2019考研数学分析

合集下载

北京大学2019年数学分析试题及解答

北京大学2019年数学分析试题及解答
n→+∞
=
l, lim xn n→+∞
=
L,

{xn}
中有无穷项小于等于
l+c 2
,
有无穷项
大于
c.
从而
|xn+1 − xn|
有无穷多项大于等于
c−l 2
,
矛盾.
类似地,
存在
n2
> n1
使得
xn1 +c 2
< xn2
⩽ c.

此类推可取一个子列
{xnk }
,|xnk

c|

c−l 2k
,
此时
{xnk }
nπ 4
+
sin
nπ 4
)np
,
∑ +∞
sin
nπ 4
np
在 p > 1 时绝对收敛, 在 0 < p ⩽ 1 时条件收敛.
n=1
sin2
nπ 4
(np
+
sin
nπ 4
)np

sin2
nπ 4
n2p
=
1
− cos n2p
nπ 2
,
(n

+∞),
∑ +∞
sin2
nπ 4
因此 n=1
(np +sin
nπ 4
∫ +∞
这与
f ′(x) dx 有意义的 Cauchy 收敛原理矛盾.
1
注 裴礼文的《数学分析中的典型问题与方法》第二版第 249 页例 3.3.11 与本题几乎完全相同, 那里有另外一
种证明方法. 我写的这个解法是源于一个很经典的题目, 可以见《数学分析习题课讲义》上册第 396 页命题

2019考研管理类联考数学考试内容分析

2019考研管理类联考数学考试内容分析

2019考研管理类联考数学考试内容分析针对考试内容方面,通过数学大纲可以看到,一共考查了算术、代数、几何、数据分析四个大部分的内功,今天针对第一部分算术这一章节,做简要的分析。

大纲内容如下:(一)算术1.整数:整数及其运算、整除、公倍数、公约数、奇数、偶数、质数、合数2.分数、小数、百分数3.比与比例4.数轴与绝对值对于第一章节来说,出题内容比较简单,重点理解概念,比如公约数、公倍数、质数、合数等等的概念要理解到位,绝对值是本章的难点,掌握绝对值的定义、非负性、自反性、三角不等式这些重要内容。

出题方式上,单纯的代数试题比较少,大多以应用题出现,比值问题和比与比例问题大多是以应用题中的增长率问题出现的,而不定方程的应用题则考查了考生对于奇偶数的运算性质、整除运算性质以及质数合数性质的理解和运用。

代数类试题则会从比例的合比分比定理、绝对值等方面以及质数合数进行考查,代数类试题出题较少,每年会有1道题至2道题,甚至没有,全部以应用题的方式来考查学生对于这部分的掌握情况。

而每年应用题的数量是在6题至8题之间,所以算术这一章节的内容重在应用,会解应用题这类题型。

(二)代数1.整式:整式及其运算、整式的因式与因式分解2.分式及其运算3.函数:集合、一元二次函数及其图像、指数函数、对数函数4.代数方程:一元一次方程、一元二次方程、二元一次方程组5.不等式:不等式的性质、均值不等式、不等式求解6.数列、等差数列、等比数列对于这部分内容,一般会考查5至7题。

整式与分式是基础,重在应用,比如在考察一元二次方程的韦达定理时,把所求的式子化为两个根和或者两根积的形式,需要用到整式的乘法公式,在求解一元二次方程或者不等式时,需要用到整式的因式分解,故整式是函数、方程、不等式的基础。

单独以此命题的题目较少,每年至多会有1道题,大部分的考点是乘法公式以及余式定理。

分式,主要在于进行通分,考查分式的分母不能为0,有时也会和比例问题结合进行考查。

2019年全国硕士研究生招生考试数学二解析

2019年全国硕士研究生招生考试数学二解析

2019年全国硕士研究生招生考试
数学(二)
(科目代码:301)
考生注意事项
1、答题前,考生须在试题册指定位置上填写考生编号和考生姓名;在答题卡指定位置上填写报考单位,考生姓名和考生编号,并涂写考生编号信息点。

