七年级数学图形认识初步单元测试
第4章图形的初步认识单元测试卷20212022学年华东师大版七年级上册数学.docx

2021-2022学年华东师大新版七年级上册数学《第4章图形的初步认识》单元测试卷一. 选择题1.有5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形折叠后能成为一个封闭的正方体盒子,你不能选择图中A, B, C,。
中的()位置接正方形.2.下列几何体中,是圆锥的为(4.如图所示的物体是一个几何体,从正面看到的图形是(B. C. D.5.如图是一个由4个相同的正方体组成的立体图形,则它的主视图为(A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹9.把14个棱长为1的正方体在地面上堆叠如图所示的立体,然后将露出的表面部分涂成红色,那么红色部分的面积为()A. 21B. 24C. 33D. 3710.如图所示是一个三棱柱,画出它的主视图和左视图均正确的是()主视图左视图二. 填空题11 •如果一个六棱柱的一条侧棱长为5cm,那么所有侧棱之和为12.已知圆柱按如图所示方式放置,其左视图的面积为48,则该圆柱的侧面积为主视方向13.请你写出一种几何体,使得它的主视图、左视图和俯视图都一样,它是.14.若一个棱柱有30条棱,那么该棱柱有个面.15.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可).16.墙角处有若干大小相同的小正方体堆成如图所示的立体图形,如果你打算搬走其中部分小正方体(不考虑操作技术的限制),但希望搬完后从正面、从上面、从右面用平行光线照射时,在墙面及地面上的影子不变,那么你最多可以搬走个小正方体.I上面7正面17.如图所示,在直角三角形中,以其中一条直角边所在的直线为轴旋转一周,得到几何体的体积为.(结果保留TT)18.长方体是一个立体图形,它有个面,条棱,个顶点.19.一个正〃棱柱共有15条棱,一条侧棱的长为5cm, 一条底面边长为3cm,则这个棱柱的侧面积为cnr.20.如图所示,是由若干相同大小的小立方体组成的立体图形的三视图,请在右边的立体图形中画出所缺少的小立方体.三. 解答题21.画出如图图形的三视图.23.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为8cm.宽为4cm的长方形,绕它的一条边所在的直线旋转一周,求得到的圆柱体的体积是多少?24.已知一个直棱柱有8个面,它的底面边长都是5ce侧棱长都是4cm.(1)它是几棱柱?它有多少个顶点?多少条棱?(2)这个棱柱的所有侧面的面积之和是多少?25.由7个相同的小立方块搭成的几何体如图所示,(1)请画出它的三视图?(2)请计算它的表面积?(棱长为1)IF而26.如图,如图几何体是由若干棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),观察该图,探究其中的规律.图①图②(1) 第1个几何体中只有2个面涂色的小立方体共有 个.第3个几何体中只有2个面涂色的小立方体共有 个.(2) 求出第100个几何体中只有2个面涂色的小立方体的块数.(3) 求出前100个几何体中只有2个面涂色的小立方体的块数的和.27. 如图四个几何体分别是三棱柱,四棱柱,五棱柱和六棱柱,三棱柱有5个面,9条棱, 6个顶点,观察图形,填写下面的空. (1)四棱柱有——个面,_ ___ 条棱,_ __ 个顶点; (2)六棱柱有— —个面,_ ___ 条棱,— __ 个顶点;(3) 由此猜想”棱柱有 个面,条棱,个顶点.三棱柱四棱柱五棱柱六棱柱参考答案与试题解析一.选择题1.解:如图所示:根据立方体的展开图可知,不能选择图中A的位置接正方形.故选:A.2.解:观察可知,C选项图形是圆锥.故选:C.3.解:A、该几何体为四棱柱,不符合题意;3、该几何体为圆锥,不符合题意;C、该几何体为三棱柱,符合题意;D、该几何体为圆柱,不符合题意.故选:C.4.解:该几何体是一个圆台,从正面看到的图形是一个等腰梯形,故选C.5.解:根据题干分析可得,从正面看到的图形是| | ..故选:A.6.解:A、圆柱的主视图和左视图都是长方形,俯视图是圆,故此选项错误;3、长方体的三视图不相同,故此选项错误;。
第6章 图形的初步认识单元测试卷(解析卷)

第6章图形的初步认识单元测试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹解:A、天空划过一道流星是“点动成线”,故本选项不合题意;B、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项符合题意.C、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项不合题意;D、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项不合题意;故选:B.2.如图,有A,B,C三个地点,且AB⊥BC,从A地测得B地在A地的北偏东43°的方向上,那么从B地测得C地在B地的()A.南偏西43°B.南偏东43°C.北偏东47°D.北偏西47°解:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=47°,∴C地在B地的北偏西47°的方向上.故选:D.3.已知AB=1.5,AC=4.5,且A,B,C三点不共线,若BC的长为整数,则BC的长为()A.3B.6C.3或6D.4或5解:当A,B,C三点在同一条直线上,点B在线段AC上,BC=AC﹣AB=3,点B在CA的延长线上,BC=AB+AC=6,∵BC边长为整数,A、B、C不共线,∴3<BC<6,∴BC=4或5.故选:D.4.将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的()A.另一边上B.内部C.外部D.无法判断解:将∠1、∠2的顶点和其中一边重合,另一边都落在重合边的同侧,且∠1>∠2,那么∠1的另一边落在∠2的外部.故选:C.5.建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是()A.两点确定一条直线B.过一点有无数条直线C.两点之间,线段最短D.连接两点之间的线段叫做两点之间的距离解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,拉一条直的参照线,然后沿着线砌墙,其运用到的数学原理是:两点确定一条直线.故选:A.6.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.解:A、∠α与∠β相等,不互补,故本选项错误;B、∠α与∠β不互补,故本选项错误;C、∠α与∠β互余,故本选项错误;D、∠α和∠β互补,故本选项正确;故选:D.7.点P为直线L外一点,点A、B、C为直线上三点,PA=6cm,PB=8cm,PC=4cm,则点P到直线l的距离为()A.4cm B.6cm C.小于4cm D.不大于4cm解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离≤PC,即点P到直线l的距离不大于4.故选:D.8.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是()A.①④B.②③C.③D.④解:①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确;故选:A.9.