计量经济学论文(eviews分析)计量经济作业.(精选)

合集下载

EViews统计分析在计量经济学中的应用EViews概述

EViews统计分析在计量经济学中的应用EViews概述
拟合优度检验、F检验、预测
5/7/2023
EViews统计分析在计量经济学中的应用
2
2
EViews历史
EViews是由Quantitative Micro Software 〔QMS〕公司开发的,专门从事数据分析、回归 分析和预测的工具。EViews结合了电子表格和 相关的数据库技术以及传统统计软件分析功能, 并且使用了单击图形用户界面。EViews特点是 对于时间序列数据有较强的分析能力,另外在 预测分析、科学数据分析与评价、金融分析、 经济预测、销售预测和本钱分析等领域应用非 常广泛。
5/7/2023
EViews统计分析在计量经济学中的应用
22 22
图形操作
将图形插入文献中:Eviews可以将图形插入到 Word文档中。首先将图形翻开,然后点击 Eviews主画面顶部主按钮Edit/Copy/click弹出 对话框。选择〞Copy to clipboard〞,点击 OK,然后在Word文档中指指定位置粘贴即可。
EViews统计分析在计量经 济学中的应用EViews概述
1
:EViews简介
o 实验目的:熟悉和掌握Eviews在一元线性回 归模型中的应用。
o 实验数据:2019年中国各地区城市居民人均 年消费支出〔CS〕和可支配收入〔INC〕 〔相关数据在文件夹“书中资料/第3章〞〕 。
o 实验原理:普通最小二乘法(OLS) o 实验预习知识:普通最小二乘法、t检验、
可翻开下拉式菜单〔或再下
一级菜单,如果有的话〕,
点击某个选项电脑就执行对 应的操作响应〔File,Edit的 编辑功能与Word, Excel中的 相应功能相似〕
图1-1 EViews主窗口界面
5/7/2023

最新计量经济学论文Eviews

最新计量经济学论文Eviews

计量经济学期末课程设计辽宁科技大学工商管理学院级题目:恩格尔系数理论的实证分析—第1页—恩格尔系数理论的实证分析摘要:建议全面建设小康社会的指标体系包括经济方面4项指标、社会方面7项指标、环境方面3项指标、制度方面2项指标。

恩格尔系数是其中一个重要指标。

一般来说,居民收入水平越高,其恩格尔系数越小。

本文选用逐步回归方法定量分析影响城镇居民家庭恩格尔系数的因素,同时进一步研究现在消费中存在的问题。

影响恩格尔系数因素有很多,本文针对我国的城镇民的食物支出总额占消费支出总额的比例即恩格尔系数进行相关因素的分析,并建立计量经济模型,运用Eviews软件对所给数据分别进行了简单多元回归分析、多重共线性分析、异方差分析和自相关分析,最后得出众多因素对我国城镇居民家庭恩格尔系数的影响,从而得出相关的结论。

关键字:恩格尔系数逐步回归方法计量经济学消费支出总额一文献综述20世纪初期,我国民众消费重点是以吃穿等基本生存需求为主;90年代,食品、衣着消费支出比重下降,家用设备支出比重也已大大下降。

改革开发以来,随着中国经济的高速增长,人民是生活也逐渐得到改善,一方面,城镇和农村居民家庭人均可支配收入从1978年的343.4元和133.6元上升到2009年的17174.7元和5153.2元。

另一方面,城镇和农村居民家庭的恩格尔系数也从1978年的57.5%和67.7%下降到了36.5%和41.0%。

可见,人民生活水平总体上表达了由温饱到小康的历史性跨越。

根据联合国粮农组织的标准划分:恩格尔系数在60%以上为贫困,在50%~59%为温饱,在40%~49%为小康,在30%~39%为富裕,30%以下为最富裕。

对于我国目前的恩格尔系数来看,城镇居民基本上实现富裕,而农村居民只能到达小康,而从收入水平上来看,我国仍属于中低收入的国家,和恩格尔系数的分析结果有些出入。

对人民的消费与收入的构分析,恩格尔定律是否能得到实际经济发展的证实?中国人民生活水平的发展水平是否符合恩格尔定律呢?恩格尔系数与国民总收入〔亿元〕、全国城镇居民的卫生总费用〔元〕、全国城镇居民的教育经费情况费用〔元〕、城镇居民的居民消费价格指数〔%〕、城镇平均每户就业面〔%〕、城镇人均储蓄〔元〕存在着什么样的关系呢?这是本项目研究的主要目的。

