分式的概念练习题
2023年中考数学《分式》专题知识回顾与练习题(含答案解析)

知识回顾微专题知识回顾微专题2023年中考数学《分式》专题知识回顾与练习题(含答案解析)考点一:分式之分式的概念1. 分式的概念:形如BA,B A 、都是整式的式子叫做分式。
简单来说,分母中含有字母的式子叫做分式。
1.(2022•怀化)代数式52x ,π1,422+x ,x 2﹣32,x 1,21++x x 中,属于分式的有( )A .2个B .3个C .4个D .5个【分析】根据分式的定义:一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式叫做分式判断即可.【解答】解:分式有:,,,整式有:x ,,x 2﹣,分式有3个, 故选:B .考点二:分式之有意义的条件,分式值为0的条件1. 分式有意义的条件:分式的分母为能为0。
即BA中,0≠B 。
2. 分式值为0的条件:分式的分子为0,分母不为0。
即BA中,0=A ,0≠B 。
2.(2022•凉山州)分式x+31有意义的条件是( ) A .x =﹣3B .x ≠﹣3C .x ≠3D .x ≠0【分析】根据分式有意义的条件:分母不为0,可得3+x ≠0,然后进行计算即可解答. 【解答】解:由题意得: 3+x ≠0, ∴x ≠﹣3, 故选:B . 3.(2022•南通)分式22−x 有意义,则x 应满足的条件是 . 【分析】利用分母不等于0,分式有意义,列出不等式求解即可. 【解答】解:∵分母不等于0,分式有意义, ∴x ﹣2≠0, 解得:x ≠2, 故答案为:x ≠2. 4.(2022•湖北)若分式12−x 有意义,则x 的取值范围是 . 【分析】根据分式有意义的条件可知x ﹣1≠0,再解不等式即可. 【解答】解:由题意得:x ﹣1≠0, 解得:x ≠1, 故答案为:x ≠1.5.(2022•广西)当x = 时,分式22+x x的值为零. 【分析】根据分式值为0的条件:分子为0,分母不为0,可得2x =0且x +2≠0,然后进行计算即可解答.【解答】解:由题意得: 2x =0且x +2≠0, ∴x =0且x ≠﹣2, ∴当x =0时,分式的值为零,故答案为:0.知识回顾6.(2022•湖州)当a =1时,分式aa 1+的值是 . 【分析】把a =1代入分式计算即可求出值. 【解答】解:当a =1时, 原式==2.故答案为:2.考点三:分式之分式的运算:1. 分式的性质:分式的分子与分母同时乘上(或除以)同一个不为0的式子,分式的值不变。
分式的概念及性质

分式的概念及性质一、分式的基本概念:【例1】下列各式2x ,22a b +,a b π+,2x +,1a m +中,分式有( )A .1个B .2个C .3个D .4个【拓1】(1)当x 满足条件_________时,分式21xx -有意义.(2)若分式()11x x +有意义,则x 需满足____________;若分式()1xx x +有意义,则x 需满足_____________.【拓2】当x 为何值时,下列分式的值为0:①31x x + ②2213x x - ③242x x -+ ④212x x x -+-【例2】已知:当x =2时,分式x m x n -+无意义;当x =-6时,分式x mx n-+的值为0,则 m -n =_______.【拓3】当x ________时,分式36x -的值为正数;当x ________时,分式26xx--的值为负数.【拓4】(21广陵期末)关于x 的方程1233x kx x -=+--的解为非负数,则k 的取值范围是___.【拓5】若分式1324x x x x ++÷++有意义,则x 的取值范围为__________.【拓6】(2021·扬州)不论x 取何值,下列代数式的值不可能为0的是( )A .1x +B .21x -C .11x + D .2(1)x +二、分式的基本性质:①x y x y +- ②xy x y - ③22x y x y +- ④2xx y+【拓7】(21邗江期末)把分式2xyx y+中的x 和y 都扩大2倍,分式的值( ) A .不变 B .扩大4倍 C .缩小12D .扩大2倍【拓8】不改变分式的值,把分式的分子和分母系数都化为整数:①0.10.51.5x y x y -+ ②21321334x y x y -+ ③10.3210.55a ba b -+【拓9】(1)不改变分式的值,把分式的分母化为6ab 2:23a b 22a bab+(2)不改变分式的值,把分式的分母化为()()11x x x -+:()11x x x -+ 21xx -【例4】(1)下列等式,从左到右的变形正确的是( )A .1x y x y --=-- B .0.220.50.353x y x yx y x y++=-- C .x a ax b b+=+ D .