2、选择题的答案必须涂写在答题卡相应题号和选项上,非选择题的答案必须书写在答题卡指定位置的边框区域内。

超出答题区域书写的答案无效;在草稿纸、试题册上答案无效。

3、填(书)写必须使用黑色字迹签字笔书写,字迹工整、笔迹清楚;涂写部分必须使用2B铅笔填涂。

4、考试结束,将答题卡和试题册按规定交回。

(以下信息考生必须认真填写)
考试编号
考生姓名。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答
B 7 ! AB BA
, 2. 定义 Mn.C / 上的变
(1)求变换 T 的特征值. (2)若 A 可对角化,证明 T 也可对角化.
四.(20 分) A 为 n 阶实对称矩阵,令
S D fX jX T AX D 0, X 2 Rng
(1)求 S 为 Rn 中的一个子空间的充要条件并证明. (2)若 S 为 Rn 中的一个子空间,求 di mS .
C pn n
二.(15 分) 设 f .x/ 2 C Œa, b,f .a/ D f .b/,证明 9xn, yn 2 Œa, b, s.t . lim .xn yn/ D n!1 0,且 f .xn/ D f .yn/.
三.(15 分) 证明
Xn .
kD0
1/k
Cnk
k
C
1 m
C
1
D
X m .
kD0
1/k
Cmk
k
C
1 n
C
1
其中m, n是正整数
Y 1
X 1
四.(15 分) 无穷乘积 .1 C an/ 收敛,是否无穷级数 an 收敛?若是,证明这个
nD1
nD1
结论;若不是,请给出反例.
X 1
ż1
五.(15 分) 设 f .x/ D xn ln x,计算 f .x/dx.
0
nD1
六.(15 分) 设定义 .0, C1/ 上的函数 f .x/ 二阶可导,且 lim f .x/ 存在,f 00.x/ 有 x!C1 界,证明 lim f 0.x/ D 0. x!C1
(1)证明存在正交矩阵 P 使得
0
P T AP
D
BB@
a 0
0
1

2019管理类综合联考数学真题全面分析

2019管理类综合联考数学真题全面分析

2019管理类综合联考数学真题全面分析——跨考教育初数教研室张亚男今天刚刚考完管综,有请跨考教育初数教研室名师张亚男为各位19、20考生详细分析真题考情。

一、难度分析纵观历年真题,2019管综数学试题难度属于中等偏上,与18、17、16三年真题相比要难。

25道题难易分布如下:简单题14道;中等题10道;难题1道。

二、计算量大各位考生上午考试时,可能感觉19试卷计算量比之前的真题要大。

真题中有几道计算量大的题,比如第7题古典概率,求分子需要反面穷举6次;比如第4题求三角形中线,用了4次勾股定理,而且中间数值都是不好的分数;比如压轴题24题,需要求很多点,一是含参直线过定点,二是k=-1时第一条第三条直线交点,三是结论的圆盘与第二条直线的交点等等,压轴题计算量大。

三、秒杀法门为了帮助考生抢时间,按时完成初数部分的真题,各位应当用上跨考上课讲到的秒杀技巧。

19真题主要用到了以下快速解法,“特值法”、“代选项验证”、“穷举”、“举反例”,各位用好这几种方法,最少能抢到7道题的时间,抢回来十几分钟用于其他部分解答,是争取最高分的不二法门。

四、章节侧重第一章、第三章各出1道题;第二章、第五章各出3道题;第六章4道题;第四章6道题;第七章7道题。

今年相较过去三年,各个章节考题量有所变化。

其中第二章、第五章相对往年题量增多,平均增多1道题;第三章、第六章题量降低,平均降低2道题;第四章、第七章与往年持平。

难度具体到每个章节情况如下:第一章题目简单,而且可以举反例,进而选E;第二章1道简单题,2道中等题;第三章1道简单的方程题;第四章2个工程题简单,1个行程题简单,1个比例题简单,1个约数倍数中等,1个不定方程中等可以通过穷举试值;第五章1个构造的中等,1个中项性质简单,1个求和的简单;第六章1个排列组合题简单可以反面解题,1个古典概率中等可以穷举,2个统计题简单;第七章3道解析几何,其中1个对称题简单,1个位置关系题简单,1到位置关系题压轴难题;3道平面几何,其中1道求中线题中等偏上,1道求正六边形面积题简单,1道三角形面积题中等。

