化学除磷
化学除磷计算

前言在静止的或流动缓慢的水体中,如果磷的浓度过高,会造成水体的富营养化,其危害已众所周知,因而在污水处理中进行除磷是必要的。
我国《污水综合排放标准》(8978—1996)规定,城市污水处理厂磷酸盐(以P计)一级排放标准为0.5mg/l。
磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。
本文主要介绍化学除磷的基本机理、主要工艺形式和药剂投加量的计算方法。
2 污水中的磷负荷欧洲一些国家曾对生活污水中的总磷PT做过多次调查,主要结果见表1。
由人类食物产生的磷是不变的,但国内外目前普遍开始采用无磷洗涤剂,所以由洗涤剂产生的磷几年降低了许多。
城市污水原水中的磷浓度在我国主要取决于工业废水中的磷含量。
国外生活污水一般为10~25mg/l,我国一般为5~10mg/l。
其大部分是无机化合磷,并是溶解状的,这一部分主要由来自洗涤剂的正磷酸盐和稠环磷酸盐组成。
总磷中的一小部分是有机化合磷,其以溶解和非溶解状态存在。
稠环磷酸盐(如P3O105-)和有机化合磷(核酸 )一般在污水管网中和污水处理中就已经转化为正磷酸盐(PO43-)。
3 化学除磷的基础化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。
实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异(如图1所示)。
FeCl3+K3PO4→FePO4↓+3KCl式1污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。
化学除磷药剂投加量

化学除磷药剂化学除磷原理化学除磷是利用无机金属盐作为沉淀剂,与污水中的磷酸盐类物质反应形成难溶性含磷化合物与絮凝体,将污水中的溶解性磷酸盐分离出来。
化学除磷的药剂主要有铁盐、铝盐和石灰,由于石灰对生物处理的pH影响较大,加之容易引起管道堵塞问题;铝盐对人体和生物毒害比较大,给运行管理带来很多麻烦。
一般在以生物除磷为主,化学除磷为辅的污水处理厂中很多采用。
目前,国内常爱用铁盐作为沉淀剂,其与磷的化学反应式如下(1):Fe3++PO43- →Fe PO4↓(1)与沉淀反应相竞争的反应式金属离子与OH-的反应,反应式如下(2):Fe3++ 3OH- →Fe (OH)3↓(2)金属氢氧化物会形成大块的絮凝体,这对于沉淀产物的絮凝是有力的,同时还会吸附胶体状的物质、细微悬浮颗粒。
除磷药剂投加量的计算由式(1)可知去除1mol的磷酸盐,需要1mol的铁离子。
由于在实际工程中,反应并不是100%的有效进行的,加之OH-会参与竞争反应,与金属离子反应,生成相应的氢氧化物,如(2)式,所以实际中化学沉淀药剂一般需要超量投加,以保证达到所需的出水P浓度。
《给水排水设计手册》第五册和德国设计规范中都提到了同步沉淀化学除磷可按照1mol磷需要1.5mol的铁盐来考虑,为了计算方便,实际中将摩尔换算成质量单位,如1molFe=56gFe,1molP=31gP,也就是去除1kg的磷,当采用铁盐时需要投加:1.5×(56/31)=1.5×1.8=2.7Kg Fe/Kg P,计算举例:某城镇污水处理厂规模2万m3/d,已建成稳定运行,二沉池出水排放标准总磷≤1.0mg/L,运行数据表明二沉池出水实测总磷2.5mg/L,欲采用液体三氯化铁(FeCl3)作为同步化学除磷药剂,其有效成分为40%(400g/Kg FeCl3溶液),密度为1.42Kg/L,求所需要的除磷药剂。
解:化学除磷欲除去的磷含量2.5-1.0=1.5mg/L,所需要的Fe的投加量至少为2.7×1.5×20000×10-3=81Kg/d;折算成每天需要有效成分为40%的FeCl3溶液体积为V=81×(56+35.5×3)/(56×0.4×1.42)=420L=0.42m3/d六水合三氯化铁(FeCl3·6H2O)含量98%(1g FeCl3·6H2O含有0.203gFe)除去1mg/L P盐,需要多少ppm的FeCl3·6H2O?(2.7Kg Fe/Kg P)。
十分钟搞定!化学除磷剂的投加!

