envi4.7监督分类报告

合集下载

监督分类实验报告

监督分类实验报告

监督分类实验报告监督分类实验报告一、引言监督分类是机器学习领域中的一项重要任务,它的目标是根据已知的样本和标签,构建一个能够自动对新样本进行分类的模型。

在本次实验中,我们使用了一个基于监督学习的分类算法,并通过对不同数据集的实验进行评估,来探索该算法的性能和适用范围。

二、数据准备在实验中,我们使用了两个不同的数据集,分别是鸢尾花数据集和手写数字数据集。

鸢尾花数据集包含了150个样本,每个样本有4个特征,分别是花萼长度、花萼宽度、花瓣长度和花瓣宽度。

手写数字数据集则包含了1797个样本,每个样本是一个8x8的灰度图像,表示了一个手写数字。

三、实验方法我们选择了支持向量机(SVM)作为分类算法,并使用Python中的scikit-learn 库进行实现。

SVM是一种二分类模型,通过在特征空间中构建一个最优超平面来实现分类。

在实验中,我们将SVM应用于鸢尾花数据集和手写数字数据集,并对其进行了以下几个方面的评估。

1. 特征选择在实验中,我们首先进行了特征选择,以确定对于不同数据集来说,哪些特征是最具有区分性的。

通过计算特征的方差和相关系数等指标,我们确定了鸢尾花数据集的四个特征都是有用的,而手写数字数据集的某些特征则可以被忽略。

2. 模型训练在特征选择之后,我们使用了80%的数据作为训练集,剩余的20%作为测试集。

通过调整SVM的参数,如核函数类型、正则化参数等,我们训练了不同的模型,并选择了最优模型进行评估。

3. 模型评估为了评估模型的性能,我们使用了准确率、召回率和F1值等指标。

准确率表示模型正确分类的样本比例,召回率表示模型正确预测正例的能力,而F1值则综合考虑了准确率和召回率。

通过计算这些指标,我们可以对模型的分类能力进行全面的评估。

四、实验结果与分析在鸢尾花数据集上,我们的SVM模型达到了97%的准确率,表现出很好的分类能力。

然而,在手写数字数据集上,模型的准确率仅为90%,略低于我们的期望。

遥感实验报告

遥感实验报告

重庆交通大学学生实验报告实验课程名称遥感原理与应用开课实验室测量与空间信息处理实验室学院 2013 年级测绘工程专业 1班学生姓名刘文洋学号 631301040126 开课时间 2015 至 2016 学年第 1 学期目录实验一 ENVI 视窗的基本操作 (2)实验二遥感图像的几何校正 (4)实验三遥感图像的增强处理 (8)实验四遥感图像的变换 (12)实验五遥感信息的融合 (15)实验六遥感图像分类 --- 监督分类 (17)实验七遥感图像分类 --- 非监督分类 (19)实验八遥感图像分类后处理 (22)实验一ENVI 视窗的基本操作一、实验目的初步了解目前主流的遥感图象处理软件 ENVI 的主要功能模块,在此基础上,掌握视窗操作模块的功能和操作技能,为遥感图像的几何校正等后续实习奠定基础。

二、实验内容视窗功能介绍;文件菜单操作;显示数据;裁剪数据;合并波段三、实验步骤1、首先打开ENVI4.7软件,看见的只有菜单栏,如图所示:2、打开每个下拉菜单浏览其下拉栏中都有哪些功能,比如:我们如果需要打开遥感文件,则可以选择File下的打开功能open image file,打开遥感图像如下图:裁剪数据打开basic tools的resize data功能,如果需要对图像进行一系列处理,可以利用Transform,Classification等功能进行操作,在后续实验中我们也会用到其中的一些功能进行图像的一系列操作,到时候在详细叙述。

3、再熟悉了ENVI4.7的一些基本知识后我们可以简单地操作下,比如对一组数据分别用Gray Scale和Load RGB导入,看看两幅图的区别以及各自的优缺点。

四、实验结果分析在这次的实验中,我们简单的熟悉了下ENVI4.7的一些功能,发现它是可以对遥感图像进行图像几何纠正,直方图均衡,监督分类,非监督分类等一系列操作,为我们后续利用软件对遥感图像处理打下了基础。

