110KV降压变电站电气一次部分初步设计
(完整版)110kv变电站一次电气部分初步设计

110kv变电站一次电气部分初步设计毕业设计题目110KV变电站一次电气初步设计学生姓名谭向飞学号20XX309232 专业发电厂及电力系统班级20XX3092 指导教师陈春海评阅教师完成日期20XX 年11月6日三峡电力职业学院毕业设计课题任务书课题名称学生姓名指导教师谭向飞陈春海 110kV 变电站一次电气初步设计专业指导人数发电厂及电力系统班号 20XX3096 课题概述:一、设计任务 1.选择110kV变电站接线形式; 2.计算110kV变电站的短路电流;3.选择110kV变电站的变压器,高/低压侧断路器、隔离开关、母线、电流互感器、电压互感器,并校验。
二、设计目的掌握变电站一次电气设计的计算,能选择电气设备。
三、完成成果110kV变电站一次电气接线及设备选择。
I原始资料及主要参数: 1、110kV渭北变所设计最终规模为两台110/10kV主变,110kV两回进线路,变压器组接线线,10kV8回馈线,预计每回馈线电流为400A, 2、可行研究报告中变压器调压预测结果需用有载调压方式方可满足配电电压要求,有载调压开关选用德国MR公司M型开关,#2主变型号SZ9-40000/110, 5×110+-32%/,YNd11,Uk%=。
3、110kV配电装置隔离开关GW5-110ⅡDW/630;断路器3AP1-FG-145kV, 3150A﹑40kA;复合绝缘干式穿墙套管带CT 2×300/5;中心点隔离开关GW13-63/630,避雷器HY5W-108/268及中心点/186。
4、出八回线路、10kVⅡ段母线设备﹑变二侧开关分段以及电容补偿。
10kV断路器选用ZN28E-12一体化弹簧储能操作,支架落地安装;主变10kV 侧及分段隔离开关用GN22-10G手动操作;10kV线路及电容器隔离开关用GN19-10Q手动操作;出线CT两相式,二组次级绕组,用作测量和保护;电容器回路三相式;变二侧CT 三组次级用作测量﹑纵差﹑过流及无流闭锁。
110KV降压变电站电气一次系统设计

110KV降压变电站电气一次系统设计原始资料如下:(一)电压等级110/35/10KV地方降压变电站(二)负荷情况35KV侧:最大27MW,最小13MW,年最大持续时间6000小时,COS&=0.8510KV侧:最大16MW,最小10MW,年最大持续时间6000小时,COS&=0.85(三)出线回路110KV侧2回(架空线)35KV侧8回(架空线)10KV侧10回(其中电缆4回)(四)系统情况S1系统110KV母线短路容量2000MVA,S2系统110KV母线短路容量2500MVA,正常运行方式下,S1与S2无功率交换设计成果:设计说明书一份,短路电流计算书一份,设备表一份,电气主接线图、屋内外配电装置设计图、防雷及接地保护设计图、总平面布置图共6-8张2.变电所主变的选定2.1 概述在发电厂和变电所中,用来向电力系统或用户输送功率的变压器,称为主变压器。
主变压器的容量,台数直接影响主接线的形式和配电装置结构。
变电所主变压器容量,除应根据传递容量基本资料外,还应按5~10年规划符合来选择。
根据城市规划、负荷性质、电网结构等综合考虑确定其容量。
对重要变电所,应考虑当一台主变压器停运时,其余变压器容量在计及过负荷能力允许范围内,应满足Ⅰ类和Ⅱ类负荷的供电;对一般性变电所,当一台主变压器停运时,其余变压器容量应能满足全部负荷的70%~80%[2]。
变电所主变压器的台数与电压等级、接线形式、传输容量以及和系统的联系有密切关系。
通常与系统具有强联系的枢纽变电所,在一种电压等级下,主变压器应不少于2台;对于弱联系的低压侧电压为6~10kv的变电所或与系统的联系只是备用性质时,可只装1台主变压器;对地区性孤立的一次变电所或大型工业专用变电所,可设3台主变压器。
变压器是一种静止电器,运行实践证明它的工作是比较可靠的。
一般寿命为20年,事故率较小,通常设计时,不必考虑另设专用备用变压器。
按照以上原则确定变压器容量后,最终应选用靠近的国家系列标准规格。
