微粒分散体系

合集下载

第四章_微粒分散体系

第四章_微粒分散体系

分子的真溶液则是透射光为主,同样观察不到乳光。

当一束光线在暗室通过胶粒分散系,在其侧面 可看到明显的乳光,即Tyndall现象。丁铎尔 现象是微粒散射光的宏观表现。

低分子溶液—透射光;粗分散体系—反射光;
胶体分散系—散射光。
丁达尔现象

丁达尔现象(Tyndall phenomena)

在暗室中,将一束光通过溶胶时,在侧面可 看到一个发亮的光柱,称为乳光,即丁达尔 (Tyndall)现象。

1、分散性
2、多相性 3、聚结不稳定性
三、在药剂学中的应用

1、有助于提高药物的溶解速度及溶解度,有利 于提高难溶性药物的生物利用度 2、利于提高药物在分散介质中的分散性 3、在体内分布上具有一定的选择性 4、具有缓释作用,减少剂量,降低毒副作用 5、改善药物在体内外的稳定性等

发生的电离、吸附或摩擦等产生的电荷所表现
的性质。
(一)电泳(electrophoresis) 在电场作用下微粒的定向移动叫电泳。 在溶液的电场中,微粒受两种作用力,一种是静电力Fe, 另一种是摩擦力Fs,而且这两种力在恒速运动时大小相 等。 E (4-16) v E 6rv
6r
其中,r—球型微粒半径, σ—表面电荷密度,E—电场强度,v—恒 速运动的速度。
式中,Π—渗透压,c—溶胶的浓度,R—气体常数,
T—绝对温度。

(三)沉降与沉降平衡
在一个分散体系中微粒的密度大于分散介质的密度,就会发生沉降。 如果是粗分散体系,粒子较大,经过一段时间以后,粒子会全部沉降到容器 的底部。如果粒子比较小,由于粒子的布朗运动,一方面受到重力作用而沉 降,另一方面由于沉降使上、下部分的浓度发生变化,引起扩散作用,使浓 度趋向于均匀。当沉降和扩散这两种方向相反的作用力达到平衡时,体系中 的粒子以一定的浓度梯度分步,这种平衡称作沉降平衡。达到沉降平衡后体 系的最下部浓度最大,随高度的上升浓度逐渐减小。

微粒分散体系

微粒分散体系

I

I0
24 3V 2 ( n 2 n02 ) 2
n 2n 4
2
2
I

I0
24 3V 4
2
( n2 n02 n2 2n02
)2
0
I—散射光强度;I0_ —入射光强度;n —分散相的折射率; n0 — 分散介质的折射率;—入射光波长;V —单个粒子的 体积;ν —单位体积中粒子数目。
17
五、微粒的电学性质
• 微粒带电原因:电离、吸附、摩擦。
(一)电泳(electro phoresis)
• 定义:微粒分散系中的微粒在电场作用 下,向阴极、阳极做定向的移动。
• 微粒受力:静电力、摩擦力
E / 6r
粒子越小,移动越快
18
(二)微粒的双电层结构

微粒表面带同种电荷,通过静电引力,使反离
• 1980年已制得热力学稳定的氢氧化铝 溶胶,说明制备热力学稳定的微粒分散系 是可能的。
23
二、动力学稳定性
• 动力稳定性表现在: 布朗运动 沉降 • 粒子的沉降(上浮)速度符合Stokes方程:
V 2r 2 ( 1 2 ) g 9
防止沉降方法 1. 减少粒度(增加均匀性) 2. 增加粘度 3. 降低密度差 4. 防止晶型转变 5. 控制温度变化
力学、光学、电学性质) • 微粒分散系的物理稳定性(动力学、
热力学)进行较深入的讨论。
1
第一节 概述
• *分散体系:一种或几种物质高度分散在某 种介质中所形成的体系。
• 按分散相粒子大小分类: • 微粒分散体系:1nm~100µm • 微粒给药系统: • 微粒分散体系的特点:多相、热力学不稳定、

微粒分散体系-精品医学课件 (2)

微粒分散体系-精品医学课件 (2)

药物微粒分散体系
粗 Suspension 分 Sol 散 Emulsion 体 Microcapsule 系 microsphere
粒径 100nm-100μm
nanoemulsion 胶
Liposome

nanoparticle 分
Nanocapsule
散 体
Nanomicell

粒径 <100nm
临界聚沉浓度
三、 空间稳定理论
(一) 实验规律
相对分子质量大小高分子对微粒保护作用的影响
(a)较小相对分子量高分子;(b)中等相对分子量高分子;(c)较高相对分子量高分子
敏化作用(sensitization) :高分子在粒子表面覆
盖度q =0.5时絮凝效果最好,微粒聚集下沉
(二) 理论基础 1、两种稳定理论
3
r3( 0)g
在高度为dh的体积内粒子所受的总扩散力:
F扩散 Ad ARTdC
粒子总数为: LCdV LCAdh