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为()A.42°B.98°C.42°或98°D.82°解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣28°=42°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°.故选:C.10.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.二.填空题(共6小题,满分24分,每小题4分)11.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于32°.解:∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2﹣∠1=12°,可得:5x﹣12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°12.钟表显示10点30分时,时针与分针的夹角为135度.解:∵时针在钟面上每分钟转0.5°,分针每分钟转6°,∴钟表上10点30分,时针与分针的夹角可以看成4×30°+0.5°×30=135°.故答案为:135.13.如图,已知直线AB,CD,EF相交于点O,∠1=95°,∠2=53°,则∠BOE的度数为32°.解:∵∠BOE与∠AOF是对顶角,∴∠BOE=∠AOF,∵∠1=95°,∠2=53°,∠COD是平角,∴∠AOF=180°﹣∠1﹣∠2=180°﹣95°﹣53°=32°,即∠BOE=32°.故答案为:32°14.一副三角板按如图方式摆放,若∠α=21°37',则∠β的度数为68°23′.解:∵∠1=90°,∴∠α+∠β=180°﹣90°=90°,∵∠α=21°37',∴∠β=68°23′,故答案为:68°23′.15.由东营南到德州的某一次列车,运行途中停靠的车站依次是:东营南﹣﹣滨州﹣﹣阳信﹣﹣商河﹣﹣德州,那么要为这次列车制作的火车票有20种.解:如图,设东营南﹣﹣滨州﹣﹣阳信﹣﹣商河﹣﹣德州五站分别用A、B、C、D、E 表示,则共有线段:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10条,所以,需要制作火车票10×2=20种.故答案为:20.16.长度12cm的线段AB的中点为M,C点将线段MB分成MC:CB=1:2,则线段AC的长度为8cm.解:∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.三.解答题(共8小题,满分66分)17.(6分)如图,直线AB、CD相交于点O,OE⊥CD,∠AOC=50°.求∠BOE的度数.解:∵∠BOD=∠AOC=50°,∵OE⊥CD,∴∠DOE=90°,∴∠BOE=90°﹣50°=40°,18.(6分)已知点C在线段AB上,线段AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,求MN的长度.解:∵AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,∴MC=AC=3.5cm,CN=BC=2.5cm,则MN=MC+CN=3.5+2.5=6(cm).19.(8分)如图,蒙古包可以近似地看作由圆锥和圆柱组成的,现想用毛毡搭建底面积为9πm3,高为6m,外围高为2m的蒙古包,求至少需要多少平方米的毛毡?(结果保留π)解:∵蒙古包底面积为9πm2,高为6m,外围(圆柱)高2m,∴底面半径=3米,圆锥高为:6﹣2=4(m),∴圆锥的母线长==5(m),∴圆锥的侧面积=π×3×5=15π(平方米);圆锥的周长为:2π×3=6π(m),圆柱的侧面积=6π×2=12π(平方米).∴故需要毛毡:(15π+12π)=27π(平方米).20.(8分)(1)如图,已知三点A,B,C,按要求画图:画直线AB;画射线AC;画线段BC(2)如图,用适当的语句表述点A,B,P 与直线l 的关系解:(1)如图,(2)点A、点B在直线l上,点P在直线l外.21.(8分)如图,是A、B、C三个村庄的平面图,已知B村在A村的南偏西50°方向,C村在A村的南偏东15°方向,C村在B村的北偏东85°方向,求从C村村观测A、B 两村的视角∠ACB的度数.解:由题意∠BAC=50°+15°=65°,∠ABC=85°﹣50°=35°在△ABC中,∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣65°﹣35°=80°.22.(10分)把一副三角板按如图所示放置(直角顶点重合)(1)直接写出与∠DBC互余的角;(2)写出与∠DBC互补的角,并说明理由.解:(1)与∠DBC互余的角有:∠ABD,∠CBE.(2)与∠DBC互补的角是:∠ABE,理由:∠ABE+∠DBC=∠ABC+∠CBE+∠DBC,=∠ABC+∠DBE=90°+90°=180°,所以:∠ABE与∠DBC互补.23.(10分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE 的度数(不必写过程).解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,24.(10分)如图,点C在线段AB上,点M、N分别是AC、BC的中点.(1)若AC=9cm,CB=6cm,求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.你能用一句简洁的话描述你发现的结论吗?(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由.解:(1)∵AC=9cm,点M是AC的中点,∴CM=0.5AC=4.5cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7.5cm,∴线段MN的长度为7.5cm,(2)MN=a,当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,中小学教育资源及组卷应用平台∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.21世纪教育网。
第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、如图,将三角板的直角顶点放在直尺的一边上,如果∠1=65°,那么∠2的度数为()A.10°B.15°C.20°D.25°2、下列结论中,正确的是()A.﹣7<﹣8B.85.5°=85°30′C.﹣|﹣9|=9D.2a+a 2=3a 23、嘉嘉要在墙壁上固定一根横放的木条,他至少需要钉子()A.1枚B.2枚C.3枚D.随便多少枚4、若∠α=90°-m°,∠β=90°+m°,则∠α与∠β的关系是( )A.互补B.互余C.和为钝角D.和为周角5、将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()A.6B.5C.3D.26、下列说法正确的是()A.射线AB和射线BA是两条不同的射线B.过三点可以画三条直线C.两点之间,直线最短D.﹣a是负数7、下列说法中正确的有()个⑴一条射线上只有一个点,一条线段上有两个点;⑵一条射线把一个角分成两个角,这条射线叫这个角的平分线;⑶连结两点的线段叫做两点之间的距离;⑷20°50ˊ=20.5°;⑸互余且相等的两个角都是45°.A.1B.2C.3D.48、下列说法不正确的是()A.若点C在线段BA的延长线上,则BA=AC﹣BCB.若点C在线段AB上,则AB=AC+BC C.若AC+BC>AB,则点C一定在线段AB外 D.