计量经济学论文(eviews分析)计量经济作业

计量经济学论文(eviews分析)计量经济作业

我国旅游收入的计量分析一、经济理论陈述在研读了大量统计和计量资料的基础上,选择了三个大方面进行研究,既包括旅游人数,人均旅游花费和基本交通建设。

其中,在旅游人数这个解释变量的划分上,我们考虑到随着全球经济一体化的发展,越来越多的外国游客来中国旅游消费。

中国旅游的国际市场是个有发展潜力的新兴市场,尽管外国游客前来旅游的方式包罗万象而且消费能力也不尽相同,但从国际服务贸易的角度出发,我们在做变量选择时,运用国际营销的知识进行市场细分,划分了国际和国内两个市场。

这样,在旅游人数这个解释变量的最终确定上,我们选择了2X国内旅游人数,3X入境旅游人数。

这点选择除了理论支持外,在现实旅游业发展中我们也看到很多景区包括成都的近郊也有不少外国游客的身影。

所以,我们选取这两个解释变量等待下一步进行模型设计和检验。

另外,对于人均旅游花费,我们在进行市场细分时,没有延续前两个变量的选择模式,有几个原因。

首先,外国游客前来旅游的形式和消费方式各异且很难统计。

我们在花大力气收集数据后,仍然没有比较权威的统计数据资料。

其次,随着国家对农业的不断重视和扶持,我国农业有了长足发展。

农村居民纯收入增加,用于旅游的花费也有所上升。

而且鉴于农村人口较多,前面的市场细分也不够细化,在这个解释变量的确定上,我们选择农村人均旅游花费,既是从我国基本国情出发,也是对第一步研究分析的补充。

所以我们确定了4X城镇居民人均旅游花费和5X农村居民人均旅游花费。

旅游发展除了对消费者市场的划分研究,还应考虑到该产业的基础硬件设施。

在众多可选择对象中我们经分析研究结合大量文献资料决定从交通建设着手。

在我国,交通一般分布为公路,铁路,航班,航船等。

由于考虑到我国一般大众的旅游交通方式集中在公路和铁路上,为了避免解释变量的过多过繁以及可能带来的多重共线形等问题,我们只选取了前二者。

即确定了6X公路长度和7X铁路长度这两个解释变量。

其中,考虑到我国旅游业不断发展过程中,高速公路的修建也不断增多,在6X的确定过程中,我们已经将其拟合,尽量保证解释变量的完整和真实。

eviews_计量经济学论文——通货膨胀率影响因素计量分析

eviews_计量经济学论文——通货膨胀率影响因素计量分析

通货膨胀率影响因素计量分析一.经济理论概述在研读了大量统计和计量资料的基础上,选取了国民生产总值,职工平均工资,全社会固定资产投资总额,失业率解释变量来探究对通货膨胀率的影响,建立通货膨胀率影响因素的计量模型。

这里用居民消费价格指数作为反应通货膨胀率的指标。

(1)一般来说国民生产总值增加会导致通货膨胀率的上升;(2)职工平均工资增加,将导致职工消费的增加,又会导致国民生产总值的增加,两者之前可能会出现较高的相关性,要进行多重共线性检验。