()2x y x y y x -=-+-(2)将下列格式约分:3439x x =-__________322384a b a b c -=-___________ 23224x x x -=-___________ 2442a a a-+=-_________【拓10】下列分式:2x x ,1m m +,x xπ+,a bb a --中,最简分式的个数有( ) A .4个 B .3个 C .2个 D .1个【拓11】(21扬州期末)当2021a =时,分式293a a --的值是________.【拓12】分式2214a b 与36a bab c+的最简公分母是________.【拓13】通分:①()()112x x --,2121x x -+;②()11a a a -+,21a a -,2221a a ++.【拓14】(18邗江期中)先约分,再求值:32322444a ab a a b ab --+,其中2a =,12b =-.【拓15】(15邗江月考)已知:y z z x x y x y z +++==,其中0x y z ++≠,求x y zx y z+-++的值.三、分式的运算:(1)2222463ab cc a b -⋅ (2)32422ab c ac c ab b ⎛⎫⎛⎫⎛⎫⋅⋅ ⎪⎪ ⎪---⎝⎭⎝⎭⎝⎭(3)()()222142y x x y xy x y x +-÷⋅- (4)23x y x y x y y x x y ++----(5)a b b c ab bc ++- (6)24142x x +-+【拓16】化简,求值:22211111m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中m =四、真题演练:1.(21邗江月考)已知:23a b b c c a m cab+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最小的值为y ,则x y +=( ) A .1- B .1 C .2 D .32.(19扬州一模)已知111m n -=,则代数式222m mn nm mn n--+-的值为( ) A .3 B .1 C .1- D .3-3.(19江都期中)已知113x y +=,则分式2322x xy yx xy y-+++的值为( ) A .35 B .9C .1D .不能确定4.(15扬州月考)已知x 为整数,且222218329x x x x ++++--为整数,则所有符合条件的x 值的和为________.5.(21仪征期末)若关于x 的分式方程312mx -=+的解为负数,则m 的取值范围为________.6.(20邗江期末)关于x 的方程1242k xx x -=--的解为正数,则k 的取值范围是________.7.(21广陵期末)先化简,再求值222124424x x x x x x x ++++÷--,其中2021x =.8.(19宝应期中)已知实数A 、B 使得等式34(1)(2)12x A Bx x x x -=+----成立,求实数A 、B .9.(18高邮期中)已知13x x +=,求221x x+的值.10.(18江都月考)定义,如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”如:112122111111x x x x x x x x +-+-==+=+-----,232252255211111x x x x x x x x -+-+-==+=-+++++,则 11x x +-和231x x -+都是“和谐分式”. (1)下列分式中,属于“和谐分式”的是:________(填序号); ①1x x+;②22x +;③21x x ++;④221y y +(2)将“和谐分式2231a a a -+-化成一个整式与一个分子为常数的分式的和的形为:2231a a a -+=-________+________.(3)应用:先化简22361112x x x x x x x +---÷++,并求x 取什么整数时,该式的值为整数.11.(20仪征期中)阅读下列材料:我们知道,分子比分母小的数叫做“真分数”;分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式. 如:1(1)221111x x x x x -+-==-+++. 解决下列问题: (1)分式3x 是____(填“真”或“假”)分式;假分式64x x ++可化为带分式________形式; (2)如果分式42x x --的值为整数,求满足条件的整数x 的值; (3)若分式22251x x ++的值为m ,则m 的取值范围是________(直接写出答案).。