若A,B,C,三点不在一直线上,则AB<AC+BC9、下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与已知直线平行;④长方体是四棱柱;其中正确的有()A.1个B.2个C.3个D.4个10、如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点NB.点M,点QC.点N,点PD.点P,点Q11、从车站向东走400米,再向北走500米到小红家;从车站向北走500米,再向西走200米到小强家,则()A.小强家在小红家的正东B.小强家在小红家的正西C.小强家在小红家的正南D.小强家在小红家的正北12、将21.54°用度、分、秒表示为()A. B. C. D.13、下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直 D.相等的角是对顶角14、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.利用圆规可以比较两条线段的大小关系D.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线15、如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=25°,则∠AOB=( )A.100°B.75°C.50°D.20°二、填空题(共10题,共计30分)16、已知直线与直线相交于点,,垂足为.若,则的度数为________.(单位用度表示)17、如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB'交CD于点E.若DE=1,则AC的长为________.18、如图,已知△ABC中,∠C=90°,AC=BC= ,将△ABC绕点灯A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则点C′到BC的距离为________.19、如图,将线段AB绕点O顺时针旋转90°得到线段A'B',那么点A(-2,5)的对应点A'的坐标是________.20、如图,直线AB,CD相交于点O,射线OM平分∠AOC,ON⊥OM.若∠AOM=35°,则∠CON的度数为________.21、一个角的余角比这个角的补角的一半少,则这个角的度数是________.22、 ________°.23、A、B是半径为2的⊙O上不同两点,则AB的取值范围是________ .24、如图,直线,直线交,于,两点,交直线于点,若,则________.25、如图,要从B点到C点,有三条路线:①从B到A再到C;②从B到D再到C;③线段BC.要使距离最近,你选择路线________(填序号),理由是________三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、△ABC中,若最大角∠A等于最小角∠C的两倍,最大角又∠B比大20°,则△ABC的三个内角的度数分别是多少?28、已知,如图,AE是的平分线,.求证:.29、用如图所示的长31.4cm,宽5cm的长方形,围成一个圆柱体,求需加上的两个底面圆的面积是多少平方厘米?(π=3.14)30、一天,爸爸带着小刚到建筑工地去玩,看见有如图所示的人字架,爸爸说“小刚,我考考你,这个人字架的夹角∠1等于130°,你能求出∠3比∠2大多少吗?”小刚马上得到了正确答案,他的答案是多少?请说明理由.参考答案一、单选题(共15题,共计45分)1、D2、B3、B4、A5、B6、A8、A9、B10、C11、B12、D13、C14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、。
人教版七年级上册数学 第四章 几何图形初步 单元测试(含解析)

第四章几何图形初步单元测试一.选择题1.对如图所示几何体的认识正确的是()A.棱柱的底面是四边形B.棱柱的侧面是三角形C.几何体是四棱柱D.棱柱的底面是三角形2.电视剧《西游记》中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于()A.点动成线B.线动成面C.面动成体D.以上都不对3.下列说法正确的是()A.延长直线AB到点CB.延长射线AB到点CC.延长线段AB到点CD.射线AB与射线BA是同一条射线4.如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD 上,且EA=1,则BE的长为()A.4B.6或8C.6D.85.下列说法正确的是()A.两点之间的线段,叫做这两点之间的距离B.87'等于1.45°C.射线OA与射线AO表示的是同一条射线D.延长线段AB到点C,使AC=BC6.线段AB=9,点C在线段AB上,且有AC=AB,M是AB的中点,则MC等于()A.3B.C.D.7.某公司员工分别在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在一条直线上,位置如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在()A.A区B.B区C.C区D.A、B两区之间8.如图,将一副三角板叠在一起使直角顶点重合于点O,(两块三角板可以在同一平面内自由转动),下列结论一定成立的是()A.∠BOA>∠DOC B.∠BOA﹣∠DOC=90°C.∠BOA+∠DOC=180°D.∠BOC≠∠DOA9.下列说法正确的是()A.射线比直线短B.从同一点引出的两条射线所组成的图形叫做角C.若AP=BP,则P是线段AB的中点D.两点之间的线段叫做这两点之间的距离10.如图,O在直线AB上,OC平分∠DOA(大于90°),OE平分∠DOB,OF⊥AB,则图中互余的角有()对.A.6B.7C.8D.10二.填空题11.若一个六棱柱,则它有条棱,有个面.12.秒针旋转一周时,形成一个圆面,用数学知识可以理解为.13.已知点A、B、C在同一直线上,若AB=10cm,AC=16cm,点M、N分别是线段AB、AC中点,则线段MN的长是.14.如图,线段AB=3,延长AB到点C,使BC=2AB,则AC=.15.如图,已知CD=AD=BC,E、F分别是AC、BC的中点,且BF=40cm,则EF 的长度为cm.16.人们会把弯曲的河道改直,这样能够缩短航程.这样做的道理是.17.如图,有一种电子游戏,电子屏幕上有一条直线,在直线上有A,B,C,D四点,且AB=BC=CD,点P沿直线l从右向左移动,当出现点P与A,B,C,D四点中的至少两个点距离相等时,就会发出警报,则直线l上会发出警报的点P有个.18.如图,已知A、B是线段EF上两点,EA:AB:BF=1:2:3,M、N分别为EA、BF 的中点,且MN=8cm,则EF长为.19.如图,C、D是线段AB上的两点,E是AC的中点,F是BD的中点,若AB=m,CD =n,则线段EF的长为.20.如图,射线OC,OD在∠AOB内,∠AOB和∠BOC互为补角,.若∠COD比∠BOD大m°(m<30),则∠AOC=°.(用含m的式子表示)三.解答题21.如图所示是一张铁皮.(1)计算该铁皮的面积;(2)它能否做成一个长方体盒子?若能,画出来,计算它的体积;若不能,说明理由.22.如图,线段AB=20,BC=15,点M是AC的中点.(1)求线段AM的长度;(2)在CB上取一点N,使得CN:NB=2:3.求MN的长.23.如图,是小明家和学校所在地的简单地图,已知OA=2km,OB=3.5km,OP=4km,点C为OP的中点,回答下列问题:(1)图中到小明家距离相同的是哪些地方?(2)由图可知,公园在小明家东偏南30°方向2km处.请用方向与距离描述学校、商场、停车场相对于小明家的位置.24.