脱氮除磷原理
污水脱氮除磷的原理及其工艺

污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。
脱氮除磷物体的作用原理

脱氮除磷物体的作用原理
脱氮除磷物体是用于处理废水中高浓度氮和磷的污染物的设备。
它的作用原理是通过物理、化学或生物方法将废水中的氮和磷转化为无害的物质,从而减少对环境的影响。
脱氮主要采用生物方法,常用的是生物脱氮工艺,如硝化反硝化过程。
硝化是指将废水中的氨氮经过细菌作用转化为硝酸盐的过程,而反硝化是指将废水中的硝酸盐还原为氮气的过程。
通过这两个过程,废水中的氮可以转化为气体形式释放到大气中,从而实现脱氮的效果。
除磷可以采用化学方法或生物方法。
化学方法主要是利用化学药剂与废水中的磷形成沉淀物或溶液中的磷与药剂反应生成不溶性盐类,从而使磷被移除。
常用的化学药剂有金属盐类等。
生物方法主要是通过细菌的作用将废水中的磷转化为无机磷,然后利用沉淀沉淀的方式将磷从废水中去除。
总而言之,脱氮除磷物体的作用原理是通过不同的物理、化学或生物过程将废水中的氮和磷转化为无害物质或者使其沉淀,从而达到净化水体的目的。
具体的方法选择取决于废水的特性和处理要求。
工艺方法——生物脱氮除磷技术

工艺方法——生物脱氮除磷技术工艺简介一、传统生物脱氮除磷技术1、传统生物脱氮原理污水经二级生化处理,在好氧条件下去除以BOD5为主的碳源污染物的同时,在氨化细菌的参与下完成脱氨基作用,并在硝化和亚硝化细菌的参与下完成硝化作用;在厌氧或缺氧条件下经反硝化细菌的参与完成反硝化作用。
2、传统生物除磷原理在厌氧条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量形成ADP;在好氧条件下,聚磷菌有氧呼吸,不断地放出能量,聚磷菌在透膜酶的催化作用下利用能量、通过主动运输从外部摄取H3PO4,其中一部分与ADP结合形成ATP,另一部分合成聚磷酸盐(PHB)储存在细胞内,实现过量吸磷。
通过排除剩余污泥或侧流富集厌氧上清液将磷从系统内排除,在生物除磷过程中,碳源微生物也得到分解。
3、常用工艺及升级改造具有代表性的常用工艺有A/O工艺、A2/O工艺、UCT工艺、SBR 工艺、Bardenpho工艺、生物转盘工艺等,这些工艺都是通过调节工况,利用各阶段的优势菌群,尽可能的消除各影响因素间的干扰,以达到适应各阶段菌群生长条件,实现水处理效果。
近年来随着研究的深入,对常用工艺有了一些改进,目前应用最广泛、水厂升级改造难度较低的是分段进水工艺。
与传统A/O工艺、A2/O工艺、UCT工艺等相比,分段进水工艺可以充分利用碳源并能较好的维持好氧、厌氧(或缺氧)环境,具有脱氮除磷效率高、无需内循环、污泥浓度高、污泥龄长等优点。
分段进水工艺适用于对A/O工艺、A2/O工艺、UCT工艺等的升级改造,通过将生化反应池分隔并使进水按一定比例分段进入各段反应池,以充分利用碳源,解决目前污水处理厂普遍存在的碳源不足和剩余污泥量过大的问题。
分段进水工艺虽然对提高出水水质有较好的效果,但该工艺并不能提高处理能力,当水厂处于超负荷运行时,分段进水改造也不能达到良好的处理效果。
二、新型生物脱氮除磷技术近年来,科学研究发现,生物脱氮除磷过程中出现了超出传统生物脱氮除磷理论的现象,据此提出了一些新的脱氮除磷工艺,如:短程硝化反硝化工艺、同步硝化反硝化工艺、厌氧氨氧化工艺、反硝化除磷工艺。
简述生物脱氮和生物除磷的基本原理和过程