每一个粒子所受到的扩散力:F扩散

ARTdC LCAdh

RT LC

dC dh
(二)沉降与沉降平衡
达平衡时,重力与扩散力大小相等、方向相反:
F扩散
1)体积限制效应理论: 两微粒接近时,彼此的吸附层不能互相穿透 2)混合效应理论: 微粒表面上的高分子吸附层可以互相穿透。
四、空缺稳定理论
亦称自由聚合物稳定理论。
五、微粒聚结动力学
快聚结 慢聚结
架桥聚结 聚合物
有效覆盖 微粒表面
小部分覆盖 微粒表面
空间保护作用 架桥聚结

Tyndall现象的本质 是粒子对光的散射

2-第四章微粒分散体系

2-第四章微粒分散体系

微粒分散体系的特殊性能:
①微粒分散体系首先是多相体系,分散相与 分散介质之间存在着相界面,因而会出现 大量的表面现象; ②随分散相微粒直径的减少,微粒比表面积 显著增大,使微粒具有 相对较高的表面自 由能,所以它是热力学不稳定体系 ,因此, 微粒分散体系具有容易絮凝、聚结、沉降 的趋势, ③粒径更小的分散体系(胶体分散体系)还 具有明显的布朗运动、丁铎尔现象、电泳 等性质。 Nhomakorabea


注射大于50m的微粒,可使微粒分别被截留在肠、 肝、肾等相应部位。
第三节

微粒分散体系的物理稳定性
微粒分散体系的物理稳定性直接关系到 微粒给药系统的应用。在宏观上, 微粒 分散体系的物理稳定性 可表现为 微粒粒 径的变化 , 微粒的絮凝 、 聚结 、 沉降 、 乳析和分层等等。 一、热力学稳定性 二、动力学稳定性 三、絮凝与反絮凝
第二节
微粒分散系的主要性质和特点
一、微粒大小与测定方法


微粒大小是微粒分散体系的重要参数,对其体内 外的性能有重要的影响。微粒大小完全均一的体 系称为单分散体系;微粒大小不均一的体系称为 多分散体系。绝大多数微粒分散体系为多分散体 系。常用平均粒径来描述粒子大小。 常用的粒径表示方法:几何学粒径、比表面粒径、 有效粒径等。 微粒大小的测定方法有光学显微镜法、电子显微 镜法 、 激光散射法 、 库尔特计数法 、Stokes 沉 降法、吸附法等。
微粒分散体系在药剂学的重要意义:
①由于粒径小,有助于提高药物的溶解速度及溶解 度,有利于提高难溶性药物的生物利用度; ②有利于提高药物微粒在分散介质中的分散性与稳 定性; ③具有不同大小的微粒分散体系在体内分布上具有 一定的选择性,如一定大小的微粒给药后容易被 单核吞噬细胞系统吞噬; ④微囊、微球等微粒分散体系一般具有明显的缓释 作用,可以延长药物在体内的作用时间,减少剂 量,降低毒副作用; ⑤还可以改善药物在体内外的稳定性。

药剂学:药物微粒分散体系的基础理论

药剂学:药物微粒分散体系的基础理论
V-微粒沉降速度;r-微粒半径; ρ1、ρ2-分别为微粒和分散介 质密度;-分散介质粘度; g-重力加速度常数。
三、微粒分散系的光学性质
当一束光照射到微粒分散系时,可以出现光的吸
(二)沉降——Stokes’定律
• 粒径 较 大 的 微 粒 受 重力作 用 ,静 置 时 会 自 然 沉降 , 其沉降速度服从 Stokes ’ 定律: (4-11)
r愈大,微粒和分散介 质的密度差愈大,分散 介质的粘度愈小,粒子 的沉降速度愈大。
2r 2 ( 1 2 ) g V 9
– 小分子真溶液(<10-9m;<1nm) – 胶体分散体系(10-7~10-9m;1~100nm) – 粗分散体系(>10-7m;>100nm) • 微粒:直径在10-9~10-4m的微粒,其构成的分散体系统称为 微粒分散体系。如微米与纳米级大小的各种给药载体/系统。
微粒分散体系的特殊性能:
①多相体系:
微球表面形态
Scanning electron micrography of ADM-GMS(阿霉素明胶微球)