十分钟搞定!化学除磷剂的投加!全部的污水除磷方法都包含有两个必要的过程,首先将溶解性磷(磷酸盐)物质转化为不溶性悬浮(颗粒)性状态,然后通过固液分别将磷从污水中除去。
一、除磷剂的分类除磷剂是向污水中投加化学药剂,使水中磷酸根离子生成难溶性盐,形成絮凝体后与水分别,从而去除水中所含的磷。
从而将处理后水中的磷含量降至界限值以下,不需要转变原水处理流程,不需要增设大型水处理构筑物,简便易行,经济有用,可获得显著的社会和经济效益。
依据化学除磷法的原理介绍,除磷剂主要分为四类:1 、铝盐化学除磷药剂采纳铝盐作为药剂添加在化学除磷工艺中,常常使用的有三种,一种是硫酸铝,一种是氯化铝,还有一种是聚合氯化铝,在详细的反应过程中,包含两个主要的反应过程,首先是三价铝离子通过与磷酸根产生反应而消失沉淀,沉淀的化合物为AlPO4 。
其次是三价铝离子能够消失水解反应,在这一过程中会有正电荷以及单核羟基络合物以及多核羟基络合物的存在,在经过范德华力以及网捕等一系列的作用以后,就能达到比较抱负的沉淀效果,这样也就达到了化学除磷的要求。
在运用铝盐进行化学除磷的过程中,需要重点掌握 pH,这样才能达到抱负的除磷效果,否则会造成所排放的水体中铝盐超标。
2 、铁盐化学除磷药剂铁盐除磷药剂主要有硫酸亚铁、聚合氯化硫酸铁、氯化铁及聚合氯化铁等。
铁盐与铝盐除磷反应机理类似,之外还会发生剧烈水解并同时发生各种聚合反应吸附水中的磷。
Fe2+除磷效率与pH相关,但有关 Fe2+除磷最佳PH存在争议:有人认为PH=8时,Fe2+除磷效果最好,但讨论表明PH=7.5~8.5时不易生成沉淀,从而降低了除磷效率。
Fe2+除磷需要较高PH值,而环境污水厂处理中PH值往往低于 7.5。
另外,在水中 Fe3(PO4)2 没有FePO4稳定,这些都限制了二价铁盐在废水除磷中的应用,实际过程中可利用好氧池曝气的特点将Fe2+氧化成 Fe3+来提高化学除磷效率。
化学除磷介绍

6.7 化学除磷6.7.1 污水经二级处理后,其出水总磷不能达到要求时,可采用化学除磷工艺处理。
污水一级处理以及污泥处理过程中产生的液体有除磷要求时,也可采用化学除磷工艺。
6.7.2 化学除磷可采用生物反应池的前置投加、后置投加和同步投加,也可采用多点投加。
6.7.3 化学除磷设计中,药剂的种类、剂量和投加点宜根据试验资料确定。
6.7.4 化学除磷的药剂可采用铝盐、铁盐,也可采用石灰。
用铝盐或铁盐作混凝剂时,宜投加离子型聚合电解质作为助凝剂。
6.7.5 采用铝盐或铁盐作混凝剂时,其投加混凝剂与污水中总磷的摩尔比宜为1.5~3。
6.7.6 化学除磷时应考虑产生的污泥量。
6.7.7 化学除磷时,对接触腐蚀性物质的设备和管道应采取防腐蚀措施。
条文说明:6.7 化学除磷6.7.1 关于化学除磷应用范围的规定。
《城镇污水处理厂污染物排放标准》(GB18918)规定总磷的排放标准:当达到一级A标准时,在2005年12月31日前建设的污水厂为1mg/l,2006年1月1日起建设的污水厂为0.5mg/l。
一般城市污水经生物除磷后,较难达到后者的标准,故可辅以化学除磷,以满足出水水质的要求。
强化一级处理,可去除污水中绝大部分磷。
上海白龙港城市污水厂试验表明,当FeCl3投加量为40~80mg/l,或Al2(SO4)3•18H2O投加量为60~80mg/l 时,进出水磷酸盐磷浓度分别为2~9mg/l和0.2~1.1mg/l,去除率为60~95%。
污泥厌氧处理过程中的上清液、脱水机的过滤液和浓缩池上清液等,由于在厌氧条件下,有大量含磷物质释放到液体中,若回流入污水处理系统,将造成污水处理系统中磷的恶性循环,因此应先进行除磷,一般宜采用化学除磷。
