第二章轴向拉压部分例题

合集下载

材料力学习题册答案-第2章-拉压

材料力学习题册答案-第2章-拉压
第二章 轴向拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=

=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้

材料力学习题A

材料力学习题A

轴的许用单位长度扭转角 [θ ] = 2 o /m 。试校核该轴的强度和刚度。 M e3 M e2 Me1
A C D
1m
B
0.5m 0.3m
4-2
教学班序号
专业、 专业、班级
学号
姓名
成绩
4-5 图示外径 D = 100 mm 、内径 d = 80 mm 的空心圆轴与直径 D1 = 80 mm 的 实 心 圆 轴 用 键 相 连 。 轴 的 两 端 作 用 有 外 力 偶 矩
P
φ 40
400
φ 20
. .
F=40kN
800
. .
9
.
φ 80
2-4
教学班序号
专业、 专业、班级
学号
姓名
成绩
第三章 材料的学性质 拉压杆的强度计算
3-1 图示水压机,若两根立柱材料的许用应力为 [σ ] = 80 MPa , 试校核立柱的强度。
. .
3-2 图示油缸盖与缸体采用 6 个螺栓连接。已知油缸的内径 D = 350 mm ,油压 p = 1 MPa 。若螺栓材料的许用应力 [σ ] = 40 MPa , 试求螺栓的内径。
C
3-4 图示铰接正方形结构,各杆的材料均为铸铁,其许用压应 力与许用拉应力的比值为 [σ c ] [σ t ] = 3 ,各杆的横截面面积均为 A。 试求该结构的许用载荷 [ F ] 。
F A
.
D a
.
B
45
30 A F
C a
B F
3-2
教学班序号
专业、 专业、班级
学号
姓名
成绩
3-5 图示横担结构, 小车可在梁 AC 上移动。 已知小车上作用的 载荷 F = 15 kN , 斜杆 AB 为圆截面钢杆, 钢的许用应力 [σ ] = 170 MPa 。 若载荷 F 通过小车对梁 AC 的作用可简化为一集中力, 试确定斜杆 AB 的直径 d。

材料力学轴向拉压题目+答案详解

材料力学轴向拉压题目+答案详解

2-4. 图示结构中,1、2两杆的横截面直径分别为10mm 和20mm ,试求两杆内的应力。

设两根横梁皆为刚体。

解:(1)以整体为研究对象,易见A 处的水平约束反力为零; (2)以AB 为研究对象由平衡方程知0===A B B R Y X(3)以杆BD 为研究对象由平衡方程求得KNN N NY KNN N mC20010 01001101 021211==--===⨯-⨯=∑∑(4)杆内的应力为MPa A N MPa A N 7.63204102012710410102322223111=⨯⨯⨯===⨯⨯⨯==πσπσ2-19. 在图示结构中,设AB 和CD 为刚杆,重量不计。

铝杆EF 的l 1=1m ,A 1=500mm 2,E 1=70GPa 。

钢杆AC 的l 2=,A 2=300mm 2,E 2=200GPa 。

若载荷作用点G 的垂直位移不得超过。

试求P 的数值。

解:(1)由平衡条件求出EF 和AC 杆的内力P N N N P N N AC EF AC4332 2112=====(2)求G 处的位移22221111212243)ΔΔ23(21)ΔΔ(21Δ21ΔA E l N A E l N l l l l l l A C G +=+=+== (3)由题意kNP P P A E Pl A E Pl mml G 1125.2300102001500500107010009212143435.233222111≤∴≤⨯⨯⨯+⨯⨯⨯⨯=⨯⨯+⨯⨯≤ 2-27. 在图示简单杆系中,设AB 和AC 分别是直径 为20mm 和24mm的圆截面杆,E=200GPa ,P=5kN ,试求A 点的垂直位移。

解:(1)以铰A 为研究对象,计算杆AB 和杆AC 的受力kN N kN N AC AB 66.3 48.4==(2)两杆的变形为()伸长mm πEA l N l ABAB AB AB201.04201020045cos 20001048.42303=⨯⨯⨯⨯⨯==Δ ()缩短mm πEA l N l ACAC AC AC 0934.04241020030cos 20001066.32303=⨯⨯⨯⨯⨯==Δ (3)如图,A 点受力后将位移至A ’,所以A 点的垂直位移为AA ’’mmctg A A l A A AA A A mmA A ctg A A ctg A A A mm AA AA AA AA A A A A l l AB A AB AC 249.00355.0284.0 4545sin /Δ 035.0 4530A 0972.030sin /45sin /AΔΔAA ΔAA 00330043010243434321=-='''-=''-=''=∴='''∴'''+'''==-=-='==δ 又中在图中2-36. 在图示结构中,设AC 梁为刚杆,杆件1、2、3的横截面面积相等,材料相同。

材料力学第二章 轴 向拉压习题及答案

材料力学第二章 轴 向拉压习题及答案

第二章轴向拉压一、选择题1.图1所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将( D)A.平动B.转动C.不动D.平动加转动2.轴向拉伸细长杆件如图2所示,其中1-1面靠近集中力作用的左端面,则正确的说法应是( C)A.1-1、2-2面上应力皆均匀分布B.1-1、2-2面上应力皆非均匀分布C.1-1面上应力非均匀分布,2-2面上应力均匀分布D.1-1面上应力均匀分布,2-2面上应力非均匀分布(图1)(图2)3.有A、B、C三种材料,其拉伸应力—应变实验曲线如图3所示,曲线( B)材料的弹性模量E大,曲线( A )材料的强度高,曲线( C)材料的塑性好。

