资受限于外部资金的可得性。

很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。

因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。

毕业设计外文翻译译文

毕业设计外文翻译译文

1 工程概论1.1 工程专业1.2 工业和技术1.3 现代制造业工程专业1 工程行业是历史上最古老的行业之一。

如果没有在广阔工程领域中应用的那些技术,我们现在的文明绝不会前进。

第一位把岩石凿削成箭和矛的工具匠是现代机械工程师的鼻祖。

那些发现地球上的金属并找到冶炼和使用金属的方法的工匠们是采矿和冶金工程师的先祖。

那些发明了灌溉系统并建造了远古世纪非凡的建筑物的技师是他们那个时代的土木工程师。

2 工程一般被定义为理论科学的实际应用,例如物理和数学。

许多早期的工程设计分支不是基于科学而是经验信息,这些经验信息取决于观察和经历,而不是理论知识。

这是一个倾斜面实际应用的例子,虽然这个概念没有被确切的理解,但是它可以被量化或者数字化的表达出来。

3 从16、17世纪当代初期,量化就已经成为科学知识大爆炸的首要原因之一。

另外一个重要因素是实验法验证理论的发展。

量化包含了把来源于实验的数据和信息转变成确切的数学术语。

这更加强调了数学是现代工程学的语言。

4 从19世纪开始,它的结果的实际而科学的应用已经逐步上升。

机械工程师现在有精确的能力去计算来源于许多不同机构之间错综复杂的相互作用的机械优势。

他拥有能一起工作的既新型又强硬的材料和巨大的新能源。

工业革命开始于使用水和蒸汽一起工作。

从此使用电、汽油和其他能源作动力的机器变得如此广泛以至于它们承担了世界上很大比例的工作。

5 科学知识迅速膨胀的结果之一就是科学和工程专业的数量的增加。

到19世纪末不仅机械、土木、矿业、冶金工程被建立而且更新的化学和电气工程专业出现了。

这种膨胀现象一直持续到现在。

我们现在拥有了核能、石油、航天航空空间以及电气工程等。

每种工程领域之内都有细分。

6 例如,土木工程自身领域之内有如下细分:涉及永久性结构的建筑工程、涉及水或其他液体流动与控制系统的水利工程、涉及供水、净化、排水系统的研究的环境工程。

机械工程主要的细分是工业工程,它涉及的是错综复杂的机械系统,这些系统是工业上的,而非单独的机器。

毕业设计外文翻译英文加中文传送带

毕业设计外文翻译英文加中文传送带

A Comparison of Soft Start Mechanisms for Mining BeltConveyors1800 Washington Road Pittsburgh, PA 15241 Belt Conveyors are an important method for transportation of bulk materials in the mining industry. The control of the application of the starting torque from the belt drive system to the belt fabric affects the performance, life cost, and reliability of the conveyor. This paper examines applications of each starting method within the coal mining industry.INTRODUCTIONThe force required to move a belt conveyor must be transmitted by the drive pulley via friction between the drive pulley and the belt fabric. In order to transmit power there must be a difference in the belt tension as it approaches and leaves the drive pulley. These conditions are true for steady state running, starting, and stopping. Traditionally, belt designs are based on static calculations of running forces. Since starting and stopping are not examined in detail, safety factors are applied to static loadings (Harrison, 1987). This paper will primarily address the starting or acceleration duty of the conveyor. The belt designer must control starting acceleration to prevent excessive tension in the belt fabric and forces in the belt drive system (Suttees, 1986). High acceleration forces can adversely affect the belt fabric, belt splices, drive pulleys, idler pulleys, shafts, bearings, speed reducers, and couplings. Uncontrolled acceleration forces can cause belt conveyor system performance problems with vertical curves, excessive belt take-up movement, loss of drive pulley friction, spillage of materials, and festooning of the belt fabric. The belt designer is confronted with two problems, The belt drive system must produce a minimum torque powerful enough to start the conveyor, and controlled such that the acceleration forces are within safe limits. Smooth starting of the conveyor can be accomplished by the use of drive torque control equipment, either mechanical or electrical, or a combination of the two (CEM, 1979).SOFT START MECHANISM EVALUATION CRITERIONWhat is the best belt conveyor drive system? The answer depends on many variables. The best system is one that provides acceptable control for starting, running, and stopping at a reasonable cost and with high reliability (Lewdly and Sugarcane, 1978). Belt Drive System For the purposes of this paper we will assume that belt conveyors are almost always driven byelectrical prime movers (Goodyear Tire and Rubber, 1982). The belt "drive system" shall consist of multiple components including the electrical prime mover, the electrical motor starter with control system, the motor coupling, the speed reducer, the low speed coupling, the belt drive pulley, and the pulley brake or hold back (Cur, 1986). It is important that the belt designer examine the applicability of each system component to the particular application. For the purpose of this paper, we will assume that all drive system components are located in the fresh air, non-permissible, areas of the mine, or in non-hazardous, National Electrical Code, Article 500 explosion-proof, areas of the surface of the mine.Belt Drive Component Attributes SizeCertain drive components are available and practical in different size ranges. For this discussion, we will assume that belt drive systems range from fractional horsepower to multiples of thousands of horsepower. Small drive systems are often below 50 horsepower. Medium systems range from 50 to 1000 horsepower. Large systems can be considered above 1000 horsepower. Division of sizes into these groups is entirely arbitrary. Care must be taken to resist the temptation to over motor or under motor a belt flight to enhance standardization. An over motored drive results in poor efficiency and the potential for high torques, while an under motored drive could result in destructive overspending on regeneration, or overheating with shortened motor life (Lords, et al., 1978).Torque ControlBelt designers try to limit the starting torque to no more than 150% of the running torque (CEMA, 1979; Goodyear, 1982). The limit on the applied starting torque is often the limit of rating of the belt carcass, belt splice, pulley lagging, or shaft deflections. On larger belts and belts