江苏高校的半导体物理复习资料(整理后)
(完整word版)半导体物理知识点总结.doc

一、半导体物理知识大纲核心知识单元 A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章)核心知识单元 B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)半导体中载流子的统计分布(第 3 章)半导体的导电性(第 4 章)非平衡载流子(第 5 章)核心知识单元 C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章)半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge 和 GaAs 的能带结构。
在 1.1 节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在 1.3 节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在 1.5 节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在 1.6 节,介绍 Si 、Ge 的能带结构。
(掌握能带结构特征)在 1.7 节,介绍Ⅲ -Ⅴ族化合物的能带结构,主要了解GaAs 的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
半导体物理学复习指导

2014-3-19
半导体物理考前复习(第七章)
MS结构、功函数、接触电势差、表面势;
金属-半导体接触后能带结构的变化(n型和p型,Wm>Ws和Wm<Ws); 阻挡层、反阻挡层、能带弯曲情况(P191-193);
表面态及类型;
MS结构在偏压下的接触电势差变化和单向导电性(即整流效应); MS结构扩散理论适用条件(势垒宽度远大于平均自由程)及伏安特性;
23
半导体物理考前复习
3、第四章有关计算(载流子浓度、杂质浓度,电导率):
载流子寿命测量的方法;
热平衡状态的标志——统一的费米能级; 非平衡状态下的费米能级特点——导带和价带费米能级不重合——准费
米能级,但各自适用;
11
2014-3-19
半导体物理考前复习(第五章)
准费米能级偏移平衡态费米能级的程度受非平衡载流子浓度的影响规
律—多数载流子准费米能级偏离少,少数载流子费米能级偏移多(P132); 复合理论(概念、分类、产生率、复合率、复合中心、有效复合中心的
极值点代入准动量公式,得准动量变化量;
20
2014-3-19
半导体物理考前复习
2、第三章有关计算(载流子浓度、温度、杂质浓度): 判断是否是平衡态,是否满足非简并条件; 判断半导体类型,判断本征浓度是否可忽略; 熟记常用公式; 运用相关公式变形,求出未知量; 1 E f (E) f B ( E ) A exp( ) E EF k0T 1 exp( ) k0T
外加电压下势垒区内载流子的运动方向、能带结构的变化、单向导电性;
理想pn结模型及其电流电压方程:(模型4要点、电流电压计算步骤); 单向导电性和温度对方向电流的影响(正相关、禁带宽度大,变化快);
半导体物理复习资料全

第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。
2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯ 倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。
3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。
处在这些稳定状态的原子不辐射。
(2)原子吸收或发射光子的频率必须满足。
(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。
(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。
(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。
6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。