(3)全社会固定资产投资总额对通货膨胀率的影响,可以从两个角度来分析。

第一种是通过分析投资的实质来分析。

投资能形成现实的货币流通量,又增加商品和劳务的产出,促进经济增长增加商品和劳务的供给。

第二种是投资过程会在商品和货币两个市场产生对通货膨胀率的影响。

固定资产投资膨胀会拉动对能源、原料等生产资料的大量需求,引发基础产品价格上涨,进而造成下游产品全面上涨。

固定资产投资会形成大量资金需求,并在国内银行信贷放松的情况下称为可能,引起货币供应量、信贷的超常规增长,造成物价增长。

(4)失业率与通货膨胀率的关系:根据短期菲利普斯曲线,两者是负相关关系,可以用总需求供给解释,在短期中物品与劳务的总需求增加引起物价上涨,产量增加。

产量越多,意味着就业越多,失业率下降,物价上涨引起通货膨胀,因此,总需求变动在短期中使通货膨胀和失业反方向变动。

而在长期菲利普斯曲线中,失业率与通货膨胀无关,失业率为自然失业率。

在长期中,总供给量只取决于它的劳动、资本和自然资源的供给,以及生产技术,因此总供给量不变,就业量不变,失业率不变,为经济摩擦下的自然失业率。

二.相关数据列1列2列3列4列5列6指标名称中国中国中国中国中国就业基本情况(年) CPI(年)城镇非私营单位就业人国内生产总值(年)全社会固定资产投资完成城镇登记失业率CPI平均工资:合计GDP全社会固定资产投资完成单位上年=100元亿元亿元%来源国家统计局国家统计局国家统计局国家统计局国家统计局1981102.50772.004,891.60961.00 3.80 1982102.00798.005,323.401,200.40 3.20 1983102.00826.005,962.701,369.06 2.30 1984102.70974.007,208.101,832.87 1.90 1985109.301,148.009,016.002,543.19 1.80 1986106.501,329.0010,275.203,120.60 2.00 1987107.301,459.0012,058.603,791.69 2.00 1988118.801,747.0015,042.804,753.80 2.00 1989118.001,935.0016,992.304,410.40 2.60 1990103.102,140.0018,667.804,517.00 2.50 1991103.402,340.0021,781.505,594.50 2.30 1992106.402,711.0026,923.488,080.10 2.30 1993114.703,371.0035,333.9213,072.30 2.60 1994124.104,538.0048,197.8617,042.10 2.80 1995117.105,348.0060,793.7320,019.30 2.90 1996108.305,980.0071,176.5922,913.50 3.00 1997102.806,444.0078,973.0324,941.10 3.10 199899.207,446.0084,402.2828,406.20 3.10 199998.608,319.0089,677.0529,854.70 3.10 2000100.409,333.0099,214.5532,917.70 3.10 2001100.7010,834.00109,655.1737,213.50 3.60 200299.2012,373.00120,332.6943,499.90 4.00 2003101.2013,969.00135,822.7655,566.60 4.30 2004103.9015,920.00159,878.3470,477.40 4.20 2005101.8018,200.00184,937.4088,773.60 4.20 2006101.5020,856.00216,314.40109,998.20 4.10 2007104.8024,721.00265,810.30137,323.90 4.00 2008105.9028,898.00314,045.40172,828.40 4.20 200999.3032,244.00340,902.81224,598.80 4.30 2010103.3036,539.00401,512.80278,121.90 4.10 2011105.4041,799.00473,104.00311,485.13 4.10 2012102.6046,769.00519,470.10374,694.74 4.10 2013102.6051,483.00568,845.20446,294.09 4.05三.计量经济模型的建立其中P——CPIY——国民生产总值W——职工平均工资I ——全社会固定资产投资总额U——失业率四、模型的求解和检验利用eviews软件进行计量回归,模型的F值为0.02,在5%的显著性水平下显著,但是发现I和U的t值较小,没有通过在5%的显著性水平下变量的显著性检验。