4.材料经过冷作硬化后,其( D)。

A.弹性模量提高,塑性降低B.弹性模量降低,塑性提高C.比例极限提高,塑性提高D.比例极限提高,塑性降低5.现有钢、铸铁两种杆材,其直径相同。

从承载能力与经济效益两个方面考虑,图4所示结构中两种合理选择方案是( A)。

A.1杆为钢,2杆为铸铁B.1杆为铸铁,2杆为钢C.2杆均为钢D.2杆均为铸铁(图3)(图4)(图5)6.在低碳钢的拉伸试验中,材料的应力变化不大而变形显著增加的是(B)。

A. 弹性阶段;B.屈服阶段;C.强化阶段;D.局部变形阶段。

7.铸铁试件压缩破坏(B)。

A. 断口与轴线垂直;B. 断口为与轴线大致呈450~550倾角的斜面;C. 断口呈螺旋面;D. 以上皆有可能。

8.为使材料有一定的强度储备,安全系数取值应( A )。

A .大于1; B. 等于1; C.小于1; D. 都有可能。

9. 等截面直杆在两个外力的作用下发生轴向压缩变形时,这对外力所具备的特点一定是等值、( C )。

A 反向、共线B 反向,过截面形心C 方向相对,作用线与杆轴线重合D 方向相对,沿同一直线作用10. 图6所示一阶梯形杆件受拉力P的作用,其截面1-1,2-2,3-3上的内力分别为N 1,N 2和N 3,三者的关系为( B )。

《材料力学》第2章轴向拉(压)变形习题解答

《材料力学》第2章轴向拉(压)变形习题解答

其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊

C 材料力学第二章 轴向拉伸和压缩 第一部分

C 材料力学第二章 轴向拉伸和压缩 第一部分

基于下列实验现象有“平面假设”
现象: 直线保持为直线。 相互垂直的直线依旧相互垂直。->无切应变 纵向线段伸长,横向线段缩短。 长度相等的纵向线段伸长后依旧相等。 长度相等的横向线段缩短后依旧相等。 即变形分布均匀,依据胡克定律应力分布也 均匀。
平面假设
根据表面变形情况,可以由表及里的做出 假设,即横截面间只有相对移动,相邻横 截面间纵线伸长相同,横截面保持平面, 此假设称为平面假设(Plane CrossSection Assumption)。
问题
(1)图示的曲杆,问公式 (2-2)是否适用?
2)图示杆由钢的和铝牢固 粘接而成,问公式(2-2) 是否适用?
(3)图示有凹槽的杆,问 公式(2-2)对凹槽段是否 适用?
σ
变截面杆横截面上的应力
F
F
应力集中 (Stress Concentration)
例:图示杆1为横截面为圆形的钢杆,直径d=16mm,杆2 为横截面为正方形的木杆,边长为100mm。在节点B处作 用20kN的力,试求1、2杆中的应力。
r ∆r o
θ
∆s
s
应力与变形的一般关系
正应力在正应力方向引起线应变,不引 起切应变 切应力引起切应变,在切应力方向不引 起线应变 这里作为结论直接给出,感兴趣可在课 后研究证明之。
轴拉伸实验
平面假设(基于实验观察)
a d e a a d e a b c b b c c d e b c d e
例 题
解:1、2杆都为二力杆,是简单拉 压问题,取节点B进行受力分析: 由节点B的平衡可得:
F N1 3 = G = 15kN 4 F N2 5 = − G = −25kN 4
A 2m
1.5m 1 2 C FN1 FN2 B G

《材料力学》第2章 轴向拉压变形 习题解

《材料力学》第2章 轴向拉压变形 习题解

第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。

(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。

(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。

(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。

(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。

[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,试求各横截面上的应力。

2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。

若横截面面积,,,并求各横截面上的应力。

21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

材料力学 中国建筑工业出版社第二章 轴向拉压习题答案

2-1a 求图示各杆指截面的轴力,并作轴力图。

(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。

列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。

方法二:简便方法。

(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。

故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。

2-2b 作图示杆的轴力图。

(c)图:(b)图:(3)杆的轴力图如图(d )所示。

2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。

试计算两柱上、中、下三段的应力。

(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。

将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。

列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。

(2)作柱的轴力图,如(e)、(f)所示。

(3)求柱各段的应力。

解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
0
q FCx C FCy
② 局部平衡求 轴力:
m


max
C
0
FN A
FN 26 . 3 ( kN)
4 FN
③应力:

d
3 2
2
4 26 . 3 10 3 . 14 0 . 016
FAy
FN
131 ( MPa)
④强度校核与结论:
max
131 MPa
[例] 已知三铰屋架如图,承受竖向均布载荷,载荷的分布集
度为:q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用 应力[]=170M Pa。试校核刚拉杆的强度。 q
钢拉杆
8.5m
1
解: ① 整体平衡求支反力
q
FAx
A
FAy
钢拉杆 8.5m
B
FBy
X m
0
B
F Ax 0 F Ay 17 . 85 ( kN)

h
; 。
D
sin
4
L x
FAx FAy
A
B

NBD
F
C
解: BD杆内力NBD: 取AC为研究对象,如图
m
A
0 , (N
BD
sin ) ( h ctg ) - Fx 0
N BD
max

FL h cos
BD杆面积A: max
N max A


5
A
N

BD max

FL h cos

③ 求VBD 的最小值:
V AL Ah sin 2 FL [ ] sin 2 ;
BD
45 时 , V min
o
2F L [ ]
6
170
MPa
此杆满足强度要求,是安全的。
3
[例] 简易起重机构如图,AC 为刚性梁,吊车与吊起重物总重 为 F,为使 BD 杆最省料,角 应为何值? 已知 BD 杆的 许用应力为[]。
x
L
分析: BD杆的体积: A BD L BD ;
F
C
A BD L BD
N BD
相关文档
最新文档