微球橙红色,形态圆整、均匀,微球表面可见孔 隙,部分微球表面有药物或载体材料结晶。
2.激光散射法——动态光散射法
• 对于溶液,散射光强度、散射角大小与溶液的性质、溶质 分子量、分子尺寸及分子形态、入射光的波长等有关,对 于直径很小的微粒,雷利(瑞利)散射公式:
微粒大小与体内分布
< 50nm 的微粒能够穿透肝脏内皮, 通过毛细血管末梢或
淋巴传递进入骨髓组织。
静脉注射、腹腔注射0.1~3.0m的微粒能很快被单核吞噬 细胞系统吞噬,浓集于巨噬细胞丰富的肝脏和脾脏等部位。 人肺毛细血管直径为2m,>2m的粒子被肺毛细血管滞 留下来,<2m的微粒则通过肺而到达肝、脾等部位。 。 注射> 50m 的微粒,可使微粒分别被 截留在肠、肾等相 应部位。

11-药剂学-药物微粒分散系的基础理论

11-药剂学-药物微粒分散系的基础理论

2.高分子聚合物在固体微粒表面上的吸附构型 高分子在溶液中具有一定的挠曲性和一定数量 的活性基团,这些活性基团能吸附在固体微粒 表面上而使吸附的高分子具有一定形状。 其吸附的高分子构型取决于固体微粒和高分子 聚合物的性质以及它们之间的相互作用。如固 体微粒表面吸附点的数目、高分子聚合物的链 长与活性基团的数目和位置、高分子聚合物在 溶剂中的溶解度等都是影响其吸附构型的重要 因素。 这样可将吸附高分子聚合物的构型分成六种形 式。
当微粒的半径大于1μm后,微粒的平均 位移只有0.656μm/s,已不显著,在分散 介质中受重力场作用而匀速运动,此时 应按Stoke′s定律,其沉降或上浮的速 度u以下式表示:
2a (ρ − ρ ) g u= 9η
2 0
式中,a——微粒的半径;g——重力加 速度;η——分散介质的粘度;ρ和 ρ0——微粒和分散介质的密度。
吸附高分子的构型
(二)高分子化合物的稳定作用 高分子化合物对微粒分散系的稳定作用主要体 现在以下几方面:高分子吸附层存在,产生一 种 新 的 斥 力 势 能 ─ 空 间 斥 力 势 能 (Steric Repulsive Energy);高分子的存在减小微粒 间的Hamaker常数,因而也就减少了范德华引 力势能;带电高分子被吸附会增加微粒间的静 电斥力势能。 总的势能VT: VT= VA + VR + VS 中, VA—— 吸 引 势 能 , VR—— 静 电 斥 力 势 能 , VS——空间斥力势能。
当微粒半径a>1μm后,则微粒就要沉降 或上浮,动力稳定性较差。因此为了减 小微粒沉降或上浮的速度,则通过增加 分散介质的粘度,加入增稠剂,调节微 粒与分散介质的密度差,使ρ≈ρ0。这 样可提高此微粒分散制剂的稳定性。 但最主要的是减小微粒的半径,当微粒 半径a从 10μm减小为 1μm时,其沉降 速度从4.36×102μm/s降低为 4.36μm/s,相差100倍。

药剂学第四章药物微粒分散体系分析

药剂学第四章药物微粒分散体系分析

第四章药物微粒分散体系一、概念与名词解释1.分散体系2.扩散双电层模型3.DLVO理论4.临界聚沉状态二、判断题(正确的填A,错误的填B)1.药物微粒分散系是热力学稳定体系,动力学不稳定体系。

( )2.药物微粒分散系是动力学稳定体系,热力学不稳定体系。

( )3.药物微粒分散系是热力学不稳定体系,动力学不稳定体系。

( )4.微粒的大小与体内分布无关。

( )5.布朗运动可以提高微粒分散体系的物理稳定性,而重力产生的沉降降低微粒分散体系的稳定性。

( )6.分子热运动产生的布朗运动和重力产生的沉降,两者降低微粒分散体系的稳定性。

( ) 7.微粒表面具有扩散双电层。

双电层的厚度越大,则相互排斥的作用力就越大,微粒就越稳定。

( )8.微粒表面具有扩散双电层。

双电层的厚度越小,则相互排斥的作用力就越大,微粒就越稳定。

( )9.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为反絮凝。

( )10.微粒体系中加入某种电解质使微粒表面的ζ升高,静电排斥力阻碍了微粒之间的碰撞聚集,这个过程称为絮凝。

( )11.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降。

( )12.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ上升。

( )13.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒表面的ζ降低,会出现反絮凝现象。

( )14.微粒体系中加入某种电解质,中和微粒表面的电荷,降低双电层的厚度,使微粒间的斥力下降,出现絮凝状态。

加入的电解质叫絮凝剂。

( )15.絮凝剂是使微粒表面的ζ降低到引力稍大于排斥力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )16.絮凝剂是使微粒表面的ζ升高,使排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