分式的定义专项习题

分式的定义练习题对应知识点:1.分式的概念:如果整式A 除以整式B, 可以表示成BA 的形式,且除式B 中含有字母,那么称式子BA 为分式。
其中, A 叫分式的分子,B 叫分式的分母。
注意:①判断一个代数式是否为分式,不能将它变形,不能约分后去判断。
②π是常数,所以a/π不是分式而是整式。
2.有理式:整式和分式统称有理式。
(整式的分母中不含有字母) 练习题:1.下列式子是分式的是( )A .2xB .x 2C .πx D .2y x + 2.下列各有理式,哪些是分式?-3x +52,1+x 3,21++x x ,m m 3-,53b a +,x 234-,123+x -132-y ,x x 22,π1(x +y), 分式:3.判断下列各式哪些是分式?分式(只填序号):(1)9x+4, (2)x 7 , (3)209y +,(4) 54-m , (5) 238y y -,(6)91-x 4.在下列代数式中,分式有_______(只填序号)。
①a b 2、②b a +2、③x x -+-41、④y x xy 221+、⑤54322xy y x -、⑥112+-x x 、⑦x x 32 5.下列代数式中:y x y x y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有: 6.下列各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有( )个。
7.代数式21,,,13x x a x x x π+中,分式的个数是( ) 8.在(3)5,,,214a b x x x a b a π-++++中,共有( )个9.在下列各式ma m x xb a x x a ,),1()3(,43,2,3222--÷++π中,是分式的有( )个 10.在π1,0,1,31),(21,32c a b y x x --中,分式有( )个。
分式的概念练习题

分式的概念练习题一、选择题1. 下列哪个式子是分式?A. 3x + 2B. $\frac{4}{5}$C. $\frac{x}{y+1}$D. $\sqrt{a+b}$A. $\frac{1}{x}$B. $\frac{x^2 1}{x 1}$C. $\frac{2}{x^2 + 1}$D. $\frac{x^3 + 3x^2 4x + 4}{x^2 2x + 1}$3. 分式$\frac{3}{x2}$的定义域是?A. 全体实数B. 除了2以外的全体实数C. 除了0以外的全体实数D. 除了0和2以外的全体实数二、填空题1. 分式$\frac{a}{b}$中,a叫做______,b叫做______。
2. 若分式$\frac{x3}{x+2}$的值等于2,则x的值为______。
3. 已知分式$\frac{2}{x1}+\frac{3}{x+2}=1$,则x的值为______。
三、简答题1. 请简要说明分式与整式的区别。
2. 什么情况下分式无意义?什么情况下分式有意义?3. 如何求分式的值?四、计算题1. 计算$\frac{2}{3}+\frac{1}{6}$。
2. 计算$\frac{3}{4}\frac{2}{5}$。
3. 计算$\frac{4}{5}\times\frac{3}{7}$。
4. 计算$\frac{5}{8}\div\frac{2}{3}$。
5. 简化分式$\frac{x^2 9}{x^2 + 6x + 9}$。
五、应用题1. 某班有男生x人,女生人数是男生人数的$\frac{2}{3}$,求班级总人数与男生人数的比例。
2. 甲、乙两人共同完成一项工作,甲单独完成需要5天,乙单独完成需要8天。
求甲、乙合作完成这项工作的时间。
3. 一辆汽车行驶了a千米,其速度是b千米/小时,求汽车行驶这段路程所需的时间(用分式表示)。
六、判断题1. 分式的分子和分母都是整式。
()2. 分式的值在分母不为零的情况下一定有意义。
小学数学分式的认识练习题

小学数学分式的认识练习题在小学数学学习中,分式是一个重要的概念。
它包括了分数的认识和运算,对于培养学生的逻辑思维和解决实际问题的能力起着重要作用。
下面我们来通过一些认识练习题来巩固对小学数学分式的理解。