复习题半导体物理学

复习题:半导体物理学引言:半导体物理学是研究半导体材料的电学和光学性质的科学学科。
半导体材料由于其特殊的能带结构,介于导体和绝缘体之间。
在半导体物理学中,我们研究电子行为、能带理论、掺杂效应和半导体器件等方面的内容。
本文将通过一系列复习题来回顾半导体物理学的相关知识。
一、电子行为:1. 什么是载流子?在半导体中有哪两种类型的载流子?在半导体中,带有电荷的粒子称为载流子。
一种是带负电荷的电子,另一种是带正电荷的空穴。
2. 什么是能带?能带理论是用来描述什么的?能带是指具有一定能量范围的电子能级分布。
能带理论用于描述电子在半导体中的分布和运动行为。
3. 什么是禁带宽度?它对半导体的导电性质有什么影响?禁带宽度是指能带中能量差最小的范围,该范围内的能级没有允许态。
禁带宽度决定了半导体的导电性能。
能带中存在禁带宽度时,半导体表现出绝缘体的性质;当禁带宽度足够小的时候,允许电子状态穿越禁带,半导体表现出导体的性质。
二、掺杂效应:1. 什么是掺杂?常见的掺杂元素有哪些?掺杂是指向纯净的半导体中引入少量杂质元素,以改变半导体的导电性质。
常见的掺杂元素有磷、锑、硼等。
2. 控制掺杂浓度的方法有哪些?掺杂浓度可以通过掺杂杂质元素的量来控制。
掺杂浓度越高,半导体的导电性越强。
3. P型和N型半导体有什么区别?P型半导体是指通过掺杂三价元素使半导体中存在过剩的空穴,空穴是主要的载流子。
N型半导体是指通过掺杂五价元素使半导体中存在过剩的电子,电子是主要的载流子。
三、半导体器件:1. 什么是PN结?它的主要作用是什么?PN结是由P型半导体和N型半导体组成的结构。
PN结的主要作用是将半导体材料的导电性质从P型区域传导到N型区域,形成电子流和空穴流。
2. 什么是二极管?它的特点是什么?二极管是PN结的一种常见应用。
它具有单向导电性,允许电流从P区域流向N区域,而阻止电流从N区域流向P区域。
3. 什么是晶体管?它的工作原理是怎样的?晶体管是由三个掺杂不同类型的半导体构成的器件。
(整理)半导体物理.2doc

半导体物理考试重点题型:名词解释3*10=30分;简答题4*5=20分;证明题10*2=20分;计算题15*2=30分一.名词解释1、施主杂志:在半导体中电离时,能够释放电子而产生导电电子并形成正电中心的杂质称为施主杂质。
2、受主杂志:在半导体中电离时,能够释放空穴而产生导电空穴并形成负电中心的杂质称为受主杂质。
3、本征半导体:完全不含缺陷且无晶格缺陷的纯净半导体称为本征半导体。
实际半导体不可能绝对地纯净,本征半导体一般是指导电主要由本征激发决定的纯净半导体。
4、多子、少子(1)少子:指少数载流子,是相对于多子而言的。
如在半导体材料中某种载流子占少数,在导电中起到次要作用,则称它为少子。
(2)多子:指多数载流子,是相对于少子而言的。
如在半导体材料中某种载流子占多数,在导电中起到主要作用,则称它为多子。
5、禁带、导带、价带(1)禁带:能带结构中能量密度为0的能量区间。
常用来表示导带与价带之间能量密度为0的能量区间。
(2)导带:对于被电子部分占满的能带,在外电场作用下,电子可以从外电场中吸收能量跃迁到未被电子占据的能级去,形成电流,起导电作用,常称这种能带为导带(3)价带:电子占据了一个能带中的所有的状态,称该能带为满带,最上面的一个满带称为价带6、杂质补偿施主杂质和受主杂质有互相抵消的作用,通常称为杂质的补偿作用。
7、电离能:使多余的价电子挣脱束缚成为导电电子所需要的能量称为电离能8、(1)费米能级:费米能级是绝对零度时电子的最高能级。
(2)受主能级:被受主杂质所束缚的空穴的能量状态称为受主能级(3)施主能级:被施主杂质束缚的电子的能量状态称为施主能级9、功函数:功函数是指真空电子能级E0 与半导体的费米能级EF 之差。
10、电子亲和能:真空的自由电子能级与导带底能级之间的能量差,也就是把导带底的电子拿出到真空去而变成自由电子所需要的能量。
11、直/间接复合(1)直接复合:电子在导带和价带之间的直接跃迁,引起电子和空穴的复合,称为直接复合。
半导体物理学期末总复习

半导体物理器件在传感与检测领域中的应用
发展趋势
了解半导体物理器件的发展趋势,包括更高性能、更低功耗、更小体积等。
面临的挑战
分析半导体物理器件在发展中面临的挑战,包括工艺复杂度、成本、可靠性等。ຫໍສະໝຸດ 半导体物理器件的发展趋势与挑战
THANK YOU.