计量经济学eviews作业

计量经济学eviews作业

计量经济学eviews作业摘要:计量经济学eviews 作业I.简介- 计量经济学eviews 作业的背景和意义II.计量经济学eviews 软件的介绍- Eviews 软件的作用和特点- Eviews 软件在计量经济学中的应用III.计量经济学eviews 作业的步骤- 数据收集和处理- 建立模型和估计参数- 模型检验和优化- 结果分析和解释IV.计量经济学eviews 作业的实践应用- 具体案例分析- 结果展示和讨论V.总结- 计量经济学eviews 作业的收获和展望正文:计量经济学eviews 作业I.简介计量经济学是研究经济现象数量规律的学科,通过收集、处理、分析和解释经济数据,以揭示经济变量之间的关系和规律。

Eviews 软件是一款功能强大的计量经济学软件,广泛应用于经济学研究、实证分析、政策评估等领域。

在本篇文章中,我们将介绍计量经济学eviews 作业的相关内容。

II.计量经济学eviews 软件的介绍Eviews 软件是一款专业的计量经济学软件,具有强大的数据处理和分析功能。

它能够支持各种数据格式,包括时间序列数据、横断面数据和面板数据等。

Eviews 软件的特点如下:- 操作简便:界面友好,易于上手- 功能强大:支持多种计量经济学模型和方法- 结果可靠:提供丰富的统计检验和稳健性检验在计量经济学中,Eviews 软件可以用于建立各种模型,如线性回归模型、时间序列模型、面板数据模型等,以研究经济变量之间的关系。

III.计量经济学eviews 作业的步骤计量经济学eviews 作业主要包括以下几个步骤:1.数据收集和处理:收集所需数据,检查数据质量,进行数据清洗和处理。

2.建立模型和估计参数:根据研究目的和数据特点,选择合适的计量经济学模型,使用Eviews 软件进行参数估计。

3.模型检验和优化:对模型进行显著性检验、参数稳定性检验等,根据检验结果对模型进行优化。

4.结果分析和解释:分析模型结果,解释各经济变量之间的关系,撰写分析报告。

计量经济学案例分析(Eviews操作)

计量经济学案例分析(Eviews操作)

美股行情对A股的影响性分析——标普500与沪深300相关性分析摘要:本文主要通过分析标准普尔500指数与沪深300指数的相关性,以标普500指数为解释变量,以沪深300指数为被解释变量,利用Eviews软件,使用其中的最小二乘法对其进行线性回归分析,最终得出方程。

并对其进行显著性检验(F,t)、异方差检验、自相关性检验来验证方程的可靠性。

然后解释方程的经济意义,并利用软件对未来指数变动进行预测。

最后在未来几天比较预测结果与实际两个指数的变化情况,验证实际应用情况。

关键词:标普500、沪深300、Eviews、显著性检验、异方差检验、自相关性检验。

一、研究背景1.全球化大环境在经济全球化不断深入发展的今天,全球资本市场,尤其是中美两个超级大国之间的资本流通,早已彼此嵌入,密不可分。

全世界早有不少学者对中美资本流通做了深入研究。

但美国股市发展早于中国十几年,其内部的资金也远远超过中国股市,美国股市的资本流动势必会对中国股市产生一定影响,这种影响不仅体现在情绪面,更反映在指数变动方向上。

2.对外开放资本市场的QFII政策Qualified Foreign Institutional Investor,作为一种过渡性制度安排,QFII制度是在资本项目尚未完全开放的国家和地区,实现有序、稳妥开放证券市场的特殊通道。

外资对中国股市的影响早已不可忽视,而美国市场的变动也一定程度会影响在中国股市外资的操作行为。

所以研究两个指数的变动是很有意义的。

二、数据1.数据选择沪深两个市场各自均有独立的综合指数和成份指数,这些指数不能用来反映沪深两市的整体情况,而沪深300指数则同时考虑了两市的交易情况,是中国A股市场的“晴雨表”。

标准普尔500指数英文简写为S&P 500 Index,是记录美国500家上市公司的一个股票指数。

与道琼斯指数等其他指数相比,标准普尔500指数包含的公司更多,因此风险更为分散,能够反映更广泛的市场变化。

计量经济学论文(eviews分析)

计量经济学论文(eviews分析)