练习题一:1. 将下列分数化为最简形式:a) 12/16b) 20/25c) 48/60d) 64/1282. 将下列分数化为带分数:a) 13/4b) 7/2c) 9/3d) 10/53. 将下列带分数化为分数形式:a) 2 1/3b) 3 1/2c) 4 3/4d) 5 2/54. 将下列分数进行四则运算:a) 1/4 + 1/3b) 3/5 - 1/6c) 2/3 × 3/4d) 4/5 ÷ 2/3练习题二:1. 某班有35名学生,其中有5分之1的学生是男生,5分之3的学生是女生。
求男生和女生的人数分别是多少?2. 某批零食的一箱有2 3/5千克,共有5袋。
每袋的重量相同,求每袋的重量是多少千克?3. 小玲买了一箱苹果,共有36个。
她打算将这些苹果平均分给她的3个朋友,每人分多少个苹果?4. 某摊位上有12个苹果和4个梨,苹果的比例是多少?练习题三:1. 将 1/2、2/3、1/4 和 3/5 这四个分数按照由小到大的顺序排列。
2. 某校小明所在班级一共有32个学生,其中女生有3/8,男生有5/16,其他是男生和女生合计的1/16。
求男生和其他人的人数各是多少?3. 小华手里有一袋糖果,他自己吃了 3/5,小明和小红平分剩下的糖果,每人分了多少?4. 将分数 5/8、7/16、1/2 和 3/4 用最适当的分数表示。
这些练习题帮助小学生巩固和加深对于分式的认识和理解。
通过解题,学生能够更好地掌握分数的最简形式、带分数、分数的加减乘除运算以及分数在实际问题中的应用。
在解题过程中,学生需要注意化简分式的方法,理解带分数的概念,掌握分数运算规则,以及应用分式解决实际问题的技巧。
分式知识点及训练

三.分式考点一:分式的概念1. 定义:如果A 、B 表示两个整式,且B 中含有字母,0B ≠,那么式子A B叫做分式.例1.下列代数式是分式的是 ( ).31x A x + 21.2x B +-C x.aD π2. 分式有意义的条件:分式中分母的值不能为零,即A B中,0B ≠使,分式有意义,否则分式没有意义. 例2.若分式15x -有意义,则实数x 的取值范围是 .3. 分式的值的讨论: (1) 若分式0A B =,则A=0,且0B ≠,即0{A B =≠时,0A B=.(2) 若分式0A B >,则A 、B 同号,即0{0A B >>或者0{0A B <<(3) 若分式0A B<,则A 、B 异号,即0{0A B ><或者0{0A B <>例2. 分式211x x -+的值为0,则 ( ).1A x =- .1B x = .1C x =± .0D x =针对训练: 1.若分式22221x x x x --++的值为0,则x 的值等于 .考点二.分式的基本性质1. 基本性质:分式的分子、分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用符号来表示为:A A M A MB B MB M÷==÷ (M 的值不为0)2. 分式的基本性质的应用(1) 分式的约分:把一个分式的分子与分母的公共因式约去,分式的值不变,叫做约分。
说明:约分时,分子与分母不是乘积的形式,不能约分.(2) 分式的通分:把n 个异分母的分式分别化为与原来的分式相等的同分母的分式. 说明:①通分的依据是分式的基本性质, ②通分后的各分式的分母相同.③通分后的各式分式分别与原来的分式相等. ④通分的关键是确定最简公分母 ⑤分式通分的步骤:ⅰ.确定最简公分母;ⅱ.将各分式化成相同分母的分式.(3)分式的符号规则:分式的分子、分母及分式本身的符号中,改变其中任意俩个,分式的值不变.用式子表示为:,A A A A A A A BBB BBBB---==--=-==---(0B ≠).例3.(1)先化简,再求值:()2111211x x x ⎛⎫-÷+- ⎪+-⎝⎭,其中x =.(2)先化简,再求值:221211,24x x x x ++⎛⎫-÷ ⎪+-⎝⎭其中 3.x =- 针对训练:1. 化简:221211.241x x x x x x --+÷++--2. 先化简,再求值:22211.221x x x x x x x ++--÷++-其中2x =-考点三:分式的加减 1. 分式的加减,.a b a b a c ad bc ad bcc c c bd bd bd bd±±±=±=±= 2. 分式的乘除,.a c ac a c a d adb d bd b d bc bc=÷== 说明:对于分式的乘除混合运算,应先将除法运算转化为乘法运算,如分子、分母是多项式,可先将分子、分母分解因式,再相乘. 3.分式的乘方nnna ab b ⎛⎫= ⎪⎝⎭(n 为正整数) 例4.