第六章-弹性波波动方程及其解ppt课件
波动ppt课件

注意: a)( y与x的区别
(b) 波的传播 u与速 质度 点振v的 动区 速别 度
u波速,由媒质周确 期性定 函数
vyAsin[(tx)]质元振动速度
t
u
12
例1 一平面简谐波沿 Ox轴正方向传播,
已知振幅 A1.0m,T 2.0s,λ2.0m. 在 t 0
时坐标原点处的质点在平衡位置沿 Oy 轴正向 运动. 求:(1)波动方程;(2)t 1.0s波形图; (3) x0.5m 处质点的振动规律并作图.
E E k E p V2A 2s2 i[n (t u x )]
• 任何时刻介质元的动能与势能相等
• 总能量在0-Emax间周期性变化 • 波是能量传播的一种形式
yAco ts 2 ( l2 x0)
yAcos(t (xl)0)
17
2、如图所示,一平面简谐波沿X轴正向传播,已知
O点的振动方程为 yo Aco2 s( t) ,BC为两种
介质的分界面,入射波在Q点反射,OQ=l。设
波反射时无相位突变,且透射波可忽略不计,
则反射波在坐标为X的P点的表达式为:
(A) yAco2s(t x); y
t
u
E k1 2 VA 22si2 n (tu x)
19
介质元势能
Ep
1 2
k (dy ) 2 ; u
E ; dy Aw sin[ w (t x ) ]
dx u
u
F E dv s dx
E
F /s dv
kdy / s dy / dt
kdxdt s
k Es dxdt
dx
dx
Ep
波动
1
机械波的产生
产生条件: ·存在振源—产生机械波 ·有弹性介质—传播 波的本质:传播振动状态, 也是传播能量的一种方式。
2024年大学物理波动课件

大学物理波动课件引言波动是物理学中的一个重要概念,涉及到的领域广泛,包括声波、电磁波、机械波等。
本文旨在介绍大学物理中波动的基本概念、波动方程、波动特性以及波动在各个领域的应用,以帮助读者更好地理解和掌握波动知识。
一、波动的基本概念1.1波的定义波是一种能量传递的方式,它是由振源产生的振动在介质中传播的过程。
波可以分为两大类:机械波和电磁波。
机械波需要介质来传播,如声波和水波;而电磁波不需要介质,可以在真空中传播,如光波和无线电波。
1.2波的参数波的参数包括波长、波速、频率和振幅。
波长是相邻两个波峰(或波谷)之间的距离,通常用λ表示;波速是波在介质中传播的速度,通常用v表示;频率是单位时间内通过某一点的完整波的个数,通常用f表示;振幅是波的振动幅度,即波的最大偏离度。
二、波动方程2.1机械波方程机械波的波动方程可以表示为:y=Asin(2πft2πx/λ+φ)其中,y表示介质中某一点的位移,A表示振幅,f表示频率,λ表示波长,x表示该点距离振源的距离,φ表示初相位。
2.2电磁波方程电磁波的波动方程可以表示为:E=E0sin(2πft2πx/λ+φ)其中,E表示电场强度,E0表示振幅,其他参数与机械波方程相同。
三、波动特性3.1干涉干涉是指两个或多个波相遇时,它们的振动叠加产生的现象。
当两个波峰相遇时,振动加强;当波峰与波谷相遇时,振动减弱。
干涉现象广泛应用于光学、声学等领域。
3.2衍射衍射是指波传播过程中遇到障碍物或通过狭缝时,波的传播方向发生改变的现象。
衍射现象广泛应用于光学、声学等领域,如光栅、声呐等。
3.3折射折射是指波从一种介质传播到另一种介质时,波的传播方向发生改变的现象。
折射现象广泛应用于光学领域,如透镜、棱镜等。
3.4反射反射是指波遇到界面时,部分能量返回原介质的现象。
反射现象广泛应用于光学、声学等领域,如镜子、回声等。
四、波动应用4.1声学领域波动在声学领域有着广泛的应用,如声音的产生、传播、接收和利用。
2020年高中物理竞赛辅导课件(振动和波基础篇)06波动方程(共13张PPT)

x u
)+j
t = t 1+Δ t y´= A cos ω ( t 1+Δ t
x u
)+j
y
..
y y´ 1
O x ut
t
x´
令 y1=y´ 得:x ´= x +uΔ t 这表示相应于位移y1的相位,向前传播了
uΔt的距离。
三、波动方程的一般形式
y = A cos ω ( t
x u
)+j
质点的振动速度:
可以证明对于无吸收的各向同性的均 匀介质,在三维空间传播的一切波动过程
都满足下列方程:
ξ2
ξ2
ξ2
1 ξ2
x 2 + y 2 + z 2 = u2 t 2
ξ 质点的位移
谢谢观看!