如图,在直线AD上任取一点O,过点O做射线OB,OE平分∠DOB,OC平分∠AOB,∠BOC=26°时,求∠BOE的度数.25.如图,C是线段AB上一点,AC=5cm,点p从点A出发沿AB以3cm/s的速度匀速向点B运动,点Q从点C出发沿CB以1cm/s的速度匀速向点B运动,两点同时出发,结果点P比点Q先到3s.(1)求AB的长;(2)设点P、Q出发时间为ts,①求点P与点Q重合时(未到达点B),t的值;②直接写出点P与点Q相距2cm时,t的值.26.线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.参考答案1.解:如图所示的几何体是三棱柱,它有两个全等的三角形的底面,三个矩形的侧面,因此选项ABC均不符合题意,选项D符合题意;故选:D.2.解:孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属于线动成面,故选:B.3.解:A、直线可以沿两个方向无限延伸,故不能说延长直线AB,故本选项不符合题意;B、射线可沿延伸方向无限延伸,故不能说延长射线AB,故本选项不符合题意;C、线段不能延伸,可以说延长线段AB到点C,故本选项符合题意;D、射线AB与射线BA不是同一条射线,故本选项不符合题意;故选:C.4.解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.5.解:A、应为:连结两点的线段的长度叫做这两点间的距离,故本选项错误;B、87'=60'+27'=1°+()°=1.45°,故本选项正确;C、射线OA的端点是点O,射线AO的端点是点A,所以,它们不是同一条射线,故本选项错误;D、延长线段AB到点C,则AC一定大于BC,不能使AC=BC,故本选项错误.故选:B.6.解:∵AB=9,∴AC=AB=3,∵M是AB的中点,∴AM=AB=∴MC=AM﹣AC=﹣3=故选:B.7.解:∵当停靠点在A区时,所有员工步行到停靠点路程和是:15×100+10×300=4500m,当停靠点在B区时,所有员工步行到停靠点路程和是:30×100+10×200=5000m,当停靠点在C区时,所有员工步行到停靠点路程和是:30×300+15×200=12000m,当停靠点在A、B区之间时,设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+15(100﹣x)+10(100+200﹣x),=30x+1500﹣15x+3000﹣10x,=5x+4500,∴当x=0时,即在A区时,路程之和最小,为4500米;综上,当停靠点在A区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在A区.故选:A.8.解:因为是直角三角板,所以∠AOC=∠BOD=90°,所以∠BOA+∠DOC=∠AOC+∠BOC+∠DOC=∠AOC=∠BOD=180°,故选:C.9.解:A.射线和直线不可以比较长短,原说法错误,故本选项不符合题意;B.从同一点引出的两条射线所组成的图形叫做角,原说法正确,故本选项符合题意;C.若点P在线段AB上,AP=BP,则P是线段AB的中点,原说法错误,故本选项不符合题意;D.两点之间的线段的长度叫做这两点之间的距离,原说法错误,故本选项不符合题意;故选:B.10.解:∵OC平分∠DOA,∴∠AOC=∠COD,∵OE平分∠DOB,∴∠DOE=∠BOE,∴∠COE=90°,∴∠AOC+∠BOE=90°,∠AOC+∠DOE=90°,∠COD+∠BOE=90°,∠COD+∠DOE =90°,∠COF+∠EOF=90°,∵OF⊥AB,∴∠AOC+∠COF=90°,∠COD+∠COF=90°,∠BOE+∠EOF=90°,∠BOD+∠DOF =90°,∠DOE+∠EOF=90°,∴互余的角有10对.故选:D.11.解:因为六棱柱上下两个底面是6边形,侧面是6个长方形,所以共有18条棱,8个面;故答案为18,8.12.解:根据点、线、面、体之间的关系可得,线动成面.13.解:(1)如图1,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AM+AN=5+8=13(cm)(2)如图2,,∵AB=10cm,点M是线段AB的中点,∴AM=10÷2=5(cm);∵AC=16cm,点N是线段AC的中点,∴AN=16÷2=8(cm),∴MN=AN﹣AM=8﹣5=3(cm),综上,线段MN的长是13cm或3cm.故答案为:13cm或3cm.14.解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9.故答案为:9.15.解:∵点F是BC的中点,且BF=40cm,∴BC=2BF=80cm,∵CD=AD=BC,∴CD=×80=16cm,AD=64cm,∴AC=AD﹣CD=48cm,∵E、F分别是AC、BC的中点,∴CE=AC=24cm,CF=BF=40cm,∴EF的长度为CE+CF=64cm,故答案为:64.16.解:由线段的性质可知,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最短,故答案为:两点之间线段最短.17.解:根据题意可知:当点P经过任意一条线段中点时会发出报警,∵图中共有线段DC、DB、DA、CB、CA、BA,∵BC和AD中点是同一个∴发出警报的可能最多有5个.故答案为5.18.解:∵EA:AB:BF=1:2:3,可以设EA=x,AB=2x,BF=3x,而M、N分别为EA、BF的中点,∴MA=EA,NB=BF,∴MN=MA+AB+BN=x+2x+x=4x ∵MN=8cm,∴4x=8,∴x=2,∴EF=EA+AB+BF=6x=12,∴EF的长为12cm,故答案为:12cm.19.解:∵AB=m,CD=n.∴AB﹣CD=m﹣n,∵E、F分别是AC、DB的中点,∴CE=AC,DF=DB,∴CE+DF=(m﹣n),∴EF=CE+DF+DC=(m﹣n)+n=m+n,故答案为:m+n.20.解:∵∠AOB和∠BOC互为补角,∴∠AOB+∠BOC=180°,∵∠BOD=,∴3∠BOD+∠BOC=180°,即∠BOC=180°﹣3∠BOD,∵∠COD+∠BOD=∠BOC,∴180°﹣3∠BOD=∠COD+∠BOD,∴∠COD+4∠BOD=180°,∵∠COD比∠BOD大m°(m<30),∴∠COD﹣∠BOD=m°,∴∠BOD=()°,∠COD=()°∴∠BOC=()°,∴∠AOB=180°﹣∠BOC=(108﹣)°,∴∠AOC=∠AOB﹣∠BOC=(108﹣)°﹣()°=(36﹣m)°.故答案为(36﹣m).21.解:(1)(1×3+2×3+1×2)×2=22(m2),(2)根据棱柱的展开与折叠,可得可以折叠成长方体的盒子,其长、宽、高分别为3cm,2cm,1cm,因此体积为:1×2×3=6(m3),22.解:(1)线段AB=20,BC=15,∴AC=AB﹣BC=20﹣15=5.又∵点M是AC的中点.∴AM=AC=×5=,即线段AM的长度是.(2)∵BC=15,CN:NB=2:3,∴CN=BC=×15=6.又∵点M是AC的中点,AC=5,∴MC=AC=,∴MN=MC+NC=,即MN的长度是.23.解:(1)因为点C为OP的中点,所以OC=2km,因为OA=2km,所以可得出距小明家距离相同的是学校和公园;(2)由图可知,学校在小明家东偏北45°方向2km处,商场在小明家西偏北60°方向3.5km处,停车场在东偏南30°方向4km处.24.解:∵OC平分∠AOB,∠BOC=26°,∴∠AOB=2∠BOC=52°.∴∠BOD=180°﹣52°=128°.∵OE平分∠DOB,∴∠BOE=∠DOB=×128°=64°.25.解:(1)设AB=xcm,根据题意可得:(x﹣5)﹣=3,解得:x=12,答:AB的长为12cm;(2)①由题意可得:3t=t+5,解得:t=,故点P与点Q重合时(未到达点B),t的值为;②当点P追上点Q前相距2cm,由题意可得:3t+2=t+5,解得:t=,当追上后相距2cm,由题意可得:3t﹣2=t+5,解得:t=,总上所述:t=或t=.26.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.。