2019考研数学大纲解析及后期备考指导

2019考研数学大纲解析及后期备考指导

2019考研数学大纲解析及后期备考指导来源:文都教育郭传德老师各位文都学员以及各位网友:大家好!我是文都的数学老师郭传德。

在我们的焦急等待中,考研数学的考试大纲在今天终于颁发了。

和我先前预测的一样,今年的考试大纲与去年相比,没有发生任何变化,考试的内容与试卷的结构和去年完全一样。

从2009年以后,考研数学的大纲就没有发生实质性的改变,因此考试出题的风格和特点也会延续往年的特征。

既然考试大纲没有发生任何变化,同学们只需要按照原来的计划安心复习即可。

在读大纲时,同学们千万不要死扣字眼儿,很多同学认为大纲中所写“了解”的部分一般是不考的,实际上这样的理解是有偏差的。

大纲中明确指出来掌握和理解的部分,要求的层次最高,这也是常出考题的地方;大纲中要求了解的部分,也有出题考察的可能性,只是出题考察的概率相对较低而已。

总之,只要是大纲中出现的考点都要好好复习,除非那些连续多年都没有出题考过的,同学们可少花时间。

关于考试的重点、难点及热点,在暑期上课期间,授课老师肯定都给大家讲过,在这儿我就不再重复。

我想借这个解析大纲的机会,给大家提几点复习的建议.第一点:希望同学们合理安排好复习时间。

建议同学们从现在到11月中上旬,再进行一轮全面、系统的复习。

希望大家以汤家凤老师编著的《考研数学复习大全》为蓝本,按照章节再进行一轮拉网式的复习。

在此过程中,要注意两个关键词:“全面”,“系统”。

“全面”是指:只要在大纲中所涉及的知识点都要复习,不能听某某老师或某同学说这些知识点不怎么考或考的比较少,从而放弃了对这些知识点的复习。

一定要严格按照大纲的要求来复习,对于每个知识点都不能放过。

“系统”是指:在复习每个知识点的时候,要弄清楚关于这个知识点,有哪些常用的结论,有哪一些常见的题型?有哪一些常见解题方法?要做到清晰化,条理化。

从11月中上旬开始到12月中下旬,主要以真题为主,通过做真题来查缺补漏。

即使做过一遍,建议同学们再做一遍。

2019年数学考研数学分析各名校考研真题及答案

2019年数学考研数学分析各名校考研真题及答案

考研数学分析真题集目录 南开大学 北京大学 清华大学浙江大学华中科技大学一、,,0N ∃>∀ε当N n >时,ε<>∀m a N m ,证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a ,a a kn k =∞→lim ,所以,ε2<-+-≤-a a a a a a k k n n n n二 、,,0N ∃>∀ε当N x >时,ε<-)()(x g x f ,,0,01>∃>∀δε当1'''δ<-x x 时,ε<-)''()'(x f x f对上述,0>ε当N x x >'','时,且1'''δ<-x xε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以,0,02>∃>∀δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连续函数一定一致收敛,在],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取},m in{21δδδ=即可。

三、由,0)('',0)('<>x f a f 得,0)('<x f 所以)(x f 递减,又2))((''21))((')()(a x f a x a f a f x f -+-+=ξ,所以-∞=+∞→)(lim x f x ,且0)(>a f ,所以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。

2019考研数学真题近十年考题路线分析语文

2019考研数学真题近十年考题路线分析语文

)高数部分考研数学真题近十年考题路线分析()的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命2019-201910年(以下给出了《高等数学》每章近题的频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。