110kV变电站电气一次部分课程设计

110kV变电站电气一次部分课程设计课程设计任务书设计题目:110kV变电站电气一次部分设计前言变电站(Substation)改变电压的场所。
是把一些设备组装起来,用以切断或接通、改变或者调整电压。
在电力系统中,变电站是输电和配电的集结点。
主要作用是进行高底压的变换,一些变电站是将发电站发出的电升压,这样一方面便于远距离输电,第二是为了降低输电时电线上的损耗;还有一些变电站是将高压电降压,经过降压后的电才可接入用户。
对于不同的情况,升压和降压的幅度是不同的,所以变电站是很多的,比入说远距离输电时,电压为11千伏,甚至更高,近距离时为1000伏吧,这个电压经变压器后,变为220伏的生活用电,或变为380伏的工业用电。
随着我国电力工业化的持续迅速发展,对变电站的建设将会提出更高的要求。
本文通过对110KV变电站一次系统的设计,其中针对主接线形式选择,母线截面的选择,电缆线路的选择,主变压器型号和台数的确定,保护装置及保护设备的选择方法进行了详细的介绍。
其中,电气设备的选择包括断路器、隔离开关、互感器的选择和方法与计算,保护装置包括避雷器和避雷针的选择。
其中分析短路电流的计算方法和原因,是为了保证供电的可靠性。
目录第1章原始资料及其分析 (4)1原始资料 (4)2原始资料分析 (6)第2章负荷分析 (6)第3章变压器的选择 (8)第4章电气主接线 (11)第5章短路电流的计算 (14)1短路电流计算的目的和条件 (14)2短路电流的计算步骤和计算结果 (15)第6章配电装置及电气设备的配置与选择 (18)1 导体和电气设备选择的一般条件 (18)2 设备的选择 (19)结束语 (25)致谢 (26)参考文献 (27)附录一:一次接线图第一章原始资料及其分析1.原始资料待建变电站是该地区农网改造的重要部分,预计使用3台变压器,初期一次性投产两台变压器,预留一台变压器的发展空间。
1.1电压等级变电站的电压等级分别为110kV,35kV,10kV。
110KV降压变电所电气一次部分设计方案

黄冈职业技术学院毕业设计110KV降压变电所电气一次部分设计学院机电学院专业发电厂及电力系统班级电力200901班姓名余鹏飞学号 200908011117指导教师杜伟伟目录摘要 (1)重点词 (1)引言 (2)第1章绪论 (3)变电站发展的历史与现状 (3)课题根源及设计背景 (3)第2章变电站负荷计算和无功赔偿的计算 (5)变电站的负荷计算 (5)无功赔偿的目的 (6)无功赔偿的计算 (6)第3章主接线方案确实定 (6)主接线的基本要求 (7)主接线的方案与剖析 (8)电气主接线确实定 (9)第4章主变压器台数和容量的选择 (10)变压器的选择原则 (11)变压器台数的选择 (11)变压器容量的选择 (11)第5章防雷与接地方案的设计 (12)防雷保护 (13)接地装置的设计 (13)第6章短路电流的计算 (14)绘制计算电路 (15)短路电流计算 (15)第7章电气设备的选择 (17)导体和电气设备选择的一般条件 (18)断路器的选择 (19)隔走开关的选择 (21)互感器的选择 (22)结论 (23)参照文件 (26)110KV降压变电所电气一次部分设计摘要:跟着经济的发展和现代工业建设的快速兴起,供电系统的设计愈来愈全面、系统,工厂用电量快速增添,对电能质量、技术经济状况、供电的靠谱性指标也日趋提升,所以对供电设计也有了更高、更完美的要求。
设计能否合理,不单直接影响基建投资、运转花费和有色金属的耗费量,也会反应在供电的靠谱性和安全生产方面,它和公司的经济效益、设备人身安全亲密有关。
变电站是电力系统的一个重要构成部分,由电器设备及配电网络按必定的接线方式所构成,他从电力系统获得电能,经过其变换、分派、输送与保护等功能,而后将电能安全、靠谱、经济的输送到每一个用电设备的转设场所。
作为电能传输与控制的枢纽,变电站一定改变传统的设计和控制模式,才能适应现代电力系统、现代化工业生产和社会生活的发展趋向。
110-35kv降压变电所电气一次部分设计

从以上校验可知断路器满足使用要求,故确定选用 SW2—35