with optimized sized components, torque limits of 110% through 125% are common (Elberton, 1986). In addition to a torque limit, the belt starter may be required to limit torque increments that would stretch belting and cause traveling waves. An ideal starting control system would apply a pretension torque to the belt at rest up to the point of breakaway, or movement of the entire belt, then a torque equal to the movement requirements of the belt with load plus a constant torque to accelerate the inertia of the system components from rest to final running speed. This would minimize system transient forces and belt stretch (Shultz, 1992). Different drive systems exhibit varying ability to control the application of torques to the belt at rest and at different speeds. Also, the conveyor itself exhibits two extremes of loading. An empty belt normally presents the smallest required torque for breakaway and acceleration, while a fully loaded belt presents the highest required torque. A mining drive system must be capable of scaling the applied torque from a 2/1 ratio for a horizontal simple belt arrangement, to a 10/1 ranges for an inclined or complex belt profile.Thermal RatingDuring starting and running, each drive system may dissipate waste heat. The waste heat may be liberated in the electrical motor, the electrical controls,, the couplings, the speed reducer, or the belt braking system. The thermal load of each start Is dependent on the amount of belt load and the duration of the start. The designer must fulfill the application requirements for repeated starts after running the conveyor at full load. Typical mining belt starting duties vary from 3 to 10 starts per hour equally spaced, or 2 to 4 starts in succession. Repeated starting may require the dreading or over sizing of system components. There is a direct relationship between thermal rating for repeated starts and costs. Variable Speed. Some belt drive systems are suitable for controlling the starting torque and speed, but only run at constant speed. Some belt applications would require a drive system capable of running for extended periods at less than full speed. This is useful when the drive load must be shared with other drives, the belt is used as a process feeder for rate control of the conveyed material, the belt speed is optimized for the haulage rate, the belt is used at slower speeds to transport men or materials, or the belt is run a slow inspection or inching speed for maintenance purposes (Hager, 1991). The variable speed belt drive will require a control system based on some algorithm to regulate operating speed. Regeneration or Overhauling Load. Some belt profiles present the potential for overhauling loads where the belt system supplies energy to the drive system. Not all drive systems have the ability to accept regenerated energy from the load. Some drives can accept energy from the load and return it to the power line for use by other loads. Other drives accept energy from the load and dissipate it into designated dynamic or mechanical braking elements. Some belt profiles switch from motoring to regeneration during operation. Can the drive system accept regenerated energy of a certain magnitude for the application? Does the drive system have to control or modulate the amount of retarding force during overhauling? Does the overhauling occur when running and starting? Maintenance and Supporting Systems. Each drive system will require periodic preventative maintenance. Replaceable items would include motor brushes, bearings, brake pads, dissipation resistors, oils, and cooling water. If the drive system is conservatively engineered and operated, the lower stress on consumables will result in lower maintenance costs. Some drives require supporting systems such as circulating oil for lubrication, cooling air or water, environmental dust filtering, or computer instrumentation. The maintenance of the supporting systems can affect the reliability of the drive system.CostThe drive designer will examine the cost of each drive system. The total cost is the sum of the first capital cost to acquire the drive, the cost to install and commission the drive, thecost to operate the drive, and the cost to maintain the drive. The cost for power to operate the drive may vary widely with different locations. The designer strives to meet all system performance requirements at lowest total cost. Often more than one drive system may satisfy all system performance criterions at competitive costs.ComplexityThe preferred drive arrangement is the simplest, such as a single motor driving through a single head pulley.However,mechanical, economic,and functional requirements often necessitate the use of complex drives.The belt designer must balance the need for sophistication against the problems that accompany complex systems. Complex systems require additional design engineering for successful deployment. An often-overlooked cost in a complex system is the cost of training onsite personnel, or the cost of downtime as a result of insufficient training.SOFT START DRIVE CONTROL LOGICEach drive system will require a control system to regulate the starting mechanism. The most common type of control used on smaller to medium sized drives with simple profiles is termed "Open Loop Acceleration