生物脱氮和生物除磷是水环境治理中常见的技术手段,其基本原理和过程对于水质净化具有重要意义。
下文将分别对生物脱氮和生物除磷的基本原理和过程进行简要阐述,以便更好地理解和应用这两种技术手段。
一、生物脱氮的基本原理和过程1. 基本原理:生物脱氮是指利用生物的作用将水体中的氮气态化合物转化为氮气排放出去的过程。
其主要包括硝化和反硝化两个过程。
2. 过程:1)硝化作用:首先是硝化细菌将水体中的氨氮转化为亚硝酸盐,然后再将亚硝酸盐转化为硝酸盐的过程。
这一过程主要发生在水中砷、锰等微生物和有机物贪婪性好氧微生物的作用下。
2)反硝化作用:反硝化细菌将水中的硝酸盐还原成氮气气体,从而实现氮的脱除。
这一过程主要发生在水中缺氧或厌氧条件下,反硝化细菌在有机物的作用下进行。
二、生物除磷的基本原理和过程1. 基本原理:生物除磷是指利用生物的作用将水体中的磷物质转化为无机磷沉积或有机磷的过程。
其主要包括磷的吸附和磷的沉淀两个过程。
2. 过程:1)磷的吸附:指微生物在生长过程中,通过细胞活性或胞外聚合物等结合机制,将水体中的磷物质吸附到微生物体表面或细胞内,从而减少水体中的磷含量。
这一过程主要发生在水中的底泥、生物膜等介质上。
2)磷的沉淀:指在适当的环境条件下,微生物可以促进水中磷物质的沉淀作用,将磷固定到底泥中,从而减少水体中的可溶性磷含量。
这一过程主要发生在水中的缺氧或厌氧条件下。
生物脱氮和生物除磷是通过利用微生物的作用,将水体中的氮和磷物质转化为氮气或无机磷沉积的技术手段。
其基本原理和过程涉及硝化、反硝化、微生物吸附和微生物沉淀等生物学过程,在水环境治理中具有重要的应用价值。
希望通过本文的介绍,读者对生物脱氮和生物除磷技术有更深入的了解,并能更好地应用于实际的水质净化工作中。
生物脱氮和生物除磷作为水环境治理的重要手段,对于改善水体质量、保护生态环境具有重要意义。
在实际应用中,为了更好地发挥生物脱氮和生物除磷技术的效果,需要结合具体的水体特点和环境条件,采取相应的措施和管理方式,以确保技术的有效运行和水体的稳定净化。
污水生物脱氮除磷的基本原理

污水生物脱氮除磷的基本原理
污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。
其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。
1、氨氧化过程
氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。
氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。
这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。
2、反硝化过程
反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。
反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。
3、硫酸还原过程
硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。
硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。
脱氮除磷原理

脱氮除磷原理脱氮除磷是指通过一系列工艺手段,将废水中的氮和磷去除,以达到净化水质的目的。
脱氮除磷是水处理工程中非常重要的一环,也是保护水环境的关键步骤。
下面我们将介绍脱氮除磷的原理及其常见的处理方法。
首先,我们来介绍脱氮的原理。
氮在废水中的主要形式有氨氮、硝态氮和有机氮等。
脱氮的原理主要包括生物脱氮和化学脱氮两种方式。
生物脱氮是通过好氧条件下的硝化和厌氧条件下的反硝化作用,将氨氮和硝态氮还原成氮气的方式去除。
而化学脱氮则是通过添加化学药剂,将氨氮和硝态氮转化成氮气,达到脱氮的效果。
其次,我们来介绍除磷的原理。
废水中的磷主要以无机磷和有机磷的形式存在。
除磷的原理主要包括化学沉淀法、生物吸附法和生物除磷法等。
化学沉淀法是通过添加化学药剂,将废水中的磷沉淀下来,达到除磷的效果。
生物吸附法则是利用微生物对磷的吸附作用,将废水中的磷去除。
生物除磷法则是通过生物体内的磷释放和磷吸收过程,将废水中的磷去除。
综合来看,脱氮除磷的原理主要是通过生物作用和化学作用,将废水中的氮和磷去除,从而达到净化水质的目的。
在实际的水处理工程中,通常会采用生物处理和化学处理相结合的方式,以达到更好的脱氮除磷效果。
除了上述介绍的脱氮除磷原理,还有一些新型的脱氮除磷技术正在不断发展和应用。
例如,膜生物反应器、生物接触氧化法等技术,都在脱氮除磷领域取得了一定的应用效果。
这些新技术的出现,为脱氮除磷提供了更多的选择和可能性,也为水环境的保护和治理提供了新的思路和方法。
总之,脱氮除磷是水处理工程中非常重要的一环,其原理主要包括生物脱氮和化学脱氮、化学沉淀法、生物吸附法和生物除磷法等方式。
随着新技术的不断发展和应用,相信脱氮除磷技术将会在未来取得更大的突破和进步,为保护水环境作出更大的贡献。
4.3生物脱氮除磷技术