高等数学)④占三部分分值之比重:60%分③占三部分题量之比重:53%(①10年考题总数:117题②总分值:764函数、极限、连续第一章9%④占第一部分分值之比重:)分③占第一部分题量之比重:12%(①10年考题总数:15题②总分值:692019)1∞型极限(一(1),题型1 求2019)2019;一(1),题型2 求0/0型极限(一(1),2019)∞型极限(一(1),题型3 求∞-2019)2),2019;三,题型4 求分段函数的极限(二(2019);二(8),题型5 函数性质(奇偶性,周期性,单调性,有界性)的判断(二(1),20192019)无穷小的比较或确定无穷小的阶(二(7),题型62019);三(16),2019;六(1),2019;四,2019题型7 数列极限的判定或求解(二(2),2019)求n项和的数列极限(七,题型82019)函数在某点连续性的判断(含分段函数)(二(2),题型9一元函数微分学第二章)22%④占第一部分分值之比重:17% ②总分值:136分③占第一部分题量之比重:(①10年考题总数:26题)7),2019题型1 与函数导数或微分概念和性质相关的命题(二()7),2019;二(3),2019;二(题型2 函数可导性及导函数的连续性的判定(五,2019 )1),2019题型 3 求函数或复合函数的导数(七()),2019题型4 求反函数的导数(七(1)),20195 求隐函数的导数(一(2题型)),2019题型6 函数极值点、拐点的判定或求解(二(7)),2019),2019;二(3题型7 函数与其导函数的图形关系或其他性质的判定(二(1 )),2019 8 函数在某点可导的判断(含分段函数在分段点的可导性的判断)(二(2题型2019)2019;一(1),题型9 求一元函数在一点的切线方程或法线方程(一(3),2019;四,2019)2019;二(8),题型10 函数单调性的判断或讨论(八(1),2019);三(15),),2019;八(2),2019题型11不等式的证明或判定(二(2),2019;九,2019;六,2019;二(1 )),2019,2019;三(18;题型12在某一区间至少存在一个点或两个不同的点使某个式子成立的证明(九,2019七(1))18),2019题型13 方程根的判定或唯一性证明(三()),2019曲线的渐近线的求解或判定(一(题型14 1一元函数积分学第三章)④占第一部分分值之比重:8%分③占第一部分题量之比重:10%年考题总数:(①1012题②总分值:67 2019)2019;一(2),题型 1 求不定积分或原函数(三,2019)2 函数与其原函数性质的比较(二(8),题型)17),20191),2019;一(),2019;三(题型 3 求函数的定积分(二(3 )),20192019求变上限积分的导数(一(2),;二(10题型4)),2019 5 求广义积分(一(1题型2019)2019;三,2019;六,题型6 定积分的应用(曲线的弧长,面积,旋转体的体积,变力做功等)(七,向量代数和空间解析几何第四章1%)③占第一部分题量之比重:分2%④占第一部分分值之比重:②总分值:年考题总数:(①103题15 )),20191题型 1 求直线方程或直线方程中的参数(四(2019)),求点到平面的距离(一(2题型4页 1 第)求直线在平面上的投影直线方程(三,2019题型3)求直线绕坐标轴的旋转曲面方程(三,2019题型4多元函数微分学第五章)④占第一部分分值之比重:12%98分③占第一部分题量之比重:16%(①10年考题总数:19题②总分值:;20192019;四,2),2019;四,多元函数或多元复合函数的偏导的存在的判定或求解(二(题型11),2019;一()(Ⅰ)),2019),2019;三(18二(9 )),2019),2019;二(10题型2 多元隐函数的导数或偏导的求解或判定(三,2019;三(19 )),2019),2019;二(1题型3 多元函数连续、可导与可微的关系(二(2 2019)2),2019;一(),题型4 求曲面的切平面或法线方程(一(2 2019)2019;二(10),2019;二(3),2019;三(19),题型5 多元函数极值的判定或求解(八(2),2019)2019;一(3),题型 6 求函数的方向导数或梯度或相关问题(八(1),2019)题型7 已知一二元函数的梯度,求二元函数表达式(四,多元函数积分学第六章22%)③占第一部分题量之比重:23%④占第一部分分值之比重:②总分值:年考题总数:27题170分(①10 2019);三(15),1 求二重积分(五,2019;三(15),2019题型2019);二(8),),2019;二(10),2019交换二重积分的积分次序(一(题型2 3 2019)求三重积分(三(1),题型 3)),求对弧长的曲线积分(一(32019题型4),3),2019;一(;五,2019;六,2019;六(2题型5求对坐标的曲线积分(三(2),2019;六,2019;四,2019 )19),20192019;三()6 求对面积的曲面积分(八,2019题型)3),2019;一(4),2019;一(题型7 求对坐标的曲面积分(三(17),2019 )),2019题型8 曲面积分的比较(二(2)(Ⅰ)),20192019;五,2019;三(19题型9 与曲线积分相关的判定或证明(六(1),2019 (Ⅱ)),;三(19题型10 已知曲线积分的值,求曲线积分中被积函数中的未知函数的表达式(六,2019)),2019 11 求函数的梯度、散度或旋度(一(2题型)重积分的物理应用题(转动惯量,重心等)(八,2019题型12无穷级数第七章16%)③占第一部分题量之比重:17%④占第一部分分值之比重:10年考题总数:20题②总分值:129分(①;),20192019;二(920192019;二(3),;二(2),题型1无穷级数敛散性的判定(六,2019;八,2019;九(2),2019);二(9),三(18),2019 )16),20192;七(),2019;四,2019;三(题型2 求无穷级数的和(九(1),2019;五,2019,)(16三2019;四,2019;(一求函数的幂级数展开或收敛域或判断其在端点的敛散性(2),2019;七,2019;五,题型3 )),20192019;三(17 ));2019),2019;一(34 题型求函数的傅里叶系数或函数在某点的展开的傅里叶级数的值(二(3 常微分方程第八章10%)③占第一部分题量之比重:1%④占第一部分分值之比重:10年考题总数:15题②总分值:80分(①)18(Ⅱ)),2019),),2019;一(22019;三(求一阶线性微分方程的通解或特解(六,题型12019;一(2 )),20192019二阶可降阶微分方程的求解(一(3),;一(3题型2)),2019 3 求二阶齐次或非齐次线性微分方程的通解或特解(一(3题型2019)4 已知二阶线性齐次或非齐次微分方程的通解或特解,反求微分方程(一(1),题型)4),2019 题型5 求欧拉方程的通解或特解(一()2019;三(16),201920196 题型常微分方程的物理应用(三(3),;五,2019;八,);五,2),20192019通过求导建立微分方程求解函数表达式或曲线方程(四(题型7)(线代部分考研数学真题近十年考题路线分析页 2 第)的具体考题题型,可以使考生清晰地了解和把握各章出题的方式、命题的年(2019-2019以下给出了《线性代数》每章近10 频率及其分值比重,在全面复习的过程中,也不失对重点知识的明确和强化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019考研:同样是数学,为什么区分数一、数二和数三?
很多备考19考研学生肯定会不了解为什么数学考试要区分数一、数二和数三,它们有什么区别,今天凯程老师对此问题做了整理,希望可以对同学们有所帮助。