华师版七年级数学上册 第3章 图形的初步认识 单元测试卷(2024年秋)

华师版七年级数学上册第3章图形的初步认识单元测试卷(2024年秋)一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是()A.三角形、圆、球、圆锥B.长方体、正方体、圆柱、球C.长方形、三角形、正方形、圆D.扇形、长方形、三棱柱、圆锥2.[2024·河南周口一模]《九章算术》中“堑堵”的立体图形如图所示,它的左视图为()A B C D3.[情境题航空航天]“力箭一号”(ZK-1A)运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了() A.点动成线B.线动成面C.面动成体D.面面相交成线4.下列说法中,正确的是()A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC,则点B为AC的中点5.若∠A=40°,则∠A的余角为()A.30°B.40°C.50°D.140°6.[母题教材P163习题T6]如图,∠1=60°,则点A在点B的() A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30°7.[2023·清华附中模拟]已知线段AB=15cm,点C是直线AB上一点,BC=5cm,若M是AC的中点,N是BC的中点,则线段MN的长度是()A.10cm B.5cm C.10cm或5cm D.7.5cm 8.已知∠1=28°24',∠2=28.24°,∠3=28.4°,则下列说法中,正确的是()A.∠1=∠2<∠3B.∠1=∠3>∠2C.∠1<∠2=∠3D.∠1=∠2>∠3 9.[2024·山西晋城一模]如图是由几个相同的小正方体搭成的几何体的三视图,则这个几何体的小正方体的个数是()(第9题)A.4B.5C.6D.7 10.[2023·青岛]一个不透明正方体的六个面上分别标有数字1,2,3,4,5,6,其展开图如图①所示.在一张不透明的桌子上,按图②方式将三个这样的正方体搭成一个几何体,则该几何体能看得到的面上数字之和最小是()(第10题)A.31B.32C.33D.34二、填空题(每题3分,共24分)11.[2023·西工大附中月考]七棱柱有个面,个顶点.12.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是.13.三条直线两两相交,最少有个交点,最多有个交点.14.[2024·重庆一中期中]如图,当钟表指示9:20时,时针和分针的夹角(小于180°)的度数是.(第14题)15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB =.(第15题)16.如图,点A,O,B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=.(第16题)17.如图,某海域有A,B,O三个小岛,在小岛O处观测到小岛A在其北偏东62°的方向上,观测到小岛B在其南偏东38°12'的方向上,则∠AOB的补角等于.(第17题)18.[新考向知识情境化]往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有种不同的票价,需准备种车票.三、解答题(19~21题每题10分,其余每题12分,共66分)19.[母题教材P150练习T4]已知线段a,b,利用尺规,求作一条线段AB,使AB=a-2b.(不写作法,保留作图痕迹)20.点A,B,C,D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连结AC,连结BD,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.21.如图,已知线段AB=4.8cm,点M为AB的中点,点P在MB上,N为PB的中点,且NB=0.8cm,求AP的长.22.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB =∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.23.如图是某种长方体产品的展开图,高为3cm.(1)求每件这种产品的体积;(2)请为厂家设计一种包装纸箱,使每箱能装5件这种产品,要求没有空隙且要使该纸箱所用材料尽可能少(纸箱的厚度不计,表面积尽可能小),求此包装纸箱的表面积.24.[2024·重庆一中期中]平面上顺时针排列射线OA,OB,OC,OD,∠BOC =30°,∠COD=12∠AOB,射线OM,ON分别平分∠AOB,∠AOD(题目中所出现的角均小于180°).(1)如图①,若∠AOD=10°,则∠AOM=,∠CON=;(2)如图②,探究∠MON与∠BON的数量关系,并说明理由;(3)在(2)的条件下,若∠BON=5°,将∠AOB绕点O以每秒2°的速度顺时针旋转,同时将∠COD绕点O以每秒3°的速度逆时针旋转,若旋转时间为t 秒(0<t<90),当∠MON=5°时,直接写出t的值.参考答案一、1.C【点拨】平面图形有三角形、圆、长方形、正方形、扇形等;立体图形有球、圆锥、长方体、正方体、圆柱、三棱柱等,则C中全是平面图形,故选C.2.D3.A4.A【点拨】两点确定一条直线,A正确;由同一个点射出的两条射线组成的图形叫做角,B错误;两点之间线段最短,C错误;若AB=BC,B有可能是AC的中点,也有可能A,B,C不在同一条直线上,如图,D错误.故选A.5.C6.C7.D【点拨】如图①,MN=15-52+52=7.5(cm);如图②,MN=15+52-52=7.5(cm).故选D.8.B【点拨】24'60=0.4°,所以∠1=28.4°=∠3>∠2,故选B.9.C【点拨】综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,如下图所示,正方形内的数字表示该位置的小正方体数量.10.B【点拨】由正方体表面展开图的“相间、Z端是对面”可知,“1”与“3”,“2”与“4”,“5”与“6”是对面,因此要使图②中几何体能看得到的面上数字之和最小,最右边的那个正方体所能看到的4个面的数字为1,2,3,5,最上边的那个正方体所能看到的5个面的数字为1,2,3,4,5,左下角的那个正方体所能看到的3个面的数字为1,2,3,所以该几何体能看得到的面上数字之和最小为11+15+6=32.二、11.9;1412.两点确定一条直线13.1;3【点拨】如图①,最少有1个交点;如图②,最多有3个交点.14.160°【点拨】根据时钟上一大格是30°,时针1分钟转0.5°进行计算即可解答.15.4【点拨】因为点C是线段AD的中点,CD=1,所以AD=2CD=2.因为点D是线段AB的中点,所以AB=2AD=4.16.155°【点拨】因为OD平分∠AOC,∠AOC=50°,所以∠BOD=∠AOB -∠AOD=∠AOB12∠AOC=180°-50°2=155°.17.100°12'【点拨】由题图可知∠AOB的补角为180°-∠AOB=62°+38°12'=100°12'.18.21;42【点拨】如图,甲、乙两地的车站分别用A,G表示,中途的五个车站分别用B,C,D,E,F表示,用AB表示起点为A,终点为B的车票票价,故有以下不同票价:AB,AC,AD,AE,AF,AG,BC,BD,BE,BF,BG,CD,CE,CF,CG,DE,DF,DG,EF,EG,FG,共21种,来回车票不同,则需准备21×2=42(种)车票.