计量经济学论文(eviews分析)我国限额以上餐饮企业营业额的影响因素分析摘要:本文收集了1999年至2009年共11年的相关数据,选取餐饮企业数量、城镇居民人均年消费性支出、全国城镇人口数以及公路里程数作为解释变量构建模型,对我国限额以上餐饮企业营业额的影响因素进行分析。

利用Eviews软件对模型进行参数估计和检验,并加以修正,最后根据模型的最终结果进行经济意义分析,提出自己的看法。

关键词:餐饮企业营业额、影响因素、计量分析一、研究背景近十年来,投资者进入餐饮企业的数量不断增加。

在他们进入一个行业之前,势必要对该行业的营业额、营业利润等进行估计,当这些因素的估计值能够达到他们的预期时,他们才会对其进行投资。

由于餐饮企业的营业额是影响投资者是否进入餐饮业的一个重要因素,对于我国餐饮企业的营业额问题的深入研究就显得尤为必要,这有助于投资者作出合理的决策。

因此,本文进行了对我国限额以上餐饮企业营业额的计量模型研究。

二、变量的选取影响餐饮企业营业额的因素有很多,包括餐饮企业的数量、营业面积、从业人员、城镇居民人均年消费性支出、全国城镇人口数、餐饮企业的平均价格水平及公路里程数(表示交通状况)。

但综合考虑后,本文选取了其中的一部分变量(企业数、城镇居民人均年消费性支出、全国城镇人口数、公路里程数)进行研究,并对各个变量对餐饮企业营业额的影响进行预测。

1.企业数本文认为餐饮企业营业额与餐饮企业的数量有关,并预测两者之间呈正相关。

2.城镇居民人均年消费性支出本文认为餐饮企业营业额与城镇居民人均年消费性支出有关,并预测两者之间呈正相关。

3.全国城镇人口数本文认为餐饮企业营业额与全国城镇人口数有关,并预测两者之间呈正相关。

4.公路里程数本文认为餐饮企业营业额与公路里程数有关,并预测两者之间呈正相关。

三、相关数据本文收集了1999年至2009年共11年的相关数据,包括营业额(单位:亿元)、企业数(单位:个)、人均年消费性支出(单位:元)、全国城镇人口数(单位:万人)以及公路里程数(单位:万公里)。