NO3-一类的化合态氧也不允许存在,但在聚磷菌吸氧的好氧反
应器内却应保持充足的氧 (2)污泥龄 生物除磷主要是通过排除剩余污泥而去除磷的,因此剩 余活泥多少将对脱磷效果产生影响,一般污泥龄短的系统产 生的剩余污泥量较多,可以取得较高的除磷效果。有报导称 :当污泥龄为30d时,除磷率为40%,污泥龄为17d时,除磷 率为50%,而当污泥龄降至5d时,除磷率高达87%。
(3) 后置缺氧-好氧生物脱氮工艺
可以补充外来碳源,也可以利用活性污泥的 内源呼吸提供电子供体还原硝酸盐,反硝化速率 仅是前置缺氧反硝化速率的1/3-1/8,需较长停留 时间。
进水 二沉池 出水
好氧/ 硝化
缺氧
回流污泥 污泥
二、生物除磷工艺
1.概述 来源:人体排泄物以及合成洗涤剂、牲畜饲养场 及含磷工业废水 危害:促进藻类等浮游生物的繁殖,破坏水体耗 氧和复氧平衡;水质恶化,危害水资源。 包括:有机磷(磷酸甘油酸、磷肌酸)和无机磷( 磷酸盐,聚合磷酸盐) 去除方法: 常规活性污泥法的微生物同化和吸附; 生物强化除磷; 投加化学药剂除磷。
二、生物除磷工艺
72年开创,生物除磷和化学 曝气池:含磷污水进入,还有由除 沉淀池(I):泥水分离, 4.生物除磷工艺 磷池回流的已经释放磷但含有聚磷 除磷相结合,除磷效果好. 含磷污泥沉淀,已除磷的 (2)弗斯特利普除磷工艺(Phostrip): 菌的污泥。使聚磷菌过量摄取磷, 上清液作为处理水排放。 去除有机物(BOD和COD), 可能还 有一定的硝化作用。
聚磷分解形成的无机磷释放回污水中—厌氧释磷。
好氧环境:进入好氧状态后,聚磷菌将贮存于体
内的PHB进行好氧分解并释放出大量能量供聚磷菌增
殖等生理活动,部分供其主动吸收污水中的磷酸盐,
脱氮除磷原理