(1)化简:22221369x y x yx yx xy y+--÷--+(3) 先化简,再求值:22211(1),11m m m m m m -+-÷---+其中m =针对训练:1. 计算:2.b a ba b a b a ⎛⎫+-+ ⎪+⎝⎭2.先化简,再求值:()2211,1a a a ⎛⎫-+÷+ ⎪+⎝⎭其中 1.a =-课堂针对训练一、选择题 1.化简2111x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是 ( ) 1.A xB. 1x - 1.x C x- D.1x x -2.若分式31x x -有意义,则x 应满足 ( ).0A x = B. 0x ≠ C. 1x = D. 1x ≠3.设22220,4,m n m n m n mn mn->>+==则( )A B. C. D.3二、填空题4.当x= 时,25x -.5.若ab=1,11,,1111a b x y abab=+=+++++则xy= .三、解答题 6.先化简,再求值:()222,a b a b a b-+-+其中2, 1.a b ==7.先化简,再求值:2242,6926a a a a a --÷+++其中 5.a =-。
分式的知识点及典型例题分析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中, 152 9a 、 5a b 、 3a 2b 2 2 、 1 、 5xy 1 、xy 、8a b 、-23 2x y 4 、2- m 6 x a1 、 x 221 、 3xy 、 3 、 a 1 中分式的个数为()2x y m(A ) 2 (B ) 3 (C ) 4(D) 5 练习题:(1)下列式子中,是分式的有.⑴ 2x 7 ; ⑵ x1 ;⑶ 5a 2;⑷ x 2x 2;⑸2 b 2;⑹xyy 2.x 5 2 3a b 2x 2⑵ 下列式子,哪些是分式?a ;x23; y 3; 7 x ; x xy ; 1 b .54y 8 x 2 y 4 52、分式有、无意义 :( 1)使分式有意义:令分母≠ 0 按解方程的方法去求解; ( 2)使分式无意义:令分母 =0 按解方程的方法去求解;例 1:当 x 时,分式 1 有意义;x 5例 2:分式 2x1中,当 x ____ 时,分式没有意义;2 x例 3:当 x 时,分式 1 有意义;2 1 x例 4:当 x 时,分式 x 有意义;2 1 x 例 5: x , y 满足关系时,分式 xy无意义;x y例 6:无论 x 取什么数时,总是有意义的分式是()A . 2x B. x C. 3xx 52 2x 13 1 D.x 2 x 1 x x 有意义的 x 的取值范围为() 例 7:使分式x 2 A . x 2 B . x2 C . x 2 D . x 2例 8:要是分式x 2没有意义,则 x 的值为()1)( x(x3)A. 2B.-1 或-3C. -1D.33、分式的值为零:使分式值为零:令分子 =0 且分母≠ 0,注意:当分子等于 0 使,看看是否使分母 =0 了,如果使分母 =0 了,那么要舍去。
例 1:当 x 时,分式1 2a的值为 0; a 12 x1例 2:当 x 时,分式的值为 0例 3:如果分式a2的值为为零 , 则 a 的值为 ( ) a 2A.2 B.2 C.2 D. 以上全不对例 4:能使分式 x2x 的值为零的所有 x 的值是() x 21A x 0 Bx 1 C x 0 或 x1 D x 0 或 x1例 5:要使分式x 29的值为 0,则 x 的值为()x 25x 6 A.3 或-3 B.3 C.-3 D 2 例 :若 a1 0 , 则 a 是 ( ) 6 aA. 正数B. 负数C. 零D. 任意有理数4、分式的基本性质的应用:分式的基本性质: 分式的分子与分母同乘或除以一个不等于 0 的整式,分式的值不变。
分式的概念和性质练习题

1.填空题:(1)当x= 时,分式135-+x x 无意义。
(2)当x= 时,分式123-+x x 的值为零;当分式23+-x x =0时,x= 。
(3)()()333++x x x =x 3成立的条件是 。
(7)当x 时,分式121+-x x 有意义。