一、试卷比例结构不同
数一:
高等数学56%
线性代数22%
概率论与数理统计22%
试卷题型结构为:
单选题8小题,每题4分,共32分
填空题6小题,每题4分,共24分
解答题(包括证明题)9小题,共94分
数二:
高等数学78%
线性代数22%
试卷题型结构为:
单项选择题选题8小题,每题4分,共32分
填空题6小题,每题4分,共24分
解答题(包括证明题)9小题,共94分
数三:
微积分56%
线性代数22%
概率论与数理统计22%
试卷题型结构为:
单项选择题选题8小题,每题4分,共32分
填空题6小题,每题4分,共24分
解答题(包括证明题)9小题,共94分
二、适用专业不同
数一:
一、工学门类的力学,机械工程,光学工程,仪器学与技术,冶金工程,动力学工程及工程物理,电气工程,电子科学与技术,信息与通信工程,控制科学与工程,计算机科学与技术,土木工程,水利工程,测绘科学与技术,交通运输工程,船舶与海洋工程,航空宇航科学与技术,兵器科学与技术,核科学与技术,生物医学工程等一级学科中所有的二级学科,专业。

二、工学门类的材料与工程,化学工程与技术,地质资源与地质工程,矿业工程,石油与天然气工程,环境科学与工程等一级学科中对数学要求较高的二级学科,专业。

三、管理学门类中的管理科学与工程一级学科。

数二:
工学门类的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程第一级学科中所有的二级学科、专业。

数三:
一、经济学门类的理论经济学一级学科中的所有二级学科、专业;
二、经济学门类的应用经济学一级学科中的统计学科、专业、统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、财政学(含税收学)、金融学(含保险学)、产业经济、国际贸易学、劳动经济学、国防经济。

三、管理学门类的工程管理一级学科中的二级学科、专业;企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理。

四、管理学门类的农林经济管理一级学科中的所有二级学科、专业。

相关文档
最新文档