脱氮除磷原理
脱氮除磷原理是指通过特定的方法去除水体中的氮和磷,以减少污染物质对水体的危害。
脱氮除磷的原理主要包括物理方法和化学方法两种。
物理方法主要是通过过滤、沉淀和吸附等方式来去除水中的氮和磷。
其中,过滤是利用过滤介质将水中的悬浮颗粒、藻类等物质截留下来,从而去除水体中的氮和磷。
沉淀是利用重力作用使水中的氮、磷等物质沉降到底部,进而实现去除的效果。
吸附则是通过吸附剂吸附水中的氮、磷等物质,将其从水体中分离出来。
这些物理方法能够有效地降低水体中的氮、磷浓度,从而减少对水环境的污染。
化学方法主要是利用化学反应原理,通过添加特定的化学药剂来将水体中的氮和磷转化成不溶于水的固体物质,从而实现脱氮除磷的效果。
常用的化学方法包括加氢氧化镁、加铁盐、加铝盐等。
这些化学药剂能够与水中的氮、磷等物质发生化学反应,形成不溶于水的沉淀物,从而将其分离出来。
综上所述,脱氮除磷的原理主要包括物理方法和化学方法两种。
这些方法能够有效地去除水体中的氮和磷,降低水体的污染程度,保护水环境的安全和健康。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脱氮除磷原理文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]
A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。
?
在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作
用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。
以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。
污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。
在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。
在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。
在好氧段,由于聚磷菌的吸收,TP迅速降低。
在厌氧段和缺氧
段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。
在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。
在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。
A-A-O脱氮除磷系统的工艺参数及控制?
A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。
如能有效地
脱氮或除磷,一般也能同时高效地去除BOD5。
但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。
?
M和SRT。
完全生物硝化,是高效生物脱氮的前提。
因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。
脱氮效率越高,而生物除磷则要求高F/M低SRT。
A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。
如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在一般应控制在8-15d。
?
2.水力停留时间。
水力停留时间与进水浓度、温度等因素有关。
厌氧段水力停留时间一般在1-2h范围内,缺氧段水力停留时间好氧段水力停留时间一般应在6h。
?
3.内回流与外回流。
内回流比r一般在200-500%之间,具体取决于进水TKN浓度,以及所要求的脱氮效率。
一般认为,300-500%时脱氮效率最佳。
内回流比r与除磷关系不大,因而r的调节完全与反硝化工艺一致。
?
4.溶解氧(DO)。
厌氧段DO应控制在L以下,缺氧段DO应控制在L以下,而好氧DO应控制在2-3mg/L之间。
因生物除磷本身并不消耗氧,所以A-A-O脱氮除磷工艺曝气系统的控制与生物反硝化系统一致。
?
TKN与BOD5/TP。
对于生物脱氮来说,BOD5/TKN至少应大于,而生物除磷则要求BOD5/TP﹥20。
运行中应定期核算入流污水水质是否满足BOD5/TKN﹥,BOD5/TP﹥20。
如果其中之一不满足,则应投加有机物补充碳源。
为了提高BOD5/TKN值,宜投加甲醇做补充碳源。
为了提高BOD5/TP值,则宜投加乙酸等低级脂肪酸。
?
控制及碱度核算。
A-A-O生物除磷脱氮系统中,污泥混合液的PH 应控制在之上;如果PH﹤,应外加石灰,补充碱度不足。
工艺运行异常问题的分析与排除?
传统活性污泥工艺的故障诊断及排除技术,一般均适用于A-A-O 脱氮除磷系统。
如果某处理厂控制水质目标为:BOD5≦25mg/L;SS ≦25mg/L;NH3-N≦3mg/L;NO3-N≦7mg/L;TP≦2mg/L。
则当实际水质偏离以上数值时,属异常情况。
?
现象一:TP﹤2mg/L,NH3-N﹤2mg/L,NO3N﹥7mg/L。
?
其原因及解决对策如下:?
1.内回流比太小。
增大内回流。
?
2.缺氧段DO太高。
如果DO﹥L,则首先检查内回流比r是否太大。
如果太大,则适当降低。
另外,还应检查缺氧段搅拌强度是否太大,形成涡流,产生空气复氧。
?
现象二:TP﹤2mg/L,NH3-N﹥3mg/L,NO3-N﹥5mg/L,BOD5﹤25mg/L。
?
其原因及解决对策如下:?
1.好氧段DO不足。
如果﹤DO﹤L,则可能只满足BOD5分解的需要,而不满足硝化的需要,应增大供气量,使DO处于2-
3mg/L。
?
2.存在硝化抑制物质。
检查入流中工业废水的成分,加强上游污染源管理。
?
现象三:TP﹥2mg/L,NH3-N﹤3mg/L,NO3-N﹥5mg/L,BOD5﹤25mg/L。
?
其原因及解决对策如下:?
1.入流BOD5不足。
检查BOD5/TKN是否大于4,BOD5/TP是否大于20,否则应采取增加入流BOD5的措施,如跨越初沉池或外加碳源。
2.外回流比太小,缺氧段DO太高。
检查缺氧段DO值,如果DO﹥L,则应采取措施,见“现象一”。
外回流比太大,把过量的NO3-N 带入了厌氧段,应适当降低回流比。
?
现象四:TP﹥2mg/L,NH3-N﹤3mg/L,NO3-N﹤5mg/L,BOD5﹤25mg/L。
?
其原因及解决对策如下:?
1.泥龄太长。
可适当增大排泥,降低SRT。
?
2.厌氧段DO太高。
如果DO﹥L,则应寻找DO升高的原因并予以排除。
首先检查是否搅拌强度太大,造成空气复氧,否则检查回流污泥中是否有DO带入。
3.入流BOD5不足。
检查BOD5/TP值。
如果BOD5/TP﹤20,则应外加碳源。