II/1500 型少油断路器。
(3)断路器配用 CD3—XG II 型弹簧操作机构。
6.2 隔离开关的选择
6.2.1 110kV 侧隔离开关的选择 1)根据配电装置的要求,选择隔离开关带接地刀闸。 2)该隔离开关安装在户外,故选择户外式。 3)该回路额定电压为 110kV,因此所选的隔离开关额定电压
(3)、对于其它发电机侧电源 XΣ*=1/4(Xd+XT2+XL) =0.649
Xca*=XΣ* =0.649×(60/0.8)/100=0.517 查短路电流运算曲线[(一) t=0],得 I”*=2.0
I”G2=I”*
=2.0×(60/0.8)/(1.732×37)=2.341(kA)
短路冲击电流:iM3=2.55 I”G=2.55×2.341=5.970(kA)
Ue≥ 110kV,且隔离开关的额定电流大于流过断路器的最大持续电流 ImaX=1.05×(60/0.8)/(1.732×115)=0.395(kA)
4)初 GW4—110D 型单接地高压隔离开关其主要技术参数如 下:
型号
额定 电压 kV
额定 最大工作 接地
电流 电压 刀闸
kA
kV
A
极限通过电流 kA 有效值 峰值
4S 热稳 定电流
kA
备注
GW4-110D 110 1250 126 2000
32
5)校验所选的隔离开关
55
10 双接地
ห้องสมุดไป่ตู้
(1)动稳定校验
动稳定电流等于极限通过电流峰值即 idw = 55kA
流过该断路器的短路冲击电流 iM = 4.508 kA.s
毕业论文(设计)-某110KV降压变电所电气一次部分初步设计

重庆水利电力职业技术学院专科生毕业论文(设计)题目:某110KV降压变电所电气一次部分初步设计系别专业学号姓名指导教师年月日摘要变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用.电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。
为满足经济发展的需要,根据有关单位的决定修建1座110KV降压变电所.首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。
从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,35kV,10kV以及站用电的主接线,然后又通过负荷计算及供电范围确定了主变压器台数,容量及型号,同时也确定了站用变压器的容量及型号,最后,根据最大持续工作电流及短路计算的计算结果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完成了110kV电气一次部分的设计。
关键词:变电所主变压器短路计算选型目录一原始资料 (6)1.1原始资料 (6)1。
2对原始资料的分析计算 (6)二 110KV盐北变电所主变选择 (8)2.1主变方案选择 (8)2.2主变容量、参数选择 (9)三所用变选择 (11)四主接线设计 (12)4.1选择原则 (12)4.2 110KV主接线设计 (12)4.3 35KV主接线设计 (13)4。
4 10KV主接线设计 (13)五短路电流计算 (14)5。
1选择短路电流计算点 (14)5.2短路电流计算 (14)六变电所电气设备选择 (19)6。
1选择设备的基本原则 (19)6。
2断路器的选择 (20)6.3隔离开关的选择 (26)6。
4电流互感器的选择 (32)6。
推荐-110kV变电站电气一次部分初步设计1 精品

重庆电力高等专科学校重庆教培中心教学点毕业专业:电力系统自动化班级:变检0602二OO九年四月内容提要根据设计任务书的要求,本次设计为110kV变电站电气一次部分初步设计,并绘制电气主接线图及其他图纸。
该变电站设有两台主变压器,站内主接线分为110kV、35kV和10kV三个电压等级。
各个电压等级分别采用单母线分段接线、单母线分段带旁母线和单母线分段接线。
本次设计中进行了电气主接线的设计。