Control". In open loop, the control system is previously configured to sequence the starting mechanism in a prescribed manner, usually based on time. In open loop control, drive-operating parameters such as current, torque, or speed do not influence sequence operation. This method presumes that the control designer has adequately modeled drive system performance on the conveyor. For larger or more complex belts, "Closed Loop" or "Feedback" control may he utilized. In closed loop control, during starting, the control system monitors via sensors drive operating parameters such as current level of the motor, speed of the belt, or force on the belt, and modifies the starting sequence to control, limit, or optimize one or wore parameters. Closed loop control systems modify the starting applied force between an empty and fully loaded conveyor. The constants in the mathematical model related to the measured variable versus the system drive response are termed the tuning constants. These constants must be properly adjusted for successful application to each conveyor. The most common schemes for closed loop control of conveyor starts are tachometer feedback for speed control and load cell force or drive force feedback for torque control. On some complex systems, It is desirable to have the closed loop control system adjust itself for various encountered conveyor conditions. This is termed "Adaptive Control". These extremes can involve vast variations in loadings, temperature of the belting, location of the loading on the profile, or multiple drive options on the conveyor. There are three commonadaptive methods. The first involves decisions made before the start, or 'Restart Conditioning'. If the control system could know that the belt is empty, it would reduce initial force and lengthen the application of acceleration force to full speed. If the belt is loaded, the control system would apply pretension forces under stall for less time and supply sufficient torque to adequately accelerate the belt in a timely manner. Since the belt only became loaded during previous running by loading the drive, the average drive current can be sampled when running and retained in a first-in-first-out buffer memory that reflects the belt conveyance time. Then at shutdown the FIFO average may be use4 to precondition some open loop and closed loop set points for the next start. The second method involves decisions that are based on drive observations that occur during initial starting or "Motion Proving'. This usually involves a comparison In time of the drive current or force versus the belt speed. if the drive current or force required early in the sequence is low and motion is initiated, the belt must be unloaded. If the drive current or force required is high and motion is slow in starting, the conveyor must be loaded. This decision can be divided in zones and used to modify the middle and finish of the start sequence control. The third method involves a comparison of the belt speed versus time for this start against historical limits of belt acceleration, or 'Acceleration Envelope Monitoring'. At start, the belt speed is measured versus time. This is compared with two limiting belt speed curves that are retained in control system memory. The first curve profiles the empty belt when accelerated, and the second one the fully loaded belt. Thus, if the current speed versus time is lower than the loaded profile, it may indicate that the belt is overloaded, impeded, or drive malfunction. If the current speed versus time is higher than the empty profile, it may indicate a broken belt, coupling, or drive malfunction. In either case, the current start is aborted and an alarm issued.CONCLUSIONThe best belt starting system is one that provides acceptable performance under all belt load Conditions at a reasonable cost with high reliability. No one starting system meets all needs. The belt designer must define the starting system attributes that are required for each belt. In general, the AC induction motor with full voltage starting is confined to small belts with simple profiles. The AC induction motor with reduced voltage SCR starting is the base case mining starter for underground belts from small to medium sizes. With recent improvements, the AC motor with fixed fill fluid couplings is the base case for medium to large conveyors with simple profiles. The Wound Rotor Induction Motor drive is the traditional choice for medium to large belts with repeated starting duty or complex profilesthat require precise torque control. The DC motor drive, Variable Fill Hydrokinetic drive, and the Variable Mechanical Transmission drive compete for application on belts with extreme profiles or variable speed at running requirements. The choice is dependent on location environment, competitive price, operating energy losses, speed response, and user familiarity. AC Variable Frequency drive and Brush less DC applications are limited to small to medium sized belts that require precise speed control due to higher present costs and complexity. However, with continuing competitive and technical improvements, the use of synthesized waveform electronic drives will expand.REFERENCES[1]Michael L. Nave, P.E.1989.CONSOL Inc.煤矿业带式输送机几种软起动方式的比较1800 年华盛顿路匹兹堡, PA 15241带式运送机是采矿工业运输大批原料的重要方法。