谢谢您的观看
半导体激光器
介绍半导体激光器的原理、结构、制造工艺和应用,包括分布反馈式激光器、布拉格光栅激光器等。
半导体物理器件在光电子中的应用
介绍半导体传感器的基本原理、分类、应用和制造工艺,重点了解气体传感器和生物传感器。
半导体传感器
介绍半导体检测器的基本原理、分类、应用和制造工艺,包括光电检测器、热电检测器等。
半导体二极管及其特性
半导体二极管伏安特性
半导体二极管的伏安特性曲线反映了二极管在不同电压下的电流密度和电阻率,从而表现出单向导电性。
半导体二极管温度特性
半导体二极管的温度系数表示温度对二极管电压的影响,温度升高会使二极管正向电压降低。
双极型晶体管结构
01
双极型晶体管由三个半导体材料区域组成,两个P型区域和一个N型区域,通过三个区域的组合和连接形成NPN或PNP结构。
双极型晶体管及其特性
双极型晶体管的电流放大效应
02
双极型晶体管的基极电流对集电极电流的控制作用称为电流放大效应,这种效应是双极型晶体管的核心特性。
双极型晶体管的击穿特性
03
双极型晶体管在特定电压和电流条件下会发生击穿,导致电流突然增加,失去单向导电性。
场效应晶体管结构
场效应晶体管的电压控制特性
场效应晶体管的频率特性
双极型晶体管的模型与仿真
场效应晶体管的模型与仿真
半导体物理复习试题及答案复习资料
半导体物理复习试题及答案复习资料一、选择题1、下面关于晶体结构的描述,错误的是()A 晶体具有周期性的原子排列B 晶体中原子的排列具有长程有序性C 非晶体的原子排列没有周期性D 所有晶体都是各向同性的答案:D解释:晶体具有各向异性,而非各向同性。
2、半导体中的施主杂质能级()A 位于导带底附近B 位于价带顶附近C 位于禁带中央D 靠近价带顶答案:A解释:施主杂质能级靠近导带底,容易向导带提供电子。
3、本征半导体的载流子浓度随温度升高而()A 不变B 减小C 增大D 先增大后减小答案:C解释:温度升高,本征激发增强,载流子浓度增大。
4、下面关于 PN 结的描述,正确的是()A PN 结空间电荷区中的内建电场方向由 N 区指向 P 区B 正向偏置时,PN 结电流很大C 反向偏置时,PN 结电流很小且趋于饱和D 以上都对答案:D解释:PN 结空间电荷区中的内建电场方向由 N 区指向 P 区,正向偏置时多数载流子扩散电流大,反向偏置时少数载流子漂移电流小且趋于饱和。
5、金属和半导体接触时,如果形成阻挡层,那么半导体表面是()A 积累层C 反型层D 以上都可能答案:B解释:形成阻挡层时,半导体表面通常是耗尽层。
二、填空题1、常见的半导体材料有_____、_____和_____等。
答案:硅、锗、砷化镓2、半导体中的载流子包括_____和_____。
答案:电子、空穴3、施主杂质的电离能_____受主杂质的电离能。
(填“大于”或“小于”)答案:小于4、当半导体处于热平衡状态时,其费米能级_____。
(填“恒定不变”或“随温度变化”)答案:恒定不变5、异质结分为_____异质结和_____异质结。
答案:突变异质结、缓变异质结1、简述半导体中施主杂质和受主杂质的作用。
答:施主杂质在半导体中能够提供电子,使其成为主要的导电载流子,增加半导体的电导率。
受主杂质能够接受电子,产生空穴,使空穴成为主要的导电载流子,同样能提高半导体的电导率。
半导体物理导论复习资料
半导体物理导论复习资料半导体物理导论复习资料半导体物理是现代电子学的基础,理解半导体物理的原理对于电子工程师和科学家来说至关重要。
本文将回顾半导体物理的一些重要概念和原理,帮助读者复习和加深对这一领域的理解。