电路电流计算、主要电气设备选择及效验(包括断路器、隔离开关、电流互感器、母线等)、各电压等级配电装置设计及防雷保护的配置。
本设计以《电力工程专业指南》、《电力工程电气设备手册》、《高电压技术》、《电气简图用图形符号(GB/T4728.13)》、《电力工程设计手册》、《城乡电网建设改造设备使用手册》等规范规程为依据,设计的内容符合国家有关经济技术政策,所选设备全部为国家推荐的新型产品,技术先进、运行可靠、经济合理。
目录前言第一部分110kV变电站电气一次部分设计说明书第1章原始资料第2章电气主接线设计第2.1节主接线的设计原则和要求第2.2节主接线的设计步聚第2.3节本变电站电气接线设计第3章变压器选择第3.1节主变压器选择第3.2节站用变压器选择第4章短路电流计算第4.1节短路电流计算的目的第4.2节短路电流计算的一般规定第4.3节短路电流计算的步聚第4.4节短路电流计算结果第5章高压电器设备选择第5.1节电器选择的一般条件第5.2节高压断路器的选择第5.3节隔离开关的选择第5.4节电流互感器的选择第5.5节电压互感器的选择第5.6节高压熔断器的选择第6章配电装置设计第7章防雷保护设计第二部分110kV变电站电气一次部分设计计算书第1章负荷计算第1.1节主变压器负荷计算第1.2节站用变压器负荷计算第2章短路电流计算第2.1节三相短路电流计算第2.2节站用变压器低压侧短路电流计算第3章线路及变压器最大长期工作电流计算第3.1节线路最大长期工作电流计算第3.2节主变进线最大长期工作电流计算第4章电气设备选择及效验第4.1节高压断路器选择及效验第4.2节隔离开关选择及效验第4.3节电流互感器选择及效验第4.4节电压互感器选择及效验第4.5节熔断器选择及效验第4.6节母线选择及效验第5章防雷保护计算第三部分110KV变电站电气一次部分设计图纸电气主接线图总结参考文献致谢前言变电站是电力系统的重要组成部分,是联系发电厂和用户的中间环节,起着变换和分配电能的作用,直接影响整个电力系统的安全与经济运行。
110KV变电站电气一次部分初步设计说明书.docx

110KV变电站电气一次部分初步设计说明书第一部分设计说明书第1章原始资料该课题来源于工程实际,建设此变电站是为了满足该地区输变电的需要。
本次设计的变电站高压侧从相距 6.5km 的 PX110kV变电站受电,经过降压后分别以35kV、10kV 两个电压等级输出。
它在系统中起着重要的作用,它是变换电压、汇集和分配电能的电网环节,可以降低输电时电线上的损耗,主要的作用是将高压电降为低压电,经过降压后的电才可接入用户。
1.1 建站规模(1)、变电站类型:待建电站属于110kV 变电工程。
(2)、主变台数及容量:待建DK110kV 变电站主变台数及容量为:本期2×31.5MVA,远景规划: 2× 31.5MVA。
(3)、主变台数及容量:待建DK110kV 变电站主变台数及容量为:本期2×31.5MVA,远景规划: 2× 31.5MVA。
(4)、进出线:待建DK110kV变电站从相距6.5km 的 PX110kV变电站受电,线径 LGJ-240;变电站进出线 ( 全部为架空线 ) ,110kV共 2 回;35kV 共 4 回;10KV 共16回。
(5)负荷情况:待建 DK110kV变电站年负荷增长率为 5%,变电站总负荷考虑五年发展规划。
(6)无功补偿:待建DK110kV变电站无功补偿装置采用电力电容两组,容量为 2×3000kvar 。
(7)建站规模:待建DK110kV变电站所占地面积可采用半高型布置。
1.2 、短路阻抗系统作无穷大电源考虑,归算到本站110kV 侧母线上的阻抗标幺值X1= X 20.06 , X 00.154 (取 S B100 MVA, E S 1.0 )。
1.3 、地区环境条件待建 DK110kV变电站所在地区年最高气温35℃,年最低气温- 15℃,年平均气温 15℃。
第 2 章电气主接线设计电力系统是由发电厂、变电站、线路和用户组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