( )17.反絮凝剂是使微粒表面的ζ升高,使到排斥力大于吸引力,引起微粒分散体系中的微粒形成絮凝状态的电解质。

微粒分散体系

微粒分散体系

粒径较大的微粒受重力作用,静置时会自 然沉降,其沉降速度服从Stoke’s定律:
V 2r 2 (1 2 )g
(4-8)
9
V-微粒沉降速度;r-微粒半径;ρ1、ρ2-分别为微粒和分 散介质密度;-分散介质粘度;g-重力加速度常数。
r愈大,微粒和分散介质的密度差愈大,分散介质 的粘度愈小,粒子的沉降速度愈大。
2
(4-1)
I分-散散射介光质强折度射;率I0;-入λ-射入光射的光强波度长;;nV--分单散个相粒折子射体率积;;nυ0--
单位体积溶液中粒子数目。
由上式,散射光强度与粒子体积V的平方成正比, 利用这一特性可测定粒子大小及分布。
第二节 微粒分散体系的性质和特点
一、微粒分散体系的热力学性质
微粒分散体系是典型的多相分散体系。随着 微粒粒径的变小,表面积A不断增加,表面自由 能的增加ΔG为:
的沉降。降低微粒分散体系的物理稳
定性
布朗运动:粒子永不停息的无规则的直线运动
布朗运动是粒子在每一瞬间受介质分子碰撞的 合力方向不断改变的结果。由于胶粒不停运动, 从其周围分子不断获得动能,从而可抗衡重力 作用而不发生聚沉。
二、微粒的动力学性质 (一)Brown运动 微粒作布朗运动时的平均位移△可用布朗运动方程表示:
本节重点讨论微粒分散系的物理稳定性及 其影响因素及提高稳定性的方法。
一、微粒分散系的物理稳定性
微粒分散制剂大多是属于胶体分散系给药系统, 其稳定性主要是指某些性质的变化,如微粒的大 小、分散相的浓度、粘度、ζ电位变化等,可以 用热力学稳定性、动力稳定性、聚集稳定性来表 征。
(一)热力学稳定性
成背景散射;
如果入射电子撞击样品表面原子外层电子,把
它激发出来,就形成低能量的二次电子,在电
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测定方法: 1. 电子显微镜法: TEM(Transmission Electron Microscope) SEM(Scanning Electron Microscope)
6
TEM
7
脂质体的TEM
8
SEM
9
聚氨酯改性环氧树脂SEM
10
2. 激光散射法:
激光粒度测定仪
11
瑞利散射公式:
增加稳定性的方法:加入高分子物质、表面活性剂
27
第四节 微粒分散系的三种稳定理论
17
• 布朗运动的平均位移

RTt 3rN
A
T: 温度; t: 时间; :介质粘度;
r:微粒半径; NA:微粒数目
18
四、微粒的光学性质
光照射到分散体系中 会出现: 吸收:微粒的化学结构
反射: 100nm以上
散射 :100nm ,Tyndall现象
(散射光的宏观表现)透过: Nhomakorabea溶液19
五、微粒的电学性质
24

使σ降低, 体系就具有一定的稳定性。
当σ≤0时,是热力学稳定体系。制备此类
分散系时均需加入稳定剂(表面活性剂、电
解质离子、增加粘度的物质)吸附在微粒表
面上。
• 1980年已制得热力学稳定的氢氧化铝 溶胶,说明制备热力学稳定的微粒分散系 是可能的。
25
二、动力学稳定性
• 动力稳定性表现在: 布朗运动 沉降 • 粒子的沉降(上浮)速度符合Stokes方程: 2r 2 ( 1 2 ) g V 9
x=490/11.3= 43.4 (g)
2
内 容 纲 要
• 药物微粒分散系在药剂学中的意义 • 微粒分散系的基本特性(粒度、动 力学、光学、电学性质)
• 微粒分散系的物理稳定性(动力学、
热力学)进行较深入的讨论。
3
第一节 概述
• *分散体系:一种或几种物质高度分散在某 种介质中所形成的体系。 • 按分散相粒子大小分类: • 微粒分散体系:1nm~100µ m • 微粒给药系统: • 微粒分散体系的特点:多相、热力学不稳定、
15
• 粒度不同的微粒分散体系在体内具有不 同的分布特征
• < 50nm, 靶向骨髓、淋巴 • 100nm~3µm,靶向单核巨噬细胞系统
• 7~12 µ m,靶向肺
• >50 µ m,注射于肠系膜动脉: 靶向于肠
门静脉、肝动脉: 靶向于肝
肾动脉:靶向于肾
16
三 、微粒的动力学性质
• 1. 布朗运动: 1827年,Brown发现布朗运动。 • 2. 布朗运动是液体分子的热运动的结果。 >10 µ m,布朗运动不明显 <100nm, 布朗运动 3. 布朗运动是微粒扩散的微观基础,扩散 现象是布朗运动的宏观表现。 4. 布朗运动使小的微粒体系稳定(动力学)
反离子构成了吸附层。 • 从吸附层表面至反离子电荷为零处形成微粒的 扩散层。 • ζ电位:从吸附层表面至反离子电荷为零处的电位差,
为动电位。
• ζ电位与微粒大小、电解质浓度、反离子水化程度有