毕业设计论文外文文献翻译

毕业设计论文外文文献翻译

毕业设计(论文)外文文献翻译院系:财务与会计学院年级专业:201*级财务管理姓名:学号:132148***附件: 财务风险管理【Abstract】Although financial risk has increased significantly in recent years risk and risk management are not contemporary issues。

The result of increasingly global markets is that risk may originate with events thousands of miles away that have nothing to do with the domestic market。

Information is available instantaneously which means that change and subsequent market reactions occur very quickly。

The economic climate and markets can be affected very quickly by changes in exchange rates interest rates and commodity prices。

Counterparties can rapidly become problematic。

As a result it is important to ensure financial risks are identified and managed appropriately. Preparation is a key component of risk management。

【Key Words】Financial risk,Risk management,YieldsI. Financial risks arising1.1What Is Risk1.1.1The concept of riskRisk provides the basis for opportunity. The terms risk and exposure have subtle differences in their meaning. Risk refers to the probability of loss while exposure is the possibility of loss although they are often used interchangeably。

毕业设计外文文献翻译范文

毕业设计外文文献翻译范文

毕业设计外文文献翻译专业学生姓名班级学号指导教师优集学院外文资料名称:Knowledge-Based Engineeri--ng Design Methodology外文资料出处:Int.J.Engng Ed.Vol.16.No.1附件: 1.外文资料翻译译文2.外文原文基于知识工程(KBE)设计方法D. E. CALKINS1.背景复杂系统的发展需要很多工程和管理方面的知识、决策,它要满足很多竞争性的要求。