三、19.【解】如图,线段AB就是所求的线段.20.【解】如图.21.【解】方法一因为N为PB的中点,NB=0.8cm,所以PB=2NB=1.6cm.所以AP=AB-PB=4.8-1.6=3.2(cm).方法二因为N是PB的中点,NB=0.8cm,所以PB=2NB=1.6cm.因为M为AB的中点,AB=4.8cm,所以AM=MB=12AB=2.4cm.又因为MP=MB-PB=2.4-1.6=0.8(cm),所以AP=AM+MP=2.4+0.8=3.2(cm).22.【解】(1)北偏东70°(2)因为∠AOB=40°+15°=55°,∠AOB=∠AOC,所以∠AOC=55°,所以∠BOC=110°.因为射线OD是OB的反向延长线,所以∠BOD=180°.所以∠COD=∠BOD-∠BOC=70°.又因为OE平分∠COD,所以∠COE=35°.所以∠AOE=∠AOC+∠COE=90°.23.【解】(1)长方体的高为3cm,则长方体的宽为12-2×3=6(cm),长12×(25-3-6)=8(cm).根据题意,可得每件这种产品的体积为8×6×3=144(cm3).(2)由(1)可知该产品的高为3cm,宽为6cm,长为8cm,所以装5件这种产品,要使纸箱所用的材料尽可能少,应该尽量使6cm×8cm的面重叠在一起,所以用规格为15cm×6cm×8cm的包装纸箱符合要求.所以包装纸箱的表面积为2×(8×6+8×15+6×15)=516(cm2).24.【解】(1)40°;45°(2)∠MON-∠BON=30°.理由如下:因为∠COD=12∠AOB,射线OM平分∠AOB,所以∠COD=∠AOM.因为射线ON平分∠AOD,所以∠AON=∠NOD,所以∠AOM+∠MON=∠NOB+∠BOC+∠COD.因为∠BOC=30°,所以∠MON=∠NOB+30°.所以∠MON-∠BON=30°.(3)t=12秒或t=16秒或t=84秒或t=88秒【点拨】因为∠MON-∠BON =30°,∠BON=5°,所以∠MON=35°,所以∠COD=∠AOM=∠BOM=40°,所以∠AOB=80°.因为∠BOC=30°,所以∠AOD=80°+40°+30°=150°.因为将∠AOB绕点O以每秒2°的速度顺时针旋转,所以∠AOB度数恒定,即∠AOM=40°恒定.分以下两种情况讨论:情况一:在OA,OD相遇前,因为射线ON平分∠AOD,所以∠AON12∠AOD=12(150°-2t°-3t°)=75°-2.5t°.因为∠AOM=40°,∠MON=5°,①若OM,ON未相遇,则∠MON=∠AON-∠AOM=75°-2.5t°-40°=5°,解得t=12.②若OM,ON相遇后,则∠MON=∠AOM-∠AON=40°-(75°-2.5t°)=5°,解得t=16.情况二:在OA,OD相遇后,此时∠AOD=360°-(3t°-150°)-2t°=510°-5t°,所以∠AON12∠AOD=255°-2.5t°.①若OM,ON未第二次相遇,则∠MON=∠AON-∠AOM=255°-2.5t°-40°=5°,解得t=84.②若OM,ON第二次相遇后,则∠MON=∠AOM-∠AON=40°-(255°-2.5t°)=5°,解得t=88.综上所述,t=12秒或t=16秒或t=84秒或t=88秒.。
第二章 几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)

第二章几何图形的初步认识数学七年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、中午12点15分时,钟表上的时针和分针所成的角是()A.90ºB.75ºC.82.5ºD.60º2、点A (4,3)经过某种图形变化后得到点B(-3,4),这种图形变化可以是()A.关于x轴对称B.关于y轴对称C.绕原点逆时针旋转90° D.绕原点顺时针旋转90°3、如图,在中,将绕点逆时针旋转得到使点落在边上,连接,则的长度是()A. B. C. D.4、如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则BE的长为()A.1B.2C.3D.45、如图,直线 AB 与 CD 相交于点 O , OE 平分∠AOC,且∠AOC=80°,则∠BOE 的度数为()A. B. C. D.6、如图,已知∠A=70°,O是AB上一点,直线OD与AB的夹角∠BOD=82°。
要使OD∥AC,直线OD绕点O按逆时针方向至少旋转( )度。
A.12B.18C.22D.287、能用∠α、∠AOB、∠O三种方式表示同一个角的图形是()A. B. C. D.8、如图所示,能用∠AOB,∠O,∠1三种方法表示同一个角的图形的是()A. B. C. D.9、已知:如图,在等边△ABC中取点P,使得PA,PB,PC的长分别为3,4,5,将线段AP 以点A为旋转中心顺时针旋转60°得到线段AD,连接BD,下列结论:①△ABD可以由△APC绕点A顺时针旋转60°得到;②点P与点D的距离为3;③∠APB=150°;④S△APC+S△APB=6+,其中正确的结论有()A.①②④B.①③④C.①②③D.②③④10、如图所示,在正方形ABCD中,AB=4,点O在AB上,且OB=1,点P是BC上一动点,连接OP,将线段OP绕点O逆时针旋转90°得到线段OQ.要使点Q恰好落在AD 上,则BP的长是( )A.3B.2C.1D.无法确定11、有两个直角三角形纸板,一个含45°角,另一个含30°角,如图①所示叠放,先将含30°角的纸板固定不动,再将含45°角的纸板绕顶点A顺时针旋转,使BC∥DE,如图②所示,则旋转角∠BAD的度数为()A.15°B.30°C.45°D.60°12、某校七年级在下午3:00开展“阳光体育”活动.下午3:00这一时刻,时钟上分针与时针所夹的角等于()A.30°B.60°C.90°D.120°13、如图,将△绕点顺时针旋转到△的位置,且点恰好落在边上,则下列结论不一定成立的是()A. B. C. ∥ D. 平分14、下列说法正确的是()A.两点之间,线段最短B.若∠AOC= ∠AOB,则OC是∠AOB的平分线 C.已知A,B,C三个不同点,过其中每两点画一条直线,可以画出3条直线 D.各边都相等的多边形是正多边形15、经过圆锥顶点的截面的形状可能是()A. B. C. D.二、填空题(共10题,共计30分)16、一个角为53°,则这个角的余角是________17、如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为________cm.18、如图,∠ABC=90°,∠CBD=45°,BP平分∠ABD,则∠ABP的度数是________°.19、如图,AD∥BC,AB⊥BC于点B,AD=4,将CD绕点D逆时针旋转90°至DE,连接AE、CE,若△ADE的面积为6,则BC=________.20、如图,Rt△OA1B1是由Rt△OAB绕点O顺时针方向旋转得到的,且A、O、B1三点共线.如果∠OAB=90°,∠AOB=30°,OA= .则图中阴影部分的面积为________.(结果保留π)21、已知在中,,是的高,,则________.22、如图,直线AB,CD,EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=30°,则∠BOE =________度,∠AOG=________度.23、已知角的余角比它的补角的还少10°,则________.24、如图,在Rt△ABC中,ABC=90°,AB=2,BC=4,点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B',延长AB'交BC于E,则EP的长等于________。