6.7.2 关于药剂投加点的规定。
以生物反应池为界,在生物反应池前投加为前置投加,在生物反应池后投加为后置投加,投加在生物反应池内为同步投加,在生物反应池前后都投加为多点投加。
化学除磷的原理

化学除磷的原理原理:化学除磷是通过化学沉淀过程完成的,化学沉淀是指通过向污水中投加药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,污水中进行的不仅仅是沉淀反应,同时还进行着化学絮凝反应。
采用的药剂一般有铝盐、铁盐、钙盐、铁铝聚合物。
化学沉淀工艺是按沉淀药剂的投加位置来区分的,实际中常采用的有:前沉淀、同步沉淀和后沉淀。
1 前沉淀在沉淀池前投加金属沉淀剂到原水中。
其一般需要设置产生涡流的装置或者供给能量以满足混合的需要。
相应产生的沉淀产物(大块状的絮凝体)则在一次沉淀池中通过沉淀而被分离。
如果生物段采用的是生物滤池,则不允许使用Fe2+药剂,以防止对填料产生危害(产生黄锈)。
前沉淀工艺特别适合于现有污水处理厂的改建(增加化学除磷措施),因为通过这一工艺步骤不仅可以去除磷,而且可以减少生物处理设施的负荷。
常用的沉淀药剂主要是生灰和金属盐药剂。
经前沉淀后剩余磷酸盐的含量为1.5~2.5mg/L,完全能满足后续生物处理对磷的需要。
2 同步沉淀在生物处理过程中投加金属沉淀剂。
同步沉淀是使用较广泛的化学除磷工艺,其工艺是将沉淀药剂投加在曝气池出水或二次沉淀池进水中,个别情况也有将药剂投加在曝气池进水或回流污泥渠(管)中。
目前很多污水厂都采用同步沉淀,加药对活性污泥的影响比较小。
3 后沉淀将沉淀、絮凝以及被絮凝物质的分离在一个与生物设施相分离的设施中进行,向出水中投加金属沉淀剂,一般将沉淀药剂投加到二次沉淀池后的一个混合池中,之后混合沉淀。
并在其后设置絮凝池和沉淀池(或气浮池)。
对于要求不严的受纳水体,在后沉淀工艺中可采用石灰乳液药剂,但要对出水pH值加以控制,比如采用沼气中的CO2进行中和。
采用气浮池可以比沉淀池更好地去除悬浮物和总磷,但因为需恒定供应空气而运转费用较高。
常用化学除磷药剂的作用机理和优缺点

常用化学除磷药剂的作用机理和优缺点目前化学除磷目前常用的有铝盐、铁盐和钙盐三种类型的除磷剂,本文全面解析三种除磷剂的作用机理和优缺点!一、铝盐除磷剂原理:铝盐除磷的原理一般认为是当铝盐分散于水体时,一方面Al离子与磷酸根反应,另一方面,Al离子首先水解生成单核络合物Al(OH)2+、Al(OH)2+及AlO2ˉ等,单核络合物通过碰撞进一步缩合,进而形成一系列多核络合物Aln(OH)m(3n-m)+(n>1,m≤3n),这些铝的多核络合物往往具有较高的正电荷和比表面积,能迅速吸附水体中带负电荷的杂质,中和胶体电荷,压缩双电层及降低胶体ξ电位,促进了胶体和悬浮物等快速脱稳、凝聚和沉淀,表现出良好的除磷效果。
药剂:常用铝盐有聚合氯化铝和硫酸铝,比较如下图;由图1和图2可以看出,尽管投加大量的药剂之后,硫酸铝有相对较好的除磷效果,但要使出水含磷量达到0.5mg/L,PAC和Al2(SO4)3的加药量分别为1.35mg/L和6mg/L,从经济性方面看,聚合氯化铝(PAC)相对更经济一些。
二、铁盐除磷剂原理:溶于水中后,Fe3+一方面与磷酸根生成难溶盐,一方面通过溶解和吸水可发生强烈水解,并在水解的同时发生各种聚合反应,生成具有较长线性结构的多核羟基络合物,如Fe2(OH)24+、Fe3(OH)45+、Fe5(OH)96+、Fe5(OH)87+、Fe5(OH)78+、Fe6(OH)126+、Fe7(OH)129+等。