计量经济学课程论文完整版

计量经济学课程论文完整版

计量经济学课程论文完整版计量经济学是经济学的重要分支之一,它通过运用数理统计和经济理论分析来研究经济现象和经济规律。

本文旨在探讨计量经济学在现代经济领域中的应用和意义。

首先,计量经济学通过建立数学模型和利用实证数据来分析经济学中的问题,能够帮助经济学家们更加深入地理解经济现象。

例如,利用计量经济学方法,可以对通货膨胀、失业率、经济增长率等经济指标进行分析,从而揭示出它们之间的内在联系和规律,为政府制定经济政策提供理论依据和实证支持。

其次,计量经济学在企业经济决策和市场预测方面也有重要作用。

许多企业利用计量经济学方法对市场需求、价格变动、产品销售等进行预测和分析,以便更好地制定市场营销策略和产品定价策略。

同时,投资者和金融机构也可以利用计量经济学方法来进行风险评估和投资组合优化,提高投资收益率和降低风险。

另外,计量经济学在社会政策评估和效果分析方面也具有重要价值。

政府部门可以利用计量经济学方法来评估各种社会政策的效果和影响,例如教育政策、医疗保健政策、社会福利政策等。

通过对政策实施前后的数据进行对比分析,可以客观评价政策的效果,为政府改进政策提供参考依据。

总的来说,计量经济学在现代经济领域中发挥着不可替代的作用。

它不仅可以增强人们对经济现象的理解,促进经济学理论的发展,还能够为企业经济决策、市场预测、社会政策评估等提供有力支持。

因此,进一步深化对计量经济学的研究和应用,将会对推动经济领域的发展和进步起到积极作用。

此外,计量经济学也能够帮助经济学家们更准确地理解市场行为与市场效率。

通过利用计量经济学方法,可以对供需关系、价格弹性、市场竞争等因素进行经验分析,为市场营销、产业咨询和市场调研提供准确的数据基础和理论支持。

这对于企业在竞争激烈的市场环境中制定战略计划,提高市场竞争力具有重要意义。

此外,计量经济学还在国际贸易和全球经济分析方面发挥着重要作用。

国际贸易中的各种关贸协定、贸易政策和汇率波动都会对全球经济产生复杂的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国旅游收入的计量分析一、经济理论陈述在研读了大量统计和计量资料的基础上,选择了三个大方面进行研究,既包括旅游人数,人均旅游花费和基本交通建设。

其中,在旅游人数这个解释变量的划分上,我们考虑到随着全球经济一体化的发展,越来越多的外国游客来中国旅游消费。

中国旅游的国际市场是个有发展潜力的新兴市场,尽管外国游客前来旅游的方式包罗万象而且消费能力也不尽相同,但从国际服务贸易的角度出发,我们在做变量选择时,运用国际营销的知识进行市场细分,划分了国际和国内两个市场。

这样,在旅游人数这个解释变量的最终确定上,我们选择了2X国内旅游人数,3X入境旅游人数。

这点选择除了理论支持外,在现实旅游业发展中我们也看到很多景区包括成都的近郊也有不少外国游客的身影。

所以,我们选取这两个解释变量等待下一步进行模型设计和检验。

另外,对于人均旅游花费,我们在进行市场细分时,没有延续前两个变量的选择模式,有几个原因。

首先,外国游客前来旅游的形式和消费方式各异且很难统计。

我们在花大力气收集数据后,仍然没有比较权威的统计数据资料。

其次,随着国家对农业的不断重视和扶持,我国农业有了长足发展。

农村居民纯收入增加,用于旅游的花费也有所上升。

而且鉴于农村人口较多,前面的市场细分也不够细化,在这个解释变量的确定上,我们选择农村人均旅游花费,既是从我国基本国情出发,也是对第一步研究分析的补充。

所以我们确定了4X城镇居民人均旅游花费和5X农村居民人均旅游花费。

旅游发展除了对消费者市场的划分研究,还应考虑到该产业的基础硬件设施。

在众多可选择对象中我们经分析研究结合大量文献资料决定从交通建设着手。

在我国,交通一般分布为公路,铁路,航班,航船等。

由于考虑到我国一般大众的旅游交通方式集中在公路和铁路上,为了避免解释变量的过多过繁以及可能带来的多重共线形等问题,我们只选取了前二者。

即确定了6X公路长度和7X铁路长度这两个解释变量。

其中,考虑到我国旅游业不断发展过程中,高速公路的修建也不断增多,在6X的确定过程中,我们已经将其拟合,尽量保证解释变量的完整和真实。

二、相关数据三、计量经济模型的建立Y=c(1)+c(2)*X2+c(3)*X3+c(4)*X4+c(5)*X5+c(6)*X6+U我们建立了下述的一般模型:其中Y——1994-2003年各年全国旅游收入C(1)——待定参数X——国内旅游人数(万人)2X——入境旅游人数(万人)3X——城镇居民人均旅游花费(元)4X——农村居民人均旅游花费(元)5X——公路长度(含高速)(万公里)6X——铁路长度(万公里)7U——随即扰动项四、模型的求解和检验利用Eviews软件,采用以上数据对该模型进行OLS回归,结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 01:56Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.C -340.5047 1357.835 -0.250770 0.0882X2 -0.001616 0.013520 -0.119529 0.1524X3 0.232358 0.128017 1.815050 0.1671X4 6.391052 1.716888 3.722463 0.0337X5 -1.046757 1.224011 -0.855187 0.0453X6 5.673429 6.667266 0.850938 0.4573X7 -474.3909 355.7167 -1.333620 0.2745R-squared 0.996391 Mean dependent var 2494.200Adjusted R-squared 0.989174 S.D. dependent var 980.4435S.E. of regression 102.0112 Akaike info criterion 12.28407Sum squared resid 31218.86 Schwarz criterion 12.49588Log likelihood -54.42035 F-statistic 138.0609Durbin-Watson stat 3.244251 Prob(F-statistic) 0.000944由此可见,该模型可决系数很高,F检验显著,但是2X、6X、7X的系数t 检验不显著,且7X的系数符号不符合经济意义,说明存在严重的多重共线性。