设计被认为是决定产品最终形态、成本、可靠性、市场接受程度的首要因素。

高级别的工程设计和分析过程(概念设计阶段)特别重要,因为大多数的生命周期成本和整体系统的质量都在这个阶段。

产品成本的压缩最可能发生在产品设计的最初阶段。

整个生命周期阶段大约百分之七十的成本花费在概念设计阶段结束时,缩短设计周期的关键是缩短概念设计阶段,这样同时也减少了工程的重新设计工作量。

工程权衡过程中采用良好的估计和非正式的启发进行概念设计。

传统CAD工具对概念设计阶段的支持非常有限。

有必要,进行涉及多个学科的交流合作来快速进行设计分析(包括性能,成本,可靠性等)。

最后,必须能够管理大量的特定领域的知识。

解决方案是在概念设计阶段包含进更过资源,通过消除重新设计来缩短整个产品的时间。

所有这些因素都主张采取综合设计工具和环境,以在早期的综合设计阶段提供帮助。

这种集成设计工具能够使由不同学科的工程师、设计者在面对复杂的需求和约束时能够对设计意图达成共识。

那个设计工具可以让设计团队研究在更高级别上的更多配置细节。

问题就是架构一个设计工具,以满足所有这些要求。

2.虚拟(数字)原型模型现在需要是一种代表产品设计为得到一将允许一产品的早发展和评价的真实事实上原型的过程的方式。

虚拟样机将取代传统的物理样机,并允许设计工程师,研究“假设”的情况,同时反复更新他们的设计。

真正的虚拟原型,不仅代表形状和形式,即几何形状,它也代表如重量,材料,性能和制造工艺的非几何属性。

本科毕业设计外文文献翻译

本科毕业设计外文文献翻译

(Shear wall st ructural design ofh igh-lev el fr ameworkWu Jiche ngAbstract : In t his pape r the basic c oncepts of man pow er from th e fra me sh ear w all str uc ture, analy sis of the struct ur al des ign of th e c ont ent of t he fr ame she ar wall, in cludi ng the seism ic wa ll she ar spa本科毕业设计外文文献翻译学校代码: 10128学 号:题 目:Shear wall structural design of high-level framework 学生姓名: 学 院:土木工程学院 系 别:建筑工程系 专 业:土木工程专业(建筑工程方向) 班 级:土木08-(5)班 指导教师: (副教授)nratiodesign, and a concretestructure in themost co mmonly usedframe shear wallstructurethedesign of p oints to note.Keywords: concrete; frameshearwall structure;high-risebuildingsThe wall is amodern high-rise buildings is an impo rtant buildingcontent, the size of theframe shear wall must comply with building regulations. The principle is that the largersizebut the thicknessmust besmaller geometric featuresshouldbe presented to the plate,the force is close to cylindrical.The wall shear wa ll structure is a flatcomponent. Itsexposure to the force along the plane level of therole ofshear and moment, must also take intoaccountthe vertical pressure.Operate under thecombined action ofbending moments and axial force andshear forcebythe cantilever deep beam under the action of the force levelto loo kinto the bottom mounted on the basis of. Shearwall isdividedinto a whole walland theassociated shear wall in theactual project,a wholewallfor exampl e, such as generalhousingconstruction in the gableor fish bone structure filmwalls and small openingswall.Coupled Shear walls are connected bythecoupling beam shear wall.Butbecause thegeneralcoupling beamstiffness is less thanthe wall stiffnessof the limbs,so. Walllimb aloneis obvious.The central beam of theinflection pointtopay attentionto thewall pressure than the limits of the limb axis. Will forma shortwide beams,widecolumn wall limbshear wall openings toolarge component atbothen ds with just the domain of variable cross-section ro din the internalforcesunder theactionof many Walllimb inflection point Therefore, the calcula tions and construction shouldAccordingtoapproximate the framestructure to consider.The designof shear walls shouldbe based on the characteristics of avariety ofwall itself,and differentmechanical ch aracteristicsand requirements,wall oftheinternalforcedistribution and failuremodes of specific and comprehensive consideration of the design reinforcement and structural measures. Frame shear wall structure design is to consider the structure of the overall analysis for both directionsofthehorizontal and verticaleffects. Obtain theinternal force is required in accordancewiththe bias or partial pull normal section forcecalculation.The wall structure oftheframe shear wall structural design of the content frame high-rise buildings, in the actual projectintheuse of themost seismic walls have sufficient quantitiesto meet thelimitsof the layer displacement, the location isrelatively flexible. Seismic wall for continuous layout,full-length through.Should bedesigned to avoid the wall mutations in limb length and alignment is notupand down the hole. The sametime.The inside of the hole marginscolumnshould not belessthan300mm inordertoguaranteethelengthof the column as the edgeof the component and constraint edgecomponents.Thebi-direc tional lateral force resisting structural form of vertical andhorizontalwallconnected.Each other as the affinityof the shear wall. For one, two seismic frame she ar walls,even beam highratio should notgreaterthan 5 and a height of not less than400mm.Midline columnand beams,wall midline shouldnotbe greater tha nthe columnwidthof1/4,in order toreduce thetorsional effect of the seismicaction onthecolumn.Otherwisecan be taken tostrengthen thestirrupratio inthe column tomake up.If theshear wall shearspan thanthe big two. Eventhe beamcro ss-height ratiogreaterthan 2.5, then the design pressure of thecut shouldnotmakeabig 0.2. However, if the shearwallshear spanratioof less than two couplingbeams span of less than 2.5, then the shear compres sion ratiois notgreater than 0.15. Theother hand,the bottom ofthe frame shear wallstructure to enhance thedesign should notbe less than200mmand notlessthanstorey 1/16,otherpartsshouldnot be less than 160mm and not less thanstorey 1/20. Aroundthe wall of the frame shear wall structure shouldbe set to the beam or dark beamand the side columntoform a border. Horizontal distributionofshear walls can from the shear effect,this design when building higher longeror framestructure reinforcement should be appropriatelyincreased, especially in the sensitiveparts of the beam position or temperature, stiffnesschange is bestappropriately increased, thenconsideration shouldbe givento the wallverticalreinforcement,because it is mainly from the bending effect, andtake in some multi-storeyshearwall structurereinforcedreinforcement rate -likelessconstrained edgeofthecomponent or components reinforcement of theedge component.References: [1 sad Hayashi,He Yaming. On the shortshear wall high-rise buildingdesign [J].Keyuan, 2008, (O2).高层框架剪力墙结构设计吴继成摘要: 本文从框架剪力墙结构设计的基本概念人手, 分析了框架剪力墙的构造设计内容, 包括抗震墙、剪跨比等的设计, 并出混凝土结构中最常用的框架剪力墙结构设计的注意要点。

毕业设计论文 外文文献翻译

毕业设计论文 外文文献翻译

毕业设计(论文)外文参考文献翻译计算机科学与信息工程系系(院)2008 届题目企业即时通Instant Messaging for Enterprises课题类型技术开发课题来源自选学生姓名许帅专业班级 04计算机科学与技术指导老师王占中职称工程师完成日期:2008年4 月 6 日目录I NSTANT M ESSAGING FOR E NTERPRISE (1)1. Tips (1)2. Introduction (1)3. First things first (2)4.The While-Accept loop (4)5. Per-Thread class (6)6. The Client class (7)企业即时通 (9)1.提示 (9)2.简介 (9)3.首先第一件事 (10)4.监听循环 (11)5.单线程类 (13)6.用户端类 (14)Instant Messaging for Enterprise1. TipsIf Java is, in fact, yet another computer programming language, you may question why it is so important and why it is being promoted as a revolutionary step in computer programming. The answer isn’t immediately obvious if you’re coming from a tr aditional programming perspective. Although Java is very useful for solving traditional standalone programming problems, it is also important because it will solve programming problems on the World Wide Web. What is the Web?The Web can seem a bit of a mys tery at first, with all this talk of “surfing,”“presence,” and “home pages.” It’s helpful to step back and see what it really is, but to do this you must understand client/server systems, another aspect of computing that is full of confusing issues. The primary idea of a client/server system is that you have a central repository of information,some kind of data, often in a database。

毕业设计(论文)外文资料翻译(学生用)

毕业设计(论文)外文资料翻译(学生用)