110KV降压变电站电气一次部分初步设计一、变电站的作用1.变电站在电力系统中的地位电力系统是由变压器、输电线路、用电设备组成的网络,它包括通过电的或机械的方式连接在网络中的所有设备。
电力系统中的这些互联元件可以分为两类,一类是电力元件,它们对电能进行生产(发电机)、变换(变压器、整流器、逆变器)、输送和分配(电力传输线、配电网),消费(负荷);另一类是控制元件,它们改变系统的运行状态,如同步发电机的励磁调节器,调速器以及继电器等。
2.电力系统供电要求(1)保证可靠的持续供电:供电的中断将使生产停顿,生活混乱,甚至危及人身和设备的安全,形成十分严重的后果。
停电给国民经济造成的损失远远超过电力系统本身的损失。
因此,电力系统运行首先足可靠、持续供电的要求。
(2)保证良好的电能质量:电能质量包括电压质量,频率质量和波形质量这三个方面,电压质量和频率质量均以偏移是否超过给定的数来衡量,例如给定的允许电压偏移为额定电压的正负5%,给定的允许频率偏移为正负0.2—0.5%HZ 等,波形质量则以畸变率是否超过给定值来衡量。
(3)保证系统运行的经济性:电能生产的规模很大,消耗的一次能源在国民经济一次能源总消耗占的比重约为1/3 ,而且在电能变换,输送,分配时的损耗绝对值也相当可观。
因此,降低每生产一度电能损耗的能源和降低变换,输送,分配时的损耗,又极其重要的意义。
二、变电站与系统互联的情况1.待建变电站基本资料(1)待建变电站位于城郊,站址四周地势平坦,站址附近有三级公路,交通方便。
(2)该变电站的电压等级为110KV,35KV,10KV三个电压等级。
110KV是本变电站的电源电压,35KV,10KV是二次电压。
(3)该变电站通过双回110KV线路与100公里外的系统相连,系统容量为1250MVA,系统最小电抗(即系统的最大运行方式)为0.2(以系统容量为基准),系统最大电抗(即系统的最小运行方式)为0.3。
2.35KV和10KV负荷统计资料35KV和10KV用户负荷统计资料如表1-1,1-2所示,最大负荷利用小时为Tmax=5500h,同时率取0.9,线损率取5%,功率因数取0.95。
线路每相每公里电抗值X0=0.4Ω/km 基准电压UB取各级的平均电压,平均电压为1.05 额定电压。
三、电气主接线设计及主变压器的选择1.变电站电气主接线的设计原则①接线方式:对于变电站的电气接线,当能满足运行要求时,其高压侧应尽可能采用断路器较少的或不用断路器的接线,如线路—变压器组或桥型接线等。
在110—220kV 配电装置中,当出线为2回时,一般采用桥型接线,当出线不超过4 回时,一般采用单母线接线,在枢纽变电站中,当110—220kV 出线在4 回及以上时,一般采用双母线接线。
在大容量变电站中,为了限制6—10kV 出线上的短路电流,一般可采用下列措施:1)变压器分列运行;2)在变压器回路中装置分裂电抗器;3)采用低压侧为分裂绕组的变压器;4)出线上装设电抗器。
②断路器的设置:根据电气接线方式,每回线路均应设有相应数量的断路器,用以完成切、合电路任务。
③为正确选择接线和设备,必须进行逐年各级电压最大最小有功和无功电力负荷的平衡。
2.主变压器的选择主变容量一般按变电站建成近期负荷5~10 年规划选择,并适当考虑远期10~15 年的负荷发展,对于城郊变电所主变压器容量应当与城市规划相结合,从长远利益考虑,根据地区供电条件、负荷性质、用电容量和运行方式等条件综合确定。
在有一、二级负荷的变电所中宜装设两台主变压器,当技术经济比较合理时,可装设两台以上主变压器。
装有两台及以上主变压器的变电所,当断开一台时,其余主变压器的容量不应小于60%的全部负荷,并应保证用户的一、二级负荷。
1)相数:容量为300MW 及以下机组单元接线的变压器和330kV 及以下电力系统中,一般都应选用三相变压器。
因为单相变压器组相对投资大,占地多,运行损耗也较大。
同时配电装置结构复杂,也增加了维修工作量。
2)绕组数与结构:电力变压器按每相的绕组数为双绕组、三绕组或更多绕组等型式;按电磁结构分为普通双绕组、三绕组、自耦式及低压绕组分裂式等型式。
在发电厂或变电站中采用三绕组变压器一般不多于3 台,以免由于增加了中压侧引线的构架,造成布置的复杂和困难。