实验二遥感图像的几何校正一、实验目的通过实习操作,掌握遥感图像几何校正的基本方法和步骤,深刻理解遥感图像几何校正的意义。

实验四遥感图像的监督分类和非监督分类

实验四遥感图像的监督分类和非监督分类

实验四遥感图像的监督分类和⾮监督分类实验四遥感图像的⾮监督分类与监督分类⼀、实验⽬的1.⾮监督分类是对数据集中的像元依据统计数字,光谱类似度和光谱距离进⾏分类,在没有⽤户定义的条件下练习使⽤,在ENVI环境下的⾮监督分类技术有两种:迭代⾃组织数据分析技术(ISodata)和K均值算法(K-Means);2.分类过程中应注意:1)怎样确定⼀个最优的波段组合,从⽽达到最佳的分类精度,基于OIF和相关系数,协⽅差矩阵以及经验的使⽤来完成对最适合的组合的选取,分类效果的关键即在于此;2)K-Means的基本原理;3)Isodata的基本原理;4)分类结束后,被分类后的图像是⼀个新的图像,被分类类码秘填充,从⽽可以获得数据提取信息,统计不同类码数量,转化为实际⾯积,在得到后的图像上,可对不同⽬标的形态指标进⾏分析。

3.对训练区中的像元进⾏分类;4.⽤训练数据集估计查看监督分类后的统计参数;5.⽤不同⽅法进⾏监督分类,如最⼩距离法、马⽒距离法和最⼤似然法。

⼆、实验设备与材料1、软件ENVI 4.7软件2、所需材料TM数据三、实验步骤1.选择最优的波段组合ENVI主⼯具栏中File →Open image file →选择hbtmref.img打开→在Basic Tools中选择Statistics →Compute statistics选定原图,在Spectral subset中可选项全部选定→OK →OK →全选→保存→OK,则各类统计数字均可查;OIF计算,选择分类波段:1,2;2,3;1,3波段标准差分别为2.665727;3.473308;4.574609,和为10.713644。

Correlation Matrix 中1和2波段的相关系数0.964308,加上2和3波段的相关系数0.980166,再加上1和3波段的相关系数0.945880,最终等于2.890354。

⽤标准差相加的结果10.713644⽐上相关系数之和2.890354等于3.70668922。

遥感实验报告-监督分类

遥感实验报告-监督分类

实验报告书(验证性实验)题目图像分类——监督分类成绩姓名专业班级学号指导教师日期年月日1.实验目的从研究区域选取有代表性的训练场地作为样本,根据已知训练区提供的样本,通过选择特征参数(如像素亮度均值、方差等),建立判别函数,据此对样本像元进行分类,依据样本类别的特征来识别非样本像元的归属类别。

2.实验准备工作准备一张卫星高清图像以及ERDAS软件,统筹观测目测一下图像,大体了解地物的种类及种类数目,做到心中有数,为训练区的选取做准备。

3.实验步骤第一步:打开卫星拍摄的高清图像,同时打开工具栏classifier中的signature editor,会蹦出分类标签框。

然后打开viewer上的工具栏,在卫星图像上进行训练区第一种地物(如小麦)样本的选取,找到该类地物面积较大的区域,放大后用多边形截图工具截取,然后在标签框上选择添加,之后继续选样本,重复以上步骤,直到选择到十几个有代表性的样本为止。

之后在标签栏里选中所有样本,点击图标合并,删除原样本,只保留合并之后的,再在name栏里填上此种地物的名称。

这样第一个地物的样本选取完毕,进行第二个地物样本的选取,以此类推,直到把图像中包含的所有地物样本选出得到完整的分类标签为止,将分类标签保存在目标文件夹中。

地物样本的选择:第二步:打开classifier中的supervised classification,在导入原始文件栏里选择卫星图像,在导入signature栏里选择刚才做好的分类标签,之后选择导出的目标文件夹,在parametric中可以选择不同的选项(这里以maximum likelihood为例),确定后导出了开始。

第三步:打开导出的图像,这就是监督分类后的图像,然后进行检验。

在已打开的分类后的图像中再打开未分类的原始图像,这里要注意把raster option中的clear display前的对号去掉。

在view中的arrange layers上安排一下图层的顺序,使分类后的图像在上面,打开utility中的swipe,通过移动滚条并放大进行前后两张图像的对照,达到检验效果。