1. 半导体的基本特性半导体是介于导体和绝缘体之间的材料,具有一些独特的物理特性。
首先,半导体的电导率介于导体和绝缘体之间,这意味着它既可以传导电流,又可以阻止电流的流动。
其次,半导体的电导率可以通过控制外界条件(如温度、施加电场等)来调节,这使得半导体具有可调控性和可变性。
2. 禁带和载流子半导体中的电子和空穴是半导体中的两种载流子。
禁带是指半导体中的能带结构,它将电子的能级分成导带和价带。
导带是电子能量较高的能级,而价带是电子能量较低的能级。
禁带宽度是导带和价带之间的能量差,决定了半导体的导电性能。
3. pn结和二极管pn结是由n型半导体和p型半导体结合而成的。
n型半导体中的电子浓度较高,p型半导体中的空穴浓度较高。
当两者结合时,电子和空穴会发生复合,形成一个耗尽层。
耗尽层中没有可自由移动的载流子,因此形成了一个电势垒。
这个电势垒可以阻止电流的流动,从而实现了二极管的整流功能。
4. 势垒高度和反向击穿势垒高度是指pn结中电势垒的高度,它决定了二极管的导电性能。
当外加电压使势垒高度增加时,二极管的导电性能会减弱。
反向击穿是指当外加电压超过一定值时,势垒高度会被突破,电流会快速增加。
这种现象可以用来制作稳压二极管和击穿二极管等电子元件。
5. MOSFET和CMOS技术MOSFET是金属-氧化物-半导体场效应晶体管的缩写,是现代集成电路中最常用的晶体管结构。
MOSFET的导电性能可以通过调节栅极电压来控制,因此具有高度可调控性和低功耗特性。
CMOS技术是一种基于MOSFET的集成电路制造技术,被广泛应用于数字电路和微处理器的制造。
6. 光电效应和光电器件光电效应是指当光照射到半导体材料上时,会激发出电子和空穴,产生电流。
半导体物理知识点及重点习题总结
半导体物理知识点及重点习题总结半导体物理是现代电子学中的重要领域,涉及到半导体材料的电学、热学和光学等性质,以及半导体器件的工作原理和应用。
本文将对半导体物理的一些重要知识点进行总结,并附带相应的重点习题,以帮助读者更好地理解和掌握相关知识。
一、半导体材料的基本性质1. 半导体材料的能带结构半导体材料的能带结构决定了其电学性质。
一般而言,半导体材料具有禁带宽度,可以分为导带(能量较高)和价带(能量较低)。
能量在禁带内的电子处于被限制的状态,称为束缚态,能量在导带中的电子可以自由移动,称为自由态。
2. 掺杂和杂质掺杂是将少量的杂质原子引入纯净的半导体材料中,以改变其导电性质。
掺入价带原子的称为施主杂质,掺入导带原子的称为受主杂质。
施主杂质会增加导电子数,受主杂质会增加载流子数。
3. P型和N型半导体掺入施主杂质的半导体为P型半导体,施主杂质的电子可轻易地跳出束缚态进入导带,形成载流子。
掺入受主杂质的半导体为N型半导体,受主杂质的空穴可轻易地跳出束缚态进入价带,形成载流子。
二、PN结和二极管1. PN结的形成和特性PN结是P型和N型半导体的结合部分,形成的原因是P型半导体中的空穴与N型半导体中的电子发生复合。
PN结具有整流作用,使得电流在正向偏置时能够通过,而在反向偏置时被阻止。
2. 二极管的工作原理二极管是基于PN结的器件,正向偏置时,在PN结处形成正电压,使得电子流能够通过。
反向偏置时,PN结处形成反电压,使得电流无法通过。
3. 二极管的应用二极管广泛用于整流电路、电压稳压器、振荡器和开关等领域。
三、晶体管和放大器1. 晶体管的结构和工作原理晶体管是一种三端器件,由三个掺杂不同的半导体构成。
其中,NPN型晶体管由N型掺杂的基区夹在两个P型掺杂的发射极和集电极之间构成。