3)绕组接线组别:变压器三绕组的接线组别必须和系统电压相位一致。
否则,不能并列运行。
电力系统采用的绕组连接有星形“Y”和三角形“D”。
在发电厂和变电站中,一般考虑系统或机组的同步并列以要求限制3 次谐波对电源等因素。
根据以上原则,主变一般是Y,D11 常规接线。
4)调压方式:为了保证发电厂或变电站的供电质量,电压必须维持在允许范围内,通过主变的分接开关切换,改变变压器高压侧绕组匝数。
从而改变其变比,实现电压调整。
通常,发电厂主变压器中很少采用有载调压。
因为可以通过调节发电机励磁来实现调节电压,对于220kV 及以上的降压变压器也仅在电网电压有较大变化的情况时使用,一般均采用无激磁调压,分接头的选择依据具体情况定。
5)冷却方式:电力变压器的冷却方式随变压器型式和容量不同而异,一般有自然风冷却、强迫风冷却、强迫油循环水冷却、强迫油循环风冷却、强迫油循环导向冷却。
根据以上变压器选择原则,结合原始资料提供的信息,分析后决定本变电站用2台三相三绕组的变压器,并采用YN,yn0,d11接线。
由原始资料可知,P10=7.8MW,P35=6.9 MW设负荷同时率系数K1取0.9,线损平均取5%,即K2=1.05,功率因数cosφ取0.95。
则10kV 和35kV 的综合最大负荷分别为:S10MAX=K1K2P10/cosφ=0.9×1.05×7.8÷0.95=7.76(MVA)S35MAX=K1K2P35/cosφ=0.9×1.05×6.9÷0.95=6.86(MVA)每台变压器额定容量为:S N=0.6S M=0.6(S10MAX+S35MAX)=0.6×(6.86+7.76)=8.772(MVA)由此查询变电站设计参考资料选得的变压器参数如下表:检验:当一台主变不能正常工作时,只有一台主变工作且满载则,S1=10000KVA,占总负荷的百分比为10/14.62=68%,且还未计及变压器事故过负荷40%的能力,所以所选变压器满足要求。
3.电器主接线选择(单母线分段接线方式)优点:①、用断路器把母线分段后,对重要用户可以从不同段引出两个回路,有两个电源供电;②、当一段母线故障时,分段断路器自动将故障段切除,保证正常段母线不间断供电,故障时停电范围小,供电的可靠性提高;③、扩建时需向两个方面均衡扩建;④、接线简单清晰,操作方便,不易误操作,设备少,投资小,占地面积小,为以后的发展和扩建奠定了基础。
缺点:①、当一段母线或母线侧隔离开关故障或检修时,该母线的回路都要在检修期间停电。
②、当出线为双回路时,常使架空线路出现交叉跨越。
适用范围:适用于6~10kV 线路出线16 回及以下,每段母线所接容量不宜四、短路电流计算短路的危害:(1)通过故障点的短路电流和所燃起的电弧,使故障元件损坏;(2)短路电流通过非故障元件,由于发热和电动力的作用,引起他们的损坏或缩短他们的使用寿命;(3)电力系统中部分地区的电压大大降低,破坏用户工作的稳定性或影响工厂产品质量;(4)破坏电力系统并列运行的稳定性,引起系统震荡,甚至整个系统瓦解。
1.本变电站短路电流计算用标幺值进行计算,基准容量S B=100MVA,线路每相每公里电抗值由于本变电站所用三绕组变压器为降压变压器,所以其各电压侧阻抗电压正系统等值网络图如下:其中,三绕组变压器电抗标幺值:U T11%=U T21%=1/2(U d1-2%﹢U d1-3%﹣U d2-3%)=0.5×(10.5﹢17﹣6)=10.75U T12%=U T22%=1/2(U d1-2%﹢U d2-3%﹣U d1-3%)=0.5×(10.5﹢6﹣17)=﹣0.25U T13%=U T23%=1/2(U%﹢U d1-3%﹣U d1-2%)=0.5×(6﹢17﹣d2-310.5)=6.25则:X T11*=X T21*=U T11%/100·S B/S N=10.75÷100×100÷10=1.075X T12*=X T22*=0X T13*=X T23*=U T13%/100·S B/S N=6.25÷100×100÷10=0.625线路的电抗标幺值:X L1*=X