ENVI的监督分类操作步骤

ENVI的监督分类操作步骤

老师要求提交:1.可能性矩阵2.精度评价报告3.分类结果图具体流程:1.打开影像,考试时的影像是老师给的高分辨率影像。

以已有的QuickBird影像为例:File---Open Image File ,在Available Band 中以RGB打开,为真彩色,即地物的真实颜色。

2.选择监督分类样本(感兴趣区域):在影像的工具栏中选择,Overlay---Region of interest在打开的#1 ROI Tool 工具栏中,以多边形的方式选择感兴趣区:ROI-Type----Polygon 在zoom窗口中进行选择选择类别,植被,水体,裸地,房屋。

查看分离程度,继续在ROI Tool 工具栏中,选择Option—compute ROI separability ,选择影像ok.,相关度大于1.8的说明分类较好。

保存文件。

2.用最大似然法进行监督分类,主菜单栏中,Classification —Supervised—Maximum Likelihood,进入选择参数的对话框。

Select all Item阈值Probability Threshold一般在0~1之间。

不需输出真实值。

因为还要分类后处理,储存至memory.3.分类后处理,①分类合并,在主菜单中Classification—post classification—Sieve Classes选择刚才分类好的,memory影像,改变Group Min Threshold数值,由2改到8.即改变每类别最小像元值,由于我只选了四个类别数,应该做完后不会有类别的合并。

保存文件,即要求交的分类结果图。

②生成混淆矩阵主菜单中,Classification—post classification—confusion Matrix—Using Ground Truth ROIS. 将所有类别都选上。

保存混淆矩阵大致是这样,可能还不完整。

监督分类 实验报告.

监督分类 实验报告.

监督分类实验报告.本次实验我们研究的是监督分类算法。

监督分类是一种基于训练数据集的分类方法,即通过给定的训练数据集学习构建分类器,再将分类器应用于测试数据集,从而实现对新数据进行分类的过程。

监督分类算法具有广泛的应用,如文本分类、图像分类等领域。

本实验中我们选取了两种常用的分类算法:决策树和朴素贝叶斯分类器。

决策树是一种树状结构,其中每个节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点表示一个类别。

朴素贝叶斯分类器是一种基于概率论的分类器,利用贝叶斯定理来预测给定数据的分类。

我们选取了一个公开数据集Iris(鸢尾花数据集),该数据集包含150个样本,其中每个样本中包含4个特征属性,分别是花萼长度、花萼宽度、花瓣长度、花瓣宽度,以及一个类别属性,分别是setosa、versicolor、virginica三种鸢尾花的类别。

我们选取其中120个样本作为训练数据集,30个样本作为测试数据集。

我们首先使用Python实现了决策树算法和朴素贝叶斯分类器算法。

在训练阶段,我们将训练数据集作为输入,根据算法学习生成决策树或对应的概率模型;在测试阶段,我们将测试数据集的每个样本输入到决策树或概率模型中进行分类,最终统计分类准确率。

在实验中,我们使用了sklearn工具包中的DecisionTreeClassifier和GaussianNB 实现决策树和朴素贝叶斯分类器算法。

我们将数据集中的数据进行了随机划分,80%作为训练集,20%作为测试集,将参数max_depth设置为4。

结果显示,朴素贝叶斯分类器分类准确率达到97.78%,决策树分类准确率达到93.33%。

其具体结果如下表所示:|算法 |分类准确率||--------------|--------||朴素贝叶斯分类器| 97.78% ||决策树 | 93.33% |从结果可以看出,朴素贝叶斯分类器的分类准确率较高,达到了97.78%,而决策树的分类准确率稍低,只有93.33%。

envi监督分类实验报告心得体会

envi监督分类实验报告心得体会

envi监督分类实验报告心得体会我通过对envi, erdas的使用和比较,对两个软件有了初步的了解及认识。

总结一下大概有以下几点感受:
erdas的操作工具有图表显示,初学者上手较快,功能图标使用起来直观方便,易于查找。

Envi 没有erdas的界面友好,而且打开窗口较多且繁琐,窗口最小化以后会出现很多个堆在- -起,查找-一个非常困难。

但是envi操作简单,易学。

Aoi/Roi功能方面: erdas 中AOItool中的工具,对多边形数字化操作提供了方便。

erdas 不能任意删除任意一-层A0I区域,删除任意-一个AOI区域只能用工具箱中的“剪刀”按钮。

Envi 可以使用鼠标中键删除处于编辑状态的一层ROI中的任意一个图形区域。

erdas 中可以通过种子增长方式产生AOI区域,而且允许岛状多边形存在。

ENVI 感兴趣区可以使用一个特定的阈值来“增长”到邻域像元。

影像配准方面: envi 打开- -幅影像同时会出现三个窗口,除了原图像外还包括-一个总体预览-一个局部放大窗口,在配准时这三个窗口相互配合,可以方便选择控制点。