PNP型晶体管的结构与之类似。
晶体管的工作原理基于控制发射极和集电极之间电流的能力。
2. 放大器和放大倍数晶体管可以作为放大器来放大电信号。
半导体物理复习资料
半导体物理复习资料一.填空题1.半导体中的载流子主要受到两种散射,它们分别是电离杂质散射和晶格震动散射。
2.纯净半导体Si中掺杂Ⅴ族元素,当杂质电离时释放电子。
这种杂质称施主杂质;相应的半导体称N型半导体。
3.当半导体中载流子浓度的分布不均匀时,载流子将做扩散运动;在半导体存在外加电压情况下,载流子将做漂移运动。
4.n0p0=n i2标志着半导体处于热平衡状态,当半导体掺入的杂质含量改变时,乘积n0p0是否改变?不改变;当温度变化时,n0p0改变否?改变。
5.硅的导带极小值位于布里渊区<100>方向上,根据晶体对称性共有6个等价能谷。
6.n型硅掺As后,费米能级向E C或上移动,在室外温度下进一步升高温度,费米能级向E i或下移动。
7.半导体中的陷阱中心使其中光电导灵敏度增加,并使其光电导衰减规律衰减时间延长。
8.若用氢取代磷化镓中的部分磷,结果是禁带宽度E g增大;若用砷的话,结果是禁带宽度E g减小。
9.已知硅的E g为1.12Ev,则本征吸收的波长限为1.11微米;Ge的E g为0.67eV,则本征吸收的波长限为1.85微米。
10.复合中心的作用是促进电子和空穴的复合,起有效复合中心的杂质能级必须位于E1或禁带中心线,而对电子和空穴的俘获系数r n或r p必须满足r n=r p。
11.有效陷阱中心位置靠近E F或费米能级。
12.计算半导体中载流子浓度时,不能使用玻尔兹曼统计代替费米统计的判定条件E c-E F≤2k0T以及E F-E V≤2k0T,这种半导体被称为简并半导体。
13.PN结电容可分为扩散电容和势垒电容两种。
14.纯净半导体Si中掺杂Ⅲ族元素的杂质,当杂质电离时在Si晶体的共价键中产生了一个空穴,这种杂质称受主杂质;相应的半导体称P型半导体。
15.半导体产生光吸收的方式本征、激子、杂质、晶格振动、半导体吸收光子后产生载流子,在均匀半导体中是电导率增加,可制成光敏电阻;在存在自建电场的半导体中产生光生伏特,可制成光电池;光生载流子发生辐射复合时,伴随着发射光子,这就是半导体的发光现象,利用这种现象可制成发光管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填充题1. 两种不同半导体接触后, 费米能级较高的半导体界面一侧带电达到热平衡后两者的费米能级。
2. 半导体硅的价带极大值位于k空间第一布里渊区的中央,其导带极小值位于方向上距布里渊区边界约0.85倍处,因此属于半导体。
3. 晶体中缺陷一般可分为三类:点缺陷,如;线缺陷,如;面缺陷,如层错和晶粒间界。
4. 间隙原子和空位成对出现的点缺陷称为;形成原子空位而无间隙原子的点缺陷称为。
5.杂质可显著改变载流子浓度;杂质可显著改变非平衡载流子的寿命,是有效的复合中心。
6. 硅在砷化镓中既能取代镓而表现为,又能取代砷而表现为,这种性质称为杂质的双性行为。
7.对于ZnO半导体,在真空中进行脱氧处理,可产生,从而可获得 ZnO半导体材料。
8.在一定温度下,与费米能级持平的量子态上的电子占据概率为,高于费米能级2kT能级处的占据概率为。
9.本征半导体的电阻率随温度增加而,杂质半导体的电阻率随温度增加,先下降然后,再单调下降。
10.n型半导体的费米能级在极低温(0K)时位于导带底和施主能级之间处,随温度升高,费米能级先上升至一极值,然后下降至。