L2*=X0·l·S B/U B2=0.4×100×100÷1152=0.3025系统电抗标幺值,由于要求三相短路电流,所以用最大运行方式下的系统电抗:X S *=X Smin ·S B /S S =0.2×100÷1250=0.016由此得到含短路点的等值网络简化图如下:1)110kV 侧(K1 点)发生三相短路时:等值网络图如下:此时短路点总电抗标幺值为: X Σ110*=X S *+X L *=0.016+0.3025÷2=0.16725 电源对短路点的计算阻抗为:X BS110=X Σ110*•S S /S B =0.16725×1250÷100=2.09通过查“水轮发电机运算曲线数字表”得: I (0)“*=0.509 I (1)“*=0.525 I (2)“*=0.525 I (4)“*=0.525 110kV 侧的基准电流为:I B110=S B /U B110=100÷÷115=0.502(kA )短路电流有名值为:I (0)“=I (0)“*·I B110=0.509×0.502=0.256(kA ) I (1)“=I (1)“*·I B110=0.525×0.502=0.264(kA )X sX L1X L2W 1XT 21XT 11X T22X T23X T12X T13W 2W 3K 1K 2K 3X sX LW 1K 1I (2)“=I (2)“*·I B110=0.525×0.502=0.264(kA ) I (4)“=I (4)“*·I B110=0.525×0.502=0.264(kA )冲击电流为: i cj =2.55•I (0)“=2.55×0.256=0.653(kA )2)35kV 侧(K2 点)发生三相短路时:等值网络图如下:此时短路点总电抗标幺值为:X Σ35*=X S *+X L *+X T1*+X T2*=0.016+0.3025÷2+(1.075+0)/2=0.70475电源对短路点的计算阻抗为:X BS35=X Σ35*•S S /S B =0.70475×1250÷100=8.809>3.45当X BS >3.45 时,求短路电流不用查表法,用倒数法: I “*=I ∞*=1/X BS35=1÷0.70475=1.418943 35kV 侧的基准电流为: I B35=S B /U B35=100÷÷37=1.56(kA ) 短路电流有名值为: I “=I “*·I B35=1.418943×1.56=2.213551(kA ) 冲击电流为:i cj =2.55•I “=2.55×2.213551=5.645(kA )3)10kV 侧(K3 点)发生三相短路时:等值网络图如下:X sX LW 1X T1X T2W 2K 2X sX LW 1X T1X T3W 3K 3此时短路点总电抗标幺值为:X Σ10*=X S *+X L *+X T1*+X T3*=0.016+0.3025÷2+(1.075+0.625)/2=1.017电源对短路点的计算阻抗为:X BS10=X Σ10*•S S /S B =1.017×1250÷100=12.716>3.45当X BS >3.45 时,求短路电流不用查表法,用倒数法:I “*=I ∞*=1/X BS35=1÷1.017=0.98328410kV 侧的基准电流为: I B10=S B /U B10=100÷÷10.5=5.499(kA ) 短路电流有名值为: I “=I “*·I B10=0.983284×5.499=5.40708(kA )冲击电流为:i cj =2.55•I “=2.55×5.40708=13.78805(kA )系统最大运行方式下的三相短路电流短路点 0s 短路电 流(kA ) 1s 短路电 流(kA ) 2s 短路电 流(kA ) 4s 短路电 流(kA ) 稳态短路 电流(kA ) 冲击电流(KA )K1(110KV ) 0.256 0.2640.2640.2640.653K2(35KV )2.214 5.645K3(10KV )5.40713.781. 断路器及校验目前,使用得最多的是少油断路器,六氟化硫断路器和空气断路器。