毕业设计外文资料翻译学院:信息科学与工程学院专业:软件工程姓名: XXXXX学号: XXXXXXXXX外文出处: Think In Java (用外文写)附件: 1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文网络编程历史上的网络编程都倾向于困难、复杂,而且极易出错。

程序员必须掌握与网络有关的大量细节,有时甚至要对硬件有深刻的认识。

一般地,我们需要理解连网协议中不同的“层”(Layer)。

而且对于每个连网库,一般都包含了数量众多的函数,分别涉及信息块的连接、打包和拆包;这些块的来回运输;以及握手等等。

这是一项令人痛苦的工作。

但是,连网本身的概念并不是很难。

我们想获得位于其他地方某台机器上的信息,并把它们移到这儿;或者相反。

这与读写文件非常相似,只是文件存在于远程机器上,而且远程机器有权决定如何处理我们请求或者发送的数据。

Java最出色的一个地方就是它的“无痛苦连网”概念。

有关连网的基层细节已被尽可能地提取出去,并隐藏在JVM以及Java的本机安装系统里进行控制。

我们使用的编程模型是一个文件的模型;事实上,网络连接(一个“套接字”)已被封装到系统对象里,所以可象对其他数据流那样采用同样的方法调用。

除此以外,在我们处理另一个连网问题——同时控制多个网络连接——的时候,Java内建的多线程机制也是十分方便的。

本章将用一系列易懂的例子解释Java的连网支持。

15.1 机器的标识当然,为了分辨来自别处的一台机器,以及为了保证自己连接的是希望的那台机器,必须有一种机制能独一无二地标识出网络内的每台机器。

早期网络只解决了如何在本地网络环境中为机器提供唯一的名字。

但Java面向的是整个因特网,这要求用一种机制对来自世界各地的机器进行标识。

为达到这个目的,我们采用了IP(互联网地址)的概念。

IP以两种形式存在着:(1) 大家最熟悉的DNS(域名服务)形式。

我自己的域名是。

所以假定我在自己的域内有一台名为Opus的计算机,它的域名就可以是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章绪论1.1基础的重要性及用途所有建筑工程放在地球上,必须是通过各种叫做基础的界面来传递的。

基础是工程系统的一部分,通过基础把上部荷载及其自重传递进入基础的下部土和岩石中。

土压力产生的效果除了来自地表面增加的压力以外,还有来自土的自重和地质历史。

上部结构通常比用来描述为工程的一部分是系统传递荷载到基础或是下部结构用的一个术语。

上部结构在建筑物和桥梁方面有着特别的意义,然而,基础也是可以来支持机械,支撑工业设备(管道,塔器,水池),这也是标为地基的,以及类似的。

为此它更好的来描述一个基础作为工程系统的一部分通过接触面来承载荷载。

根据基础的定义表明,一个基础是工程系统中最重要的一部分。

1.2基础的工程基础工程师是经过培训并且有经验还十分的精通于科学原理和工程的判断才能设计一个基础。

我们也可以说工程判断在设计过程中是一个创造性的部分。

获得必需的科学原理和理论知识,通过正式教育的岩土工程(土力学,地质学,基础工程)和结构工程(结构分析学,混凝土结构设计和钢结构设计等等)课程,并且继续通过短暂的课程,专业的学术讨论,阅读专业的期刊以及类似的方法来自学。

由于自然土和岩石的不均匀性,以至于两个基础,甚至是相互毗邻建筑物的基础将很少是相同的,除非是碰巧发生。

由于每一个基础,至少部分代表一个未知的风险,这是有这重要价值的来可以利用到其他的解决方案,从发布会上介绍,期刊论文,适当的文学教科书凝聚获得。

融合了这些经验,学习其他人做了的类似情况的,并在特定的岩土工程信息来建筑一个经济,使用和安全的基础设计被应用到工程的判断中!设计一个基础所必须的几个步骤:①确定现场和荷载的位置。