所以进行以下修正:〈一〉.计量方法检验及修正多重共线性的检验:首先对Y进行各个解释变量的逐步回归, 由最小二乘法,结合经济意义和统计检验得出拟合效果最好的两个解释变量如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:00Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.C -3193.041 606.2101 -5.267217 0.0012X4 9.729003 1.435442 6.777703 0.0003X5 -1.197036 2.059371 -0.581263 0.1293R-squared 0.957285 Mean dependent var 2494.200Adjusted R-squared 0.945081 S.D. dependent var 980.4435S.E. of regression 229.7654 Akaike info criterion 13.95532Sum squared resid 369544.9 Schwarz criterion 14.04609Log likelihood -66.77660 F-statistic 78.43859Durbin-Watson stat 0.791632 Prob(F-statistic) 0.000016继续采用逐步回归法将其余解释变量代入,得出拟合效果最好的三个解释变量,结果如下:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:01Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.C -3391.810 514.1119 -6.597416 0.0006X2 0.029414 0.014525 2.025042 0.0393X4 6.355459 2.050175 3.099959 0.0211X5 -0.284542 1.772604 -0.160522 0.1077R-squared 0.974627 Mean dependent var 2494.200Adjusted R-squared 0.961940 S.D. dependent var 980.4435S.E. of regression 191.2739 Akaike info criterion 13.63446Sum squared resid 219514.3 Schwarz criterion 13.75550Log likelihood -64.17232 F-statistic 76.82334Durbin-Watson stat 1.328513 Prob(F-statistic) 0.000035以上模型估计效果最好,继续逐步回归得到以下结果:Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:40Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.C -1973.943 441.5947 -4.470034 0.0066X2 -0.005095 0.011431 -0.445729 0.6744X3 0.328279 0.080682 4.068802 0.0096X4 4.665485 1.158665 4.026602 0.0101X5 -1.714020 0.999029 -1.715686 0.1469R-squared 0.994114 Mean dependent var 2494.200Adjusted R-squared 0.989406 S.D. dependent var 980.4435S.E. of regression 100.9150 Akaike info criterion 12.37329Sum squared resid 50919.23 Schwarz criterion 12.52458Log likelihood -56.86644 F-statistic 211.1311Durbin-Watson stat 3.034041 Prob(F-statistic) 0.000009各项拟合效果都较好。

虽然2X的t检验不是很显著,但考虑到其经济意义在模型中的重要地位,暂时保留。

继续引入6X。

Dependent Variable: YMethod: Least SquaresDate: 12/23/10 Time: 02:41Sample: 1994 2003Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.C -2034.155 525.2137 -3.873004 0.0179X2 -0.007033 0.014095 -0.498977 0.6440X3 0.299562 0.128626 2.328946 0.0803X4 4.787986 1.339888 3.573423 0.0233X5 -1.511851 1.282385 -1.178937 0.1638X6 2.062334 6.659247 0.309695 0.7723R-squared 0.994252 Mean dependent var 2494.200Adjusted R-squared 0.987067 S.D. dependent var 980.4435S.E. of regression 111.4976 Akaike info criterion 12.54959Sum squared resid 49726.89 Schwarz criterion 12.73114Log likelihood -56.74797 F-statistic 138.3830Durbin-Watson stat 3.130122 Prob(F-statistic) 0.000144根据以上回归结果可得,6X的引入使得模型中2X、6X的t检验均不显著,再考察二者的相关系数为0.949132,说明2X、6X高度相关,模型产生了多重共线性,因此将6X去掉。

相关文档
最新文档