七年级上册数学第4章图形的初步认识单元练习题(含答案)

第4章图形的初步认识检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用F、E. V分别表示正多而体的而数、棱数、顶点数,则有F + V — E = 2,现有一个正多面体共有12条棱,6个顶点,则它的面数F等于()A.6B.8C.12D.203.如果Na与N/?是邻补角,且/a> 很那么Z侄的余角是(A.l(Za+Z/?)B.|ZaC.|(Za-Z/?)D.不能确定4.下列四个立体图形中,主视图为圆的是()。
5.将“创建文明城市”六个字分别写在一个正方体的六个而上,这个正方体的平面展开图如所示, 那么在这个正方体中,和“创”相对的字是( A.文B.明C.城6.如图, 已知直线曲、CD 相交于点。
, ZEOC = 110% 则ZBOD 的大小C.45°D.55QD rH第6题图B.35A.25 共5页8. 下列平而图形不能够国成正方体的是(9. 过平面_匕4, B, C 三点中的任意两点作直线,可作()那么线段OB 的长度是( )二、填空题(每小题3分,共24分)11. 如图,直线CD 相交于点。
,OE 平分匕AOD,若ZBOC = 80°,贝ljZAOE = 12. 直线上的点有—个,射线上的点有—个,线段上的点有—个.13. 两条直线相交有 个交点,三条直线相交最多有 个交点,最少有 个交点.14. 如图,OM 平分ZAOB, ON 平分ZCOD.若NMON= 50。
,ZBOC = 10% 则匕4OD = 15 .如图给出的分别有射线、16.下列表面展开图的立体图形的名称分别是:A.1条B.3条C.1条或3条D.无数条10.在直线[上顺次取4、B 、 C 三点,使得= 5 cm, BC = 3 cm.如果。
是线段AC 的中点,A.2 cmB.0.5 cmC.1.5 cmD.l cmA第11题图直线、线段,其中能相交的图形有 个. 第15题图17.如图,C, D是线段上两点,若CB = 4 cm, DB = 7 cm,且D^L AC的中点,贝脂。
七年级上册几何图形的初步认识单元测试卷7

七年级上册几何图形的初步认识单元测试卷7一、选择题(共10小题;共50分)1. 下列说法中正确的是A. 大于直角的角叫钝角B. 小于平角的角叫钝角C. 不大于直角的角叫锐角D. 大于且小于直角的角叫锐角2. 如图,,,则等于D.3. 如图所示,,,是射线上的一个点,则图中的射线有条.A. B. C. D.4. 如图,下列角中还可以只用顶点的一个大写英文字母表示的是A. B. C. D.5. 的一半是A. B. C. D.6. 如图所示,将绕点顺时针旋转得,若点恰好落在上,且的度数为,则的度数为A. B. C. D.7. 若与互余,且,那么的度数是A. B. C. D.8. 下午点分时(如图),时钟的分针与时针所成角的度数为A. B. C. D.9. 借助一副三角尺,你能画出下面哪个度数的角A. B. C. D.10. 下列说法正确的是A. 若,则是的中点B. 若,则是的中点C. 若,则是的中点D. 若,则是的中点二、填空题(共6小题;共39分)11. 如果点在点的北偏东方向上,那么点在点的方向上.12. 如图,在四边形内找一点,使它到四边形四个顶点的距离之和最小,正确的作法是连接,交于点,则点就是要找的点,请你用所学过的数学知识解释这一道理.13. 观察下列图形,从运动的角度说说点,线,面,体之间存在的联系.从运动的角度去观察,我们发现:点动成,线动成,面动成.14. ()角的静态定义.画一画:你可以画出角的图形吗?想一想:角是怎样组成的?角的静态定义:有的组成的图形叫做.()角的动态定义.角的动态定义:角也可以看作是一条线绕着它的旋转而形成的图形.想一想:如图,射线绕点旋转,当终止位置和起始位置成一条直线时,形成角;继续旋转,和重合时,又形成角.()角的种表示方法.角用符号“”表示,和“”不同①用三个大写字母(顶点字母放到中间)表示:记作:或注意:用三个大写字母表示时,中间字母是顶点字母②用一个大写字母(顶点字母)表示:记作:注意:用一个大写字母表示时,顶点处能有一个角③用一条弧线加数字表示:记作:记作:④用一条弧线加小写希腊字母表示:记作:记作:注意:③④两种方法必须在靠近角的顶点处画上弧线和标上数字或小写希腊字母后才能使用.15. 如图,,是线段上的两点,且是线段的中点,若,,则的长为.16. 线段厘米,是的中点,是的中点,,两点间的距离是厘米.三、解答题(共8小题;共104分)17. 根据下列语句,画出图形.如图,已知平面内有四个点,,,,其中任意三点都不在同一直线上.①画直线;②连接,,相交于点;③画射线,,交于点.18. 如图,平面内有,,,四点.按下列语句画图.()画直线,射线,线段;()连接,交射线于点.19. 分析填空并进行说理.如图,已知平分,,若,,求.解:()又,,平分,()请继续完成本题说理过程.20. 一个角的倍等于它补角的一半,求这个角.21. 判断下列各角是直角、锐角还是钝角.(1周角.(2)周角.(3平角.(4平角.22. 如图所示的棱柱,该棱柱由个平面组成,有两个三角形,三个长方形,请你思考一下,该棱柱可以看做由什么图形怎样变动形成的?23. 十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()、面数()、棱数()之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:你发现顶点数()、面数()、棱数()之间存在的关系式是;(2)一个多面体的面数比顶点数大,且有条棱,则这个多面体的面数是;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有个顶点,每个顶点处都有条棱,设该多面体外表面三角形的个数为个,八边形的个数为个,求的值.24. 如图,为直角,为锐角,且平分,平分.(1)如果,求的度数.(2)如果为任意一个锐角,你能求出的度数吗?若能,请求出来,若不能,说明为什么?答案第一部分1. D2. A 【解析】,,,故选:A.3. B 【解析】图中的射线有射线,射线,射线,射线,射线.4. C5. D6. C 【解析】,,.,..,..7. A 【解析】设,的度数分别为,,则,解得..8. B9. B10. D第二部分11. 南偏西12. 两点之间线段最短.13. 线,面,体14. 公共端点,两条射线,角,射,端点,平,周,,,,,,,15.16.第三部分17. 解:如图,18. ()如图所示,直线,射线,线段即为所求.()连接,点即为所求.19. 邻补角互补;;角平分线定义20. .21. (1)钝角.(2)直角.(3)锐角.(4)钝角.22. 可以看做由上底(三角形)向下平移而得到,也可以看做由下底(三角形)向上平移而得到.(合理即可)23. (1);;(2)(3)有个顶点,每个顶点处都有条棱,两点确定一条直线;共有条棱,那么,解得,.24. (1)因为平分,平分,所以,.所以(2)同理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图1
第四章 图形认识初步
(满分:100分 考试时间:100分钟)
班级: 座号: 姓名:____________
一、耐心填一填,一锤定音!(每小题3分,共30分)
1.22.5=
________度________分;1224'= ________
.