21
/ r
微粒越小,ζ电位越高
微粒的双电层结构与ζ电位
22
第三节
微粒分散系的稳定性
微粒分散药物制剂的稳定性包括:
第十一章 药物微粒分散系的基础理论
复习
• 若 用 吐 温 40 ( HLB=15.6 ) 和 司 盘 80 (HLB=4.3)配制HLB 值为9.2的混合 乳化剂100g,问二者各需要多少克? W A HLBA W B HLBB HLBAB ( 2 7) W A W B
15.6x+4.3(100-x) = 9.2 100
体积;ν —单位体积中粒子数目。
12
200目合金粉粒度分布图
13
漂珠的粒度分布图
14
二、微粒大小与体内分布
• 微粒分散制剂可供静脉、动脉注射,皮下注射
或植入,肌肉注射、关节腔内注射、眼内及鼻腔
用药,亦可用于口服。 • 以在临床治疗上,静注微粒的大小有严格要求。 90%微粒在1μ m以下,不得有大于5μ m的微粒, 以防止堵塞血管与产生静脉炎。 • 在癌症的化疗中,将较大微粒进行动脉栓塞, 治疗肝癌、肾癌等,已显示其独特的优点。
24 V
3 2
I I0

4
I I0
24 3V 2
4
2 n 2 n0 ( 2 )2 2 n 2n 0
n n 2 ( 2 ) n 2n
2 2 0 2 0
I—散射光强度;I0_ —入射光强度;n —分散相的折射率;
n0 — 分散介质的折射率;—入射光波长;V —单个粒子的
其他性质
4
微粒分散体系在药剂学中的意义
1. 提高溶解度、溶解速度,生物利用度提高。
2. 增加分散性和稳定性。
3. 体内靶向性
4. 缓释作用、降低毒性 5. 提高体内外稳定性
5
第二节 药物微粒分散系的性质
• 性质包括动力学、光散射、电学、稳定性。
※ 主要讨论与用药安全、体内吸收、分布、 发挥药效有关的性质。 一、微粒大小与测定方法
• 1.化学稳定性;
• 2 .物理稳定性 ( 粒径变化、絮凝、聚结、乳 析、分层等); • 3 .生物活性稳定性 ( 生物活性、过敏性、溶 血 ); • 4.疗效稳定性(疗效是否随贮存而变化);
• 5.毒性稳定性(急毒、慢毒是否随放置变化)。
23
一、热力学稳定性
• 微粒分散系是热力学不稳定体系,根据热 力学理论,ΔG =σΔA • ΔA 是制备微粒分散系时表面积的改变值。 • σ为正值, ΔA 增加,ΔG则增大。体系有 从高能量自动地向低能量变化的趋势,小 粒子自动地聚集成大粒子,使体系表面积 减小。
• 微粒带电原因:电离、吸附、摩擦。
(一)电泳(electro phoresis)
• 定义:微粒分散系中的微粒在电场作用 下,向阴极、阳极做定向的移动。 • 微粒受力:静电力、摩擦力
E / 6r
粒子越小,移动越快
20
(二)微粒的双电层结构
• 微粒表面带同种电荷,通过静电引力,使反离
子分布于微粒周围,微粒表面的离子和靠近表面的
防止沉降方法 1. 减少粒度(增加均匀性) 2. 增加粘度 3. 降低密度差 4. 防止晶型转变 5. 控制温度变化
26
三、电学稳定性(絮凝、反絮凝)
• 双电层厚度和ζ电位大小影响稳定性: • 定义:絮凝: • 反絮凝: • 离子强度、离子价数、离子半径影响ζ电位 和双电层厚度。
注意
同一电解质加入量不同,起絮凝或反絮凝作用
相关文档
最新文档