二、波动方程的物理意义
1. x =x 1 (常数)
y = A cos ω ( t
x1 u
)+j
y
o
t
表示 x1 处质点的振动方程
2. t = t 1 (常数) y
o
x
y = A cos ω ( Fra bibliotek 1x u
)+j
表示在 t 1 时刻的波形
3. t 与 x 都发生变化
t = t1
y1 = A cos ω ( t 1
平面简谐波的波动方程为:
y = A cos ω ( t
x u
)+j
y
=
A cos
2π
(
t T
x
l
)+j
波动方程的 另外几种形式:
y = A cos 2π (n t
第六章_波动方程

一、波动方程
7.2.3 一维势垒的简单讨论 粒子在I区,具有能量E>0。各区 的势垒如下,求粒子在各区出现 的几率。
0 (0<x<x1) [I区] V=
V2>E (x1<x<x2) [II区]
0 (x>x2) [III区]
一、波动方程 列出此问题的薛定谔方程:
2 d 2u V x u Eu 2 2m dx d 2u 2m 2 V E u 2 dx
此方程比较难解,令 x,
2
2
(1)
mk 2
4
那么
d 2u 2mE mk 2 2 2 2 4 u 0 2 d
(2)
一、波动方程 令括号内第二项的常数部分为1,用λ代替括号内第一项,那么 2化简为:
d 2u 2 u 0, 2 d
波动方程
一、波动方程
第七章 波动方程
波动方程(wave equation)是一种重要的偏微分方程,主要 描述自然界中的各种的波动现象,例如声波,光波和水波。波动方 程抽象自声学,电磁学,和流体力学等领域。
历史上许多科学家,如达朗贝尔、欧拉、丹尼尔²伯努利和拉格朗日等在研 究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。
px i x
所以动量px可以用算符 i 来表示。同理有 x
p y i y
pz i z
一、波动方程
那么
p p p p 2 2 2 x y z 2 2
2 2 2 2 2 x 2 y 2 z 2
波函数两边取对t的偏导
i E , t
波动方程和行波法剖析课件

目录 Contents
• 波动方程的基本概念 • 行波法的基本原理 • 波动方程的解析解法 • 波动方程的数值解法 • 行波法的应用实例
01
波动方程的基本概念
பைடு நூலகம்
波动方程的定义
波动方程
描述波动现象的基本数学模型,通常 用于描述物理场(如声场、电磁场、 水波等)随时间和空间的变化规律。
03
最后,通过迭代求解差分方程 ,得到波在每个网格点上的值 ,从而得到波的传播和演化过 程。
行波法的优缺点
优点
行波法简单易懂,易于编程实现,能够处理复杂的边界条件和初始条件,适用 于求解各种类型的波动方程。
缺点
行波法需要设定初始条件和边界条件,对于某些复杂的波动问题可能需要较高 的计算成本和精度要求。
水波传播的模拟
要点一
总结词
利用行波法模拟水波的传播,有助于研究水波的形成、演 化及对环境的影响。
要点二
详细描述
在水波传播的模拟中,行波法能够模拟水面的波动情况, 包括波浪的生成、传播和消散。通过调整参数,可以研究 不同条件下水波的传播规律,如风速、水深、地形等,对 于水文学、海洋学等领域具有重要意义。
03
波动方程的解析解法
分离变量法
将波动方程的解表示为若干个变量的 乘积或商的形式,以便分别求解。
VS
分离变量法是一种求解波动方程的常 用方法。通过假设波动方程的解可以 表示为若干个变量的乘积或商的形式 ,我们可以将一个复杂的偏微分方程 转化为若干个简单的常微分方程,从 而方便求解。
积分变换法
利用积分变换将波动方程化为易于求解的形式,再进行逆变换得到原方程的解。
地震学
用于模拟地震波的传播和反射,进行地震预 测和地球结构研究。
《大学物理波动学》ppt课件

03
电磁波
13
麦克斯韦电磁场理论
2024/1/24
变化的电场产生磁场
01
麦克斯韦通过理论推导,得出变化的电场会在其周围空间产生
磁场,这是电磁波产生的理论基础。
变化的磁场产生电场
02
同样地,变化的磁场也会在其周围空间产生电场,这种相互产
生的电磁场就是电磁波。