粗略估计的基础负载通常由客户提供或内部。

根据在现场或负载系统的复杂性,文献调查,可能会开始看到别人怎么接触过类似的问题。

②亲自检查现场的任何地质或其他证据表明这可能是一个潜在的设计建议。

补充检查先前获得的数据。

③建立这个领域的的探测程序,并且以这个基础发现(或是找到最初的阶段),建立必要补充的领域测试和任何实验测试的过程。

④决定土壤必要的设计参数是以测试数据,科学原理和工程判断的综合为基础的。

可能牵涉到简单或是复杂的电脑分析。

⑤基础设计使用到的土壤参数来自第四步骤。

基础应该是经济的和适用的。

把建筑物的惯例公差和局部建筑物的惯例公差考虑进去。

所有有关的都紧密的互相影响着(客户,工程师,建筑师,承包者)以至于基础系统不会过分的保守和危险是他保持在可接受的水平。

电脑被广泛的(或者不是所有)适用在这一步骤中。

基础工程师应该是有经验的并且参与前面基础设计的所有五个步骤。

在实践中往往并非如此。

一个独立的岩土工程公司,专门从事土壤勘探,测土,垃圾填埋场,堤防,水体污染控制等的设计,往往分配其中一个岩土工程师做步骤1到4。

第4步的输出给客户端往往,基础工程师专门从事下部结构系统的结构元素。

这种方法的主要缺陷是倾向获得土壤参数是从土壤测试,质量参差不齐,大量补充工程判断,精确的数字---其大小是完全不可改变的。

因此,基础工程和岩土工程顾问必须紧密合作,或至少有频繁的会议,作为设计的进展。

这应该是显而易见的,双方需要了解对方的问题,特别是基础设计工程师必须知道用于获取正在使用的土壤参数的近似方法。

这种理解可以得到每个有其他的专业培训。

为此,这个文本的主要重点将是对建筑物,机器,支挡结构的接口元素的分析和设计,并用于获取必要的土壤参数要求对这些土力学原理来完成设计。

具体的基础要考虑的因素包括浅基础如地基和垫层,深基础如桩和钻孔墩。

支护结构也将被认为是在后面的章节。

岩土工程方向将主要考虑的是变形和强度而土壤水的现象影响强度和变形。

以目前的使用的趋势是以边缘土壤参数为主要项目改善土壤的强度和变形的特性,土壤的改良方法将在第三章简述。

1.3基础:分类和精确的定义基础的分类根据在荷载浅基础性的基础有底座,扩展底座,或垫。

深度一般是D/B≤1,但可能更小,参考图1.1a。

/B≥4+图1.1b所示。

深基础有桩基础,钻孔墩基础,钻孔沉箱基础等。

Lp图1.1描述了一般情况下的三种基本类型的基础,考虑本文和提供的一些定义常用在这种类型的工作中。

因为所有的定义和符号将被使用在整个文本,读者应该认真研究这些数字。

上层建筑的负荷以承载柱作用在土壤界面。

承载柱通常用钢或混凝土设计允许压缩应力在140+Mpa(钢)至10+Mpa(混凝土),因此是横截面积相对较小。

土壤的承载力是由强度和地基变形决定的,土壤的承载力很少超过1000kpa,通常在200到250kpa范围内。

这意味着基础是连接着两种强度相差很大的材料。

因此,荷载必须传递到土壤中,在这样的方式下,传递的荷载不要超过土壤的极限承载强度和由此产生的变形时在允许变形内。

浅基础的荷载以横向传递,因此称为扩展基础。

扩展基础(或是简单基础)支撑单个柱,垫层是一个特殊的基础用来支撑一些随机间隔的柱或是支撑几个平行行,可能部分或是整体在建筑物下。

垫层也可以得到支撑,反过来,钻孔桩和桥墩。

基础配套机械有时也被称为地基。

机械类能在小面积上产生大量的的荷载强度,因此这种基础是用来传递类似机械类的小面积荷载传递。

深基础类似于扩展基础,但荷载是垂直扩散而不是水平扩散。

桩的定性荷载随深度分布表示在图1.1b中。

钻孔墩和钻孔沉箱都属于桩类型,是在土壤中钻0.76m的孔,并用混凝土浇注来增加土壤的强度。

设计,桩施工和灌注桩将在第六章的16节-19节详细的解说(这本书的所有的原始编辑在本章节的17-19节缩减的)。

扩展基础(垫层)和桩主要考虑的是下方的地基基础或桩尖(或点)在应力影响区的应力分布。

垂直应力的理论分布是在基础地面一平米以下如图1.1a所示。

显而易见的是,低于临界深度约5B下基础传来的荷载对土壤增加的压力(0.02q)已经微不足道。

然而,这种深度影响取决于B。

例如,如果B=0.3m,临界压力是5 0.3=1.5m,如果B=3m,该地区15m 纬向的影响深度比为1:10。

因为B值的取决对大的建筑物下方有相的影响,任何地不好的土壤在2m以下对广阔的基础油相当大的影响。

任何结构用来保持土壤或其他物质(见图 1.1c)的几何形状,在自然产生的重力影响下也是一种支护结构。