这些含铁的羟基络合物能有效降低或消除水体中胶体的ξ电位,通过电中和,吸附架桥及絮体的卷扫作用使胶体凝聚,再通过沉淀分离将磷去除。
药剂:目前常用铁盐有低分子无机铁盐(硫酸亚铁,氯化铁等)和高分子无机铁盐(聚合硫酸铁、聚合硫酸氯铁),比较如下图;第一个图可以看出,在絮凝剂投加量为1500mg/L的情况下,氯化铁和聚合硫酸铁对总磷的去除率分别为92.12%和78.65%,氯化铁的作用效果最佳,聚合硫酸铁次之。
化学除磷理论及要求规范

6.7 化学除磷6.7.1 污水经二级处理后,其出水总磷不能达到要求时,可采用化学除磷工艺处理。
污水一级处理以及污泥处理过程中产生的液体有除磷要求时,也可采用化学除磷工艺。
6.7.2 化学除磷可采用生物反应池的前置投加、后置投加和同步投加,也可采用多点投加。
6.7.3 化学除磷设计中,药剂的种类、剂量和投加点宜根据试验资料确定。
6.7.4 化学除磷的药剂可采用铝盐、铁盐,也可采用石灰。
用铝盐或铁盐作混凝剂时,宜投加离子型聚合电解质作为助凝剂。
6.7.5 采用铝盐或铁盐作混凝剂时,其投加混凝剂与污水中总磷的摩尔比宜为1.5~3。
6.7.6 化学除磷时应考虑产生的污泥量。
6.7.7 化学除磷时,对接触腐蚀性物质的设备和管道应采取防腐蚀措施。
条文说明:6.7 化学除磷6.7.1 关于化学除磷应用范围的规定。
《城镇污水处理厂污染物排放标准》(GB18918)规定总磷的排放标准:当达到一级A标准时,在2005年12月31日前建设的污水厂为1mg/l,2006年1月1日起建设的污水厂为0.5mg/l。
一般城市污水经生物除磷后,较难达到后者的标准,故可辅以化学除磷,以满足出水水质的要求。
强化一级处理,可去除污水中绝大部分磷。
上海白龙港城市污水厂试验表明,当FeCl3投加量为40~80mg/l,或Al2(SO4)3•18H2O投加量为60~80mg/l 时,进出水磷酸盐磷浓度分别为2~9mg/l和0.2~1.1mg/l,去除率为60~95%。
污泥厌氧处理过程中的上清液、脱水机的过滤液和浓缩池上清液等,由于在厌氧条件下,有大量含磷物质释放到液体中,若回流入污水处理系统,将造成污水处理系统中磷的恶性循环,因此应先进行除磷,一般宜采用化学除磷。
6.7.2 关于药剂投加点的规定。
以生物反应池为界,在生物反应池前投加为前置投加,在生物反应池后投加为后置投加,投加在生物反应池内为同步投加,在生物反应池前后都投加为多点投加。
【水处理工程】化学除磷是什么、为什么以及怎么做

【DIRECTORY】
三、How to do it
2、化学药剂的种类 ✓铁盐(三氯化铁,硫酸亚铁) ✓铝 盐(明矾,即十二水合硫酸铝钾) ✓石灰(氢氧化钙)
选择化学药剂的时应基于以下几点: ①烧杯实验; ②成本分析; ③对后续处理过程或下游水质的影响。
【DIRECTORY】
三、How to do it
*矾花大、沉淀迅速,混凝效果良好 *无刺激性气体产生
*用量大 *对设备腐蚀严重 *pH适用范围为中强度碱 *处理后水带色 *不易处理含硫废水
*絮体粗大紧实、沉淀速度快 *受温度影响较小,适于高浊度原水、低 温水和废水
*对设备强腐蚀性,能腐蚀混凝土 *出水残余铁易超标 *易吸水潮解,不易保存 *不易处理含硫废水
磷循环为沉积型循环,主要的蓄库为岩石或者土壤。与 气体性循环相比,沉积型循环较慢:蓄库中的磷经天然侵蚀 或人为开采后流入水域,短期循环后大部分磷流失到海洋沉 积层,直到经过地质活动才又被提升起来,周期往往长达数 万年。
由于来源有限,且更容易沉积,磷对富营养化的作用必然比氮更强
【DIRECTORY】
为什么要除磷?