电磁波的传播
03
电磁波的传播不需要介质,可以在真空中传播,传播速度等于
该表达式描述了波的振动状态和传播特性。
2024/1/24
11
惠更斯原理与波的衍射
惠更斯原理
介质中任一波面上的各点,都可以看 做发射子波的波源,其后任意时刻, 这些子波在波前进方向的包络面就是 新的波面。
波的衍射
波在传播过程中遇到障碍物或小孔后 通过散射继续传播的现象。
2024/1/24
12
2024/1/24
VS
波动能量传输的机制
在波动过程中,介质中的质点受到周期性 变化的力的作用而做受迫振动,从而将能 量从波源传输到远处。这种能量传输方式 具有方向性和连续性。
2024/1/24
27
06
非线性波动与现代光学技 术
2024/1/24
28
非线性波动概述及特点
非线性波动定义
描述物理量之间非线性关系的波动现象。
《大学物理波动学》ppt课件
2024/1/24
1
contents
目录
2024/1/24
• 波动学基本概念与原理 • 机械波 • 电磁波 • 干涉与衍射现象 • 多普勒效应与波动能量传输 • 非线性波动与现代光学技术
2
01
波动学基本概念与原理
《大学物理波动》PPT课件
01波动基本概念与分类Chapter波动定义及特点波动定义波动特点机械波电磁波物质波030201波动分类与举例波动方程简介一维波动方程三维波动方程波动方程的解02机械波Chapter机械波形成条件与传播方式形成条件振源、介质、振动方向与波传播方向关系传播方式横波(振动方向与波传播方向垂直)与纵波(振动方向与波传播方向平行)波前与波线波前为等相位面,波线为波的传播方向01020304机械波传播过程中,介质质点不断重复着振源的振动形式周期性振源振动的最大位移,反映波的能量大小振幅相邻两个波峰或波谷之间的距离,反映波的空间周期性波长单位时间内波传播的距离,与介质性质有关波速机械波性质与参数描述平面简谐波及其表达式平面简谐波波动方程波动方程的解03电磁波Chapter电磁波产生原理与传播特性电磁波产生原理电磁波传播特性电磁波谱及其应用电磁波谱电磁波应用电磁波在介质中传播规律折射定律反射定律透射定律衰减规律04光学波动现象Chapter干涉现象及其条件分析干涉现象的定义和分类01干涉条件的分析02干涉现象的应用03衍射现象及其规律探讨衍射现象的定义和分类衍射规律的分析衍射现象的应用偏振现象的定义和分类偏振是光波中电场矢量的振动方向相对于传播方向的不对称性。
根据光波中电场矢量的振动方向不同,偏振可分为线偏振、圆偏振和椭圆偏振等。
要点一要点二偏振规律的分析偏振现象遵循一定的规律,如马吕斯定律、布儒斯特定律等。
这些规律揭示了偏振光在传播过程中的特点和变化规律。
偏振现象的应用偏振现象在光学、光电子学等领域有着广泛的应用。
例如,利用偏振片可以实现光的起偏和检偏;利用偏振光的干涉和衍射可以制作各种光学器件和测量仪器;同时,偏振也是液晶显示等现代显示技术的基本原理之一。
要点三偏振现象及其应用研究05量子力学中波动概念引入Chapter德布罗意波长与粒子性关系德布罗意波长定义01粒子性与波动性关系02实验验证03测不准原理对波动概念影响测不准原理内容对波动概念的影响波动性与测不准原理关系量子力学中波动方程简介薛定谔方程波动函数的物理意义波动方程的解与粒子性质06波动在科学技术领域应用Chapter超声技术声音传播利用高频声波进行无损检测、医学诊断和治疗等。
大学物理《波动》课件
t 1.0s
波形方程
y 1.0 cos( π - π x) 2
1.0 sin(π x)
y/m
1.0
o
2.0
x/m
-1.0
t 1.0 s 时刻波形图
第二节 波动学基础
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t - x ) - π] 2.0s 2.0m 2
x 0.5m 处质点的振动方程
y (1.0m)cos(π t - π)
y
y/m
3
1.0
3*
2
4
4O
2
0 * 1.0 * 2.0 * t / s
1 -1.0*1
*
x 0.5 m 处质点的振动曲线
第二节 波动学基础
讨 论 1)给出下列波函数所表示的波的传播方向
和 x 0 点的初相位.