2.选择题:(1)下列说法正确的是( )A .形如BA 的式子叫分式B .分母不等于零,分式有意义C .分式的值等于零,分式无意义D .分式等于零,分式的值就等于零(2)已知有理式:x 4、4a 、y x -1、43x 、21x 2、a 1+4,其中分式有 ( ) A .2个 B .3个 C .4个 D .5个(3)使分式ax 45-有意义的x 的值是 ( )A .4aB .-4aC .±4aD .非±4a 的一切实数(4)使分式mx m x 41622--的值为零的x 的值是 ( ) A .4m B .-4m C .±4m D .非±4m 的一切实数3.解答下列各题:(1)当x 取什么数时,分式1132-+x x 有意义? (2)当x 为何值时,分式x x x 32212-++无意义? (3)若分式1642-+x x 无意义,求x 的值。
4.已知分式()()()()22253435232-----+x x x x (1)当x 为何值时,分式无意义?(2)当x 为何值时,分式的值为零?(3)当x 为何值时,分式的值为-1?5.当x 为何值时,下列分式的值为正?(1)432+-x x (2)232-+x x 6.(1)填充分子,使等式成立;()222(2)a a a -=++ (2).填充分母,使等式成立:()2223434254x x x x -+-=--- (3)化简:233812a b c a bc =_______。
6.(1)()2a b ab a b += (2)()21a aa c++=(a ≠0) (3)()22233x x x -=-+-(4)()2232565a a a a a ++=+++7.(1))333()3ax by ax by ax by ax by---=-=---,对吗?为什么? (2)22112x y x y x y x y++==---对吗?为什么? 8.把分式x x y+(x≠0,y≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变9.下列等式正确的是 ( )A .22b b a a = B .1a b a b-+=-- C .0a b a b +=+ D .0.10.330.22a b a b a b a b--=++ 10.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、选择题
1•某种长途电话的收费方式如下:接通电话的第一分钟收费 a 元,之后的每一分钟收费 元•如果某人打该长途电话被收费
8元钱,则此人打长途电话的时间是( )
A
• x 0 B • X > 0 C • x = 0 D • X > 0 且 X = 1 3x 2 - 6x “,+ ,
则X 的值为( ) 7. 若分式
的值为0 , 2 -x A • 0 B • 2 C • -2 D • 0 或 2 8. 右 2
X 止1 的值为零,则 2x -3 X 的值是( )
A • 1
B • 1
C • 一1
D •不存在
9. 代数式
1 _ .. . …一 — 有意义时,子母 x 的取值范围是( -X -1
) A . X 0
C . X 0 且 X =1
二、填空题
2X - 4
10. 若分式 __________________________的值为0,则X 的值为 .
X +1 3
11. 当x= ________ 时,分式
无意义• 2x_1 m —^1
12. 如果分式 一的值为0,那么m = ______________ .
m 2 +1 13. 若分式 区匕1的值为零,则x 的值等于 ___________
分式的概念练习题
□分钟 b C .害分钟 D . 8一a —b 分钟
b 2 •使分式 X 有意义的X 的取值范围是( x 2
A • X = 2
B • X = -2
C • X -2 3.若分式
X 2 -1 的值为0,则( ) X -1
A • x =1
B • x -
C • x = 1 4.如果分式 2 -X 的值为0,那么 X 为( )•
X (A )— 2
X (B ) 0 (C ) 1 5.使分式 ■有意义的X 的取值范围是( 2x -4
A • x = 2
B • x = 2
C • x - _2 D. x = -2
6. 若代数式
在实数范围内有意义,
X 的取值范围为( x —1
) (D ) 2 )
2
14. 当X = __________ 时,分式无意义•
X-1
2x 3
15.要使分式2X 3有意义,则X需满足的条件为
X-1
16•当X =时, x
22x 3 分式X -ZX-3的值为零.
x-3
17.使分式X 1有意义的X的取值范围是
X 3
18.当X =
x —2
---------- 时,分式X. 2的值为零
19.代数式
1
有意义时,
.X-1
字母X的取值范围是
20.当m =时,分式(m「)(m-3)的值为零. m-3m 2
21.当X时, X +1
分式有意乂.
X—1。