为什么选择化学除磷? 但是生物除磷的进水水量要求比较稳定,且在二沉池中有磷释放的风险,因此在污水
除磷过程中,一般除磷效率只达到75%,出水含磷在1mg/L左右,最优也只能达到0.5mg/L ,效率难以再提高。
到了20世纪80年代,为进一步提高污水中的有机物和磷的去除程度(0.5~01mg/L), 化学除磷技术又有了新的意义。
3、不能回收磷酸盐
• 若污水处理厂进水 TP >6mg/L,则可用三点投加法
1、磷酸盐的沉析是和生物净化过程相
二沉池后
分离的,互相不产生影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Slide 10
Energy optimisation and cost saving workshop, 5th & 6th September 2005
化学除磷
ß值的定义
定义 (DWA--德国水协)
• ß = mol Me / mol Ptot Ptot 沉淀反应池进水中的总磷 Me 金属沉淀剂
• ß = 1,5 • ß > 1,5 • ß< 1
达到限制Ptot=2 mg/l (当 Q <= 2 Qt时) 的推荐值 达到限制Ptot< 1~2 mg/l的必要条件 把生物处理阶段当作沉淀反应池的处理厂采用此ß值
Slide 11
节约潜力
化学除磷
节约潜力
沉淀剂 污泥处置
Energy optimisation and cost saving workshop, 5th & 6th September 2005
FM = Pges,0 ß (1-Bio-P) fstö
FM:沉淀剂
mit: Pges,0 : P需t要o e去li除m的ina磷te [kg P] ß : ßß-值Value
Bio-P : D生e物gr除ee磷o的f e效fic率iency Bio-P
fStö: : S化to学ic剂hi量om因e子tric Factor
缺点 • 不是所有的磷都被水解(有些以多磷酸盐的形式存在) • 有机负荷的降低会影响反硝化功能 • 产生的污泥量较大(相比同步沉淀而言) • 同沉淀剂的竞争反应使沉淀剂用量增加
边界条件 • 为了后续生物处理过程的需要,需要保证有1~2mg/l的剩余磷浓度
Slide 7
Energy optimisation and cost saving workshop, 5th & 6th September 2005
反馈控制
Energy optimisation and cost saving workshop, 5th & 6th September 2005
出水中的磷酸盐浓度 (mg/l PO4-P)
PO4
策St略rategy
F反ee馈d 控ba制ckward control 剂量C保on持sta不nt变dosing F剂lo量w p与ro流po量rti保on持al 正do比sing 前F馈ee控d f制orward control
0,8
0,6
0,4
0,2
0,0 9.10
11.10
13.10
闭环控制开始
出水O4-P平均浓度提高
Slide 27
15.10 考虑流量
FFee-M溶e液ng(el/h[2l)/0h0]0 1600 1200 800 400 0
17.10 D日at期um 19.10
控制策略
PO4-P浓度的闭环控制
沉淀剂
Q
X
pre
c PO4-Pload
计量泵
Q PO4-P 污水
QPr 沉淀过程
Fe用量的计算 QPr = K·Q·ß·55,8/30,9 ·1/·1/GFE·PO4-P
需要具备的条件 • PO4-P和流量 (Q)的在线监测
优点 • 快速响应负荷的变化
缺点 • 没有过程控制 • 前置沉淀:必须考虑磷的吸
SEDITAX2 • 准备样品用于测定Ptot 和 TOC • 实现样品的均一化
Slide 18
Energy optimisation and cost saving workshop, 5th & 6th September 2005
化学除磷的控制策略
-控制策略 -根据流量控制药剂投加量 -前溃、反馈控制
Energy optimisation and cost saving workshop, 5th & 6th September 2005
缺点 • 相比其它方式费用更高 • 很可能造成铁或铝的过量 • 为了避免过滤负荷过大,只有少量的磷可以被去除
后置沉淀一般和同步沉淀或前置沉淀结合使用
Slide 9
TS = Pges,0 ß (1-Bio-P) fstö fTS mit:
TS:污泥
Pges,0 ß
Bio-P
fStö: fTS
: P需t要o e去li除m的ina磷te [kg P] : ßß-值Value : D生e物gr除ee磷o的f e效fic率iency Bio-P : S化to学ic剂hi量om因e子tric Factor : F污ac泥to产r 量fo系r S数ludgeproduction