y -Acos2π ( t - x )
-
x)
2π T 2π
C
B
u B
TC
2π d dC
第二节 波动学基础
3 ) 如图简谐波 以余弦函数表示,
求 O、a、b、c 各
点振动初相位.
(-π ~ π )
t =0 A y
Oa
-A
A
O
y o π
O
A
O
y
a
π 2
O A
u
b c
A
y
y
t=T/4
x
b 0
c
-π 2
§8.5 波的干涉与衍射
波程差 r2 - r1
k k 0,1,2,
A A1 A2 振动始终加强
3 ) (k 1 2) k 0,1,2,
大学物理振动波动优秀ppt课件
VS
特征量
包括振幅 $A$、角频率 $omega$、相位 $varphi$,分别表示振动的幅度、快慢和 初始状态。
简谐振动能量转换
动能与势能转换
在简谐振动过程中,物体的动能和势能不断 相互转换,总机械能保持不变。
能量守恒
简谐振动的能量在动能和势能之间相互转换, 但总能量保持不变,遵守能量守恒定律。
节。
03
液晶显示技术
液晶显示技术利用偏振光和液晶分子的特性实现对光的调制。通过控制
液晶分子的排列方式,可以改变偏振光的透过率,从而实现对图像的显
示和控制。
05
多普勒效应与声波传播特 性
多普勒效应产生原因及公式推导
产生原因
波源与观察者之间存在相对运动,导 致观察者接收到的波的频率发生变化。
公式推导
THANKS
感谢观看
振动的分类
根据振动的性质可分为简谐振动、 阻尼振动、受迫振动等。
简谐振动模型建立
弹簧振子模型
由弹簧连接的质量块在平衡位置附近 的往复运动,是简谐振动的理想模型。
单摆模型
在重力作用下,摆球绕固定点做小幅 度的摆动,可近似看作简谐振动。
简谐振动方程与特征量
简谐振动方程
描述物体简谐振动的数学表达式,一般为 $x=Acos(omega t+varphi)$。
混沌在自然界和人类社会中表现
自然界中的表现
混沌现象在自然界中广泛存在,如气候变化、地震、湍流等都是混沌现象的典型例子。
人类社会中的表现
人类社会中的许多复杂系统也表现出混沌现象,如股票市场、交通系统、社交网络等。
混沌的利与弊
混沌现象既有利也有弊。一方面,混沌现象可以带来创新和变革,如艺术创作和科学研究中的灵感常常 来源于混沌;另一方面,混沌现象也可能导致不可预测的风险和危机,如金融危机和自然灾害等。
第六章弹性波波动方程及其解ppt课件
又 • u • uS 0
2
代入纳维方程 ( )( • u ) u f u
uS f uS
2 2
VS uS f uS
2
vs
结论:在均匀各向同性弹性体内,切变扰动以速度VS向
(4)
(5)
式u j , ji (ui , jj u j ,ij ) f i ui即为位移在弹性体
内传播时所满足的方程 .称为纳维 ( Navier)方程.
纳维方程是线性弹性假设条件下得到的各向同性弹性体中
的弹性波最基本方程。
指标表示的纳维方程 ( )u j , ji ui , jj f i ui
§6.1 线性弹性动力学的基本方程
1.
基本方程
➢
➢
运动微分方程 ji , j
几何方程
1
eij (ui , j u j ,i )
2
2 ui
f i 2
t
u1
e11
x1
u2
e22
x2
u
e33 3
x3
1 u1 u2
e12 (
)
2 x2 x1
v p t
上式表示波场是以速度VP向外传播的无旋场。
转动矢量表示的横波方程
2
( )( • u ) u f u两边取旋度
2
(
u
)
( )( ( • u )) 2 ( u ) ( f )