Erdas打开配准对话框后只有一个“局部放大窗口”没有整体预览图,但是可以通过主图像窗口中的功能实现总体预览。

像配准中起到使用方便的功效。

但其他时候觉得比较繁琐。

不如erdas的工具栏中工具实现对图像的缩放及漫游等操作直观方便。

envi监督分类

envi监督分类

Envi监督分类简介Envi(ENvironment for Visualizing Images)是一种用于大规模遥感图像分析的软件环境。

它提供了一系列功能强大的工具和算法,用于监督分类、特征提取、变化监测等遥感数据处理任务。

Envi监督分类是其主要功能之一,可以帮助用户实现高精度的地物分类和识别。

监督分类的基本原理监督分类是指利用一组已标记的样本数据来训练分类器,并将该分类器应用于未标记的数据集。

Envi监督分类涉及多种分类算法,如支持向量机(SVM)、随机森林(Random Forest)、神经网络(Neural Network)等。

这些算法可以根据样本数据的特征和类别信息建立数学模型,从而对未知数据进行分类。

Envi监督分类的步骤Envi监督分类主要包括数据准备、样本选择、分类器训练和分类结果评估等步骤。

下面将逐一介绍这些步骤的具体操作。

数据准备首先,用户需要准备用于分类的遥感图像数据。

Envi支持多种格式的遥感图像文件,如TIFF、JPEG等。

用户可以直接将图像文件导入到Envi中,也可以通过Envi的图像处理功能对图像进行预处理,如选择感兴趣区域、裁剪、去噪等。

样本选择样本是监督分类的基础,它是已标记的数据点,每个数据点都包括一组特征和其对应的类别。

在Envi中,用户可以使用绘制工具手动选择样本,也可以通过导入外部样本数据文件来自动选择样本。

在选择样本时,用户应尽量保证样本的代表性和多样性,以提高分类器的泛化能力。

分类器训练样本选择完成后,用户可以利用Envi提供的分类算法对样本数据进行训练,生成分类器模型。

用户可以选择不同的算法和参数来训练分类器,以达到最佳的分类效果。

在训练过程中,Envi会将样本数据划分为训练集和验证集,并根据验证集的分类精度调整模型参数,避免过拟合或欠拟合。

分类结果评估分类器训练完成后,用户可以将其应用于未标记的数据集,获得分类结果。

Envi提供了多种评估方法和指标,包括混淆矩阵、精确度、召回率等,用于评估分类结果的准确性和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ENVI监督分类报告
1、打开图像,查看基本信息
打开ENVI 软件,点击主菜单中的File –>Open Image File,打开“原始数据.img”文件,如下图所示。

点击“Map Info”可以查看影像得坐标系,分辨率等信息;点击RGB Color,R、G、B 分别是Layer3、Layer2、Layer1则以真彩色显示,R、G、B分别是Layer4、Layer3、Layer2则以标准假彩色显示,即红色通道显示近红外波段数据、绿色通道显示红色波段数据、蓝色通道显示绿色波段数据,这种情况下植被呈现红色。

2、监督分类
2.1定义训练样本
选择Basic Tools –> Region of Interest –> ROI Tool 来定义训练样本。

目视解译出五类地物:植被、水产、建筑物、水体、道路。

(1)用ROI Tools 创建感兴趣区如下图所示:
(2)评价训练样本:选择Options——Compute ROI Separability。

2.2执行监督分类
选择Classification->Supervised->[method]。

选最大似然法。

完成后加载新图:
2.3分类后处理
掩模截取广州市地区后,更改类别颜色,在主图像窗口中的显示菜单里,选择Tools > Color Mapping > Class Color Mapping,分别选取颜色。

3.地图制图
在影像窗口中,选择File->QuickMap->New QuickMap。

做相应设置,出图。

相关文档
最新文档