支挡结构可以用大量的资料,包括土工织物、木材和金属薄膜,素或钢筋混凝土、钢筋填土、预制混凝土元素,挤密桩,联锁木材或金属元素(槽壁)等等。

有时支护结构它是永恒的,在其他情况下被拆除时,它也不再需要了。

选择这个文本研究的基础有许多,他们专门研究是恰当的。

在于你每一个建筑中存在的基础是否正式设计。

在每一个地下室外墙建筑是一个围护结构,是否正式设计或不是。

在厚粘性土沉积地区的主要建筑物都使用桩基础或是钻孔沉箱来支撑垂直荷载主管层面,主要是为了控制沉降。

注意到,几乎每一个主要城市之下的粘土或粘土地区是目前并且需要做桩基础或钻孔沉箱。

众多的桥梁维护结构在桥墩和扩展基础支撑着桥梁的的中间跨度。

通常,桥墩末端的应变通用桩进入到地面。

港口和海上构筑物(主要用于石油生产)广泛使用桩是来支撑竖向荷载和横向荷载。

1.3.1其他基础土木工程师(基础工程师)可能会遇到许多不同类型的基础而不容易分类。

这些可能包括加强现有建筑物的基础,如果它已经经历了过多的沉降,或如果增加额外的高度就会附加有额外的荷载。

他们可能会涉及拆除现有的基础(全部或部分)并取代地下室或其它结构,即把新基础放在一个较浅的深度。

他们可能涉及到路,由隧道(地铁或公共设施)下现有的结的重力影响下也是一中稳固结构。

支挡结构可以用大量的资料,包括土工织物、木材和金属薄膜,素或钢筋混凝土、钢筋填土、预制混凝土元素,挤密桩,联锁木材或金属元素(槽壁)等等。

有时支护结构它是永恒的,在其他情况下被拆除时,它也不再需要了。

选择这个文本研究的基础有许多,他们专门研究是恰当的。

在于你每一个建筑中存在的基础是否正式设计。

在每一个地下室外墙建筑是一个围护结构,是否正式设计或不是。

在厚粘性土沉积地区的主要建筑物都使用桩基础或是钻孔沉箱来支撑垂直荷载主管层面,主要是为了控制沉降。

注意到,几乎每一个主要城市之下的粘土或粘土地区是目前并且需要做桩基础或钻孔沉箱。

众多的桥梁维护结构在桥墩和扩展基础支撑着桥梁的的中间跨度。

通常,桥墩末端的应变通用桩进入到地面。

港口和海上构筑物(主要用于石油生产)广泛使用桩是来支撑竖向荷载和横向荷载。

1.3.1其他基础土木工程师(基础工程师)可能会遇到许多不同类型的基础而不容易分类。

这些可能包括加强现有建筑物的基础,如果它已经经历了过多的沉降,或如果增加额外的高度就会附加有额外的荷载。

他们可能会涉及拆除现有的基础(全部或部分)并取代地下室或其它结构,即把新基础放在一个较浅的深度。

他们可能涉及到路,由隧道(地铁或公共设施)下现有的结构或某些其它类型来控制振动。

在这些情况下没有新的基础设计。

相反,工程师必须确定对现有结构的任何潜在的不利影响的大小。

如果是不能避免的不利影响,工程师必须制定一个补救设计。

这些“基础”的种类是如此的不同,所以他们经常一个类来研究,对一般的基础教科书是不适合的。

这些设计需要岩土工程师拥有坚实的岩土基础(通常一个高学历),有一些经验,愿意对未知的探索,并且愿意借鉴别人的经验通过适当的技术社会成员。

1.4基础的一般要求基础要素必须是接口与土壤在一个安全的应力水平和限制沉降量在一个可接受的范围之内。

在过去的50多年中,一些建筑物(无数的堤坝类型)已经破坏,因为基础土壤过度的承受压力。

然而,过量的沉降问题相当普遍,有些是隐瞒了,因为只有那些最严重的才被公布。

现代的少数建筑物是由过量沉降而破坏的,然而,在一个构件的破坏中局部破坏或小范围的破坏是常见的。

更常见的现象时有碍眼的墙壁和地板的裂隙,不平的地面(凹陷和斜坡),粘合剂和窗户,以及类似的。

土壤的变化是由意想不到的荷载结合或随后的土体运动(如地震)导致沉降问题,这是设计师无法控制的。

换句话说,目前最先进的设计方法可大大减少(风险因子)可能的沉降问题,但通常不会提供一个无风险的项目。

平心而论,虽然有些问题是直接造成不良的设计,不是粗心大意就是缺乏工程能力。

是的,正如有精明能干的和不称职的医生、律师及其他的专业人员,那么就有能胜任的和无能的工程师!大大复杂基础设计的一个重要因素是土壤参数用于设计被获得在工程开始之前。

后来当基础做好时,这是对(或在)土壤性能从原来的大大改善,无论是在施工过程或是在基础的安装上。

也就是说,土壤会被挖掘和/或更换和压实,挖掘往往消除荷载,并允许扩大底层土壤,打桩通常是土壤更加紧密等等。

这些任何事件不是直接改变(换)土壤就是改变最初估计的土壤强度参数。

作为一个结果的不确定性荷载,在土壤性质,并在试图解释变异性和其他因素,这是常见的做法是保守的设计本系统的一部分。

相关文档
最新文档