2.如图1,O A 的方向是北偏东15 ,O B 的方向是北偏西40
. (1)若A O C A O B =∠∠,则OC 的方向是________; (2)OD 是OB 的反向延长线,OD 的方向是________.
3.图2是三个几何体的展开图,请写出这三个几何体的名称.
4.用恰当的几何语言描述图形,如图3(1)可描述为:__________________如图3(2)可描述为________________________________________________。
图2
5.如果一个角的补角是150 ,那么这个角的余角是________.
6.乘火车从A 站出发,沿途经过3个车站可到达B 站,那么在A B ,两站之间最多共有________种不同的票价.
7.一次测验从开始到结束,手表的时针转了50 的角,这次测验的时间是________. 8.在直线l 上取A, B, C 三点,使得4cm AB =,3cm BC =,如果点O 是线段AC 的中点,则线段OB 的长度为________. 9.90°-23°39′=_______ 176°52′÷3=_______
10.如图4,5个边长为1的立方体摆在桌子上,则露在表面部分的面积为
二、精心选一选,慧眼识金!(每小题3分,共18分) 11.下列说法不正确的是( )
A.若点C 在线段B A 的延长线上,则B A A C B C =- B.若点C 在线段A B 上,则A B A C B C =+ C.若A C B C A B +>,则点C 一定在线段A B 外 D.若A B C ,,三点不在一直线上,则A B A C B C <+
12.某同学把图5所示的几何体从不同方向看得到的平面图形画出如图6所示(不考虑尺寸),
其中正确的是( )
图6
图
5 图
4
A.①② B.①③ C.②③ D.②
13.下列判断正确的是( )
A.平角是一条直线 B.凡是直角都相等
C.两个锐角的和一定是锐角 D.角的大小与两条边的长短有关 14.点M O N ,
,顺次在同一直线上,射线OC OD ,在直线M N 同侧,且64MOC =
∠,
46DON =
∠,则M O C ∠的平分线与D O N ∠的平分线夹角的度数是( )
A.85
B.105
C.125
D.145
15.如图,点O 在直线AB 上,∠COB =∠DOE =90°,那么图中相等的角的对数和互余两角的对数分别为( )
A.3;3 B.4;4 C.5;4 D.7;5
16.将如图7所示的正方体沿某些棱展开后,能得到的图形是( )
A. B. C. D.
第15题图
三、用心做一做,马到成功!(本大题共52分)
17.(6分).如图所示,点O 是直线AB 上一点,OE ,OF 分别平分∠AOC 和∠BOC ,若∠AOC =68°,则∠BOF 和∠EOF 是多少度?
图7
18.(6分)读题、画图、计算并作答:
画线段AB = 3cm ,在线段AB 上取一点K ,使AK = BK ,在线段AB 的延长线上取一点C ,使AC = 3BC ,在线段BA 的延长线上取一点D ,使AD =
2
1AB 。
(1)求线段BC 、DC 的长;(2)点K 是哪些线段的中点?
19. (7分)一货轮从A 港出发,先沿北偏东75°的方向航行40海里到达B 港,再沿南偏东15°方向航行30海里到达C 港,请用适当的比例尺画出图形并测量估算出A 港到C 港间的距离。
20. (6分)知识是用来为人类服务的,我们应该把它们用于有意义的方.下面就两个情景
请你作出评判.
情景一:从教室到图书馆,总有少数同学不走人行道而横穿草坪,这是为什么呢?试用所学数学知识来说明这个问题。
情景二:A 、B 是河流l 两旁的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出抽水站点P 的位置,并说明你的理由:
你赞同以上哪种做法?你认为应用数学知识为人类服务时应注意什么?
l
A
B
21.(6分)把一副三角尺的直角顶点O 重叠在一起.
(1)如图10-1,当O B 平分C O D ∠时,则A O D ∠和B O C ∠的和是多少度? (2)如图10-2,当O B 不平分C O D ∠时,则A O D ∠和B O C ∠的和是多少度?
22.(9分)如图,BO 、CO 分别平分∠ABC 和∠ACB ,
(1)若∠A = 60°,求∠BOC ;
(2)若∠A =100°、120°,∠BOC 又是多少?
(3)由(1)、(2)你又发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗?
(提示:三角形的内角和等于180°)
23.(12分)(1)如下图,已知点C 在线段A B 上,且6cm A C =,4cm B C =,点M N ,分别是A C ,B C 的中点,求线段M N 的的长度.
(2)在(1)中,如果cm A C a =,cm B C b =,其它条件不变,你能猜出M N 的长度吗?请你用一句简洁的话表述你发现的规律.
(3)对于(1)题,如果我们这样叙述它:“已知线段6cm A C =,4cm B C =,点C 在直线A B 上,点M N ,分别是AC BC ,的中点,求M N 的长度.”结果会有变化吗?如果有,求出结果.
参考答案
一、填空题:
1.22,30;12.4 2.(1)北偏东70
;(2)南偏东40
3.五棱柱,圆柱,圆锥
4.点A 在直线l 上或直线l 经过点A ;直线a 、b 相交于点O 5.60
6.10 7.100分钟 8.0.5cm 或3.5cm 9.66°21′ 58°57′20″ 10.16 二、选择题:
11.A 12.B 13.B 14.C 15.C 16.C 三、解答题:
17.∠BOF=56°,∠EOF=90° 18.(1)图略 BC =1.5cm, DC =6cm 。
(2)K 是AB 和DC 的中点。
22.∠O =90°+1/2∠A . 19.略
20.解:情景一:两点之间的所有连线中,线段最短;
情景二:(需画出图形,并标明P 点位置) 理由:两点之间的所有连线中,线段最短. 赞同情景二中运用知识的做法。
21.(1)180
;(2)180
22.(1)120°(2)140°,150° (3)∠BOC =90°+12
A ⨯∠.
23.(1)5cm ;
(2)
2
a b +,直线上相邻两线段中点间的距离为两线段长度和的一半;(3)有变
化,当点C 在线段A B 上时,5cm M N =;当点C 在A B 或BA
M N .的延长线上时,1cm。