同步沉淀
后置沉淀
M+
M+
初沉池
M+
M+
M+
二沉池
接触过滤
厌氧 缺氧 好氧 絮凝池
Slide 6
M+:金属沉淀剂
Energy optimisation and cost saving workshop, 5th & 6th September 2005
化学除磷
前置沉淀
优点 • 降低了生物处理阶段的负荷 • 由于先进行了化学除磷,所以活性污泥反应池中的无机污泥含量不会增加
化学除磷
同步沉淀
优点 • 回流使沉淀剂得以更有效的利用 • 考虑所有的生物影响 • 可以在生物处理的曝气阶段使用二价铁作为沉淀剂 • 改善污泥容积指数
缺点 • 增加无机污泥的含量 (影响污泥龄) • 影响碱度,影响硝化过程
Slide 8
化学除磷
后置沉淀
优点 • 明确的条件
多磷酸盐已水解为磷酸盐 可被生物去除的磷已被去除 • 不会影响生物处理过程
Slide 26
设定值 PO4-P
需要具备的条件 • PO4-P的在线监测
优点 • 过程控制
Energy optimisation and cost saving workshop, 5th & 6th September 2005
控制策略
PO4-P浓度的闭环控制
举例
1PP,O0O44--PP ([mmgg//ll])
Energy optimisation and cost saving workshop, 5th & 6th September 2005
化学除磷
对沉淀进行控制的原因
对化学沉淀进行优化可以从以下几个方面节约成本 • 沉淀剂 • 污泥脱水 • 污泥处置 • 达标
以下因素导致边界条件的变化 • 进水的磷含量 • 生物处理阶段磷的吸收 • 竞争反应 • 沉淀剂
Slide 14
Stand标ar准d d偏e差via一tio般n为is 0ty.0p3icmalg0/l.P03Om4-Pg/l PO4-P.
A平vg均. d剂os量ing (l/min) 0.42 0.66 0.62 0.54
天
Relative相c对on消su耗mp量tion (i(.c.以t. f反ee馈d b控ac制kw为a基rd)准)
Slide 30
Energy optimisation and cost saving workshop, 5th & 6th September 2005
14.10
FFee溶-M液en(gle2/h.[0)l/0h0] 1.600 1.200 800 400 0
16.10 Da日tu期m 18.10
26.9
FFee-溶M液en(gle/2h[0)l/0h0] 1600 1200 800 400 0
28.9 Da日tu期m 30.9
Energy optimisation and cost saving workshop, 5th & 6th September 2005
控制策略
根据PO4-P负荷调整药剂投加量
反馈控制 – 最佳策略!
反馈控制
Energy optimisation and cost saving workshop, 5th & 6th September 2005
Energy optimisation and cost saving workshop, 5th & 6th September 2005
化学除磷
污水处理厂的策略
Slide 1
化学除磷
工艺类型
前置沉淀
Energy optimisation and cost saving workshop, 5th & 6th September 2005
使用闭环控制策略,沉淀剂用量可减少25%
Slide 12
节约潜力
化学除磷
节约潜力
沉淀剂 污泥处置
Anschlussgr鲞 e [EW]
处E置ntsorgung (€/tTS)
C计on算si如de下ra:tions: PA沉活rceti淀 性cviep剂saSun:butsb:4t4s:0t0:%%1133FF.,e88e3%%C3Cl,l, 113300€€//tt ßß==11.,55;; 11.,88ggrr pP//EEWW//TTaagg fSTf节aST=vS约=i2n2,g沉5.5Pk淀gkreg剂TcTSip1Si/t0a/k%tgkiogFnFe1e0 %
优点 • 结合了前馈控制和反馈控制 • 快速响应负荷的变化 • 闭环控制
缺点 • 费用较高
Slide 29
控制策略
前馈控制和反馈控制的结合
举例
1PP,0OO044--PP ([mmgg//ll]) 0,80 0,60 0,40 0,20 0,00
8.10
10.10
12.10
出水浓度非常稳定 药剂用量降低约18 %
收 • 竞争反应