11. 硅的导带极小值位于k空间布里渊区的方向。
12. 受主杂质的能级一般位于。
13. 有效质量的意义在于它概括了半导体的作用。
14. 除了掺杂,也可改变半导体的导电类型。
15. 是测量半导体内载流子有效质量的重要技术手段。
16. PN结电容可分为和扩散电容两种。
17. PN结击穿的主要机制有、隧道击穿和热击穿。
18. PN结的空间电荷区变窄,是由于PN结加的是电压。
19.能带中载流子的有效质量反比于能量函数对于波矢k的,引入有效质量的意义在于其反映了晶体材料的的作用。
20. 从能带角度来看,锗、硅属于半导体,而砷化稼属于半导体,后者有利于光子的吸收和发射。
21.除了这一手段,通过引入也可在半导体禁带中引入能级,从而改变半导体的导电类型。
22. 半导体硅导带底附近的等能面是沿方向的旋转椭球面,载流子在长轴方向(纵向)有效质量ml 在短轴方向(横向)有效质量mt。
23.对于化学通式为MX的化合物半导体,正离子M空位一般表现为,正离子M为间隙原子时表现为。
24.对于化学通式为MX的化合物半导体,负离子X空位一般表现为,负离子X为间隙原子时表现为。
25. 半导体导带中的电子浓度取决于导带的(即量子态按能量如何分布)和(即电子在不同能量的量子态上如何分布)。
26.通常把服从的电子系统称为非简并性系统,服从的电子系统称为简并性系统。
27.对于N型半导体,其费米能级一般位于禁带中线以上,随施主浓度增加,费米能级向移动,而导带中的电子浓度也随之。
28.对于同一种半导体材料其电子浓度和空穴浓度的乘积与有关,而对于不同的半导体材料其浓度积在一定的温度下将取决于的大小。
29.如取施主杂质能级简并度为2,当杂质能级与费米能级重合时施主杂质有电离,在费米能级之上2kT时有电离。
30. 由于半导体硅导带底附近的等能面是而非球面,因此在回旋共振实验中,当磁场对晶轴具有非特殊的取向时,一般可观察到吸收峰。
31.费米能级位置一般利用条件求得,确定了费米能级位置,就可求得一定温度下的电子及空穴。
32.半导体的电导率正比于载流子浓度和,而后者又正比于载流子的,反比于载流子的有效质量。
二、论述题1. 简要说明载流子有效质量的定义和作用?答:能带中电子或空穴的有效质量m 的定义式为:222)(dk k E d h m =*有效质量m 与能量函数E(k)对于波矢k 的二次微商, 即能带在某处的曲率成反比; 能带越窄,曲率越小,有效质量越大,能带越宽,曲率越大,有效质量越小;在能带顶部,曲率小于零,则有效质量为负值,在能带底部,曲率大于零,则有效质量为正值。
有效质量的意义在于它概括了内部势场的作用,使得在解决半导体中载流子在外场作用下的运动规律时,可以不涉及内部内部势场的作用。
2. 简要说明费米能级的定义、作用和影响因素?答:电子在不同能量量子态上的统计分布概率遵循费米分布函数:⎪⎭⎫ ⎝⎛-+=kT E E E f F ex p 11)( 费米能级E F 是确定费米分布函数的一个重要物理参数,在绝对零度是,费米能级E F 反映了未占和被占量子态的能量分界线,在某有限温度时的费米能级E F 反映了量子态占据概率为二分之一时的能量位置。
确定了一定温度下的费米能级E F 位置,电子在各量子态上的统计分布就可完全确定。
费米能级E F 的物理意义是处于热平衡状态的电子系统的化学势,即在不对外做功的情况下,系统中增加一个电子所引起的系统自由能的变化。
半导体中的费米能级E F 一般位于禁带内,具体位置和温度、导电类型及掺杂浓度有关。
只有确定了费米能级E F 就可以统计得到半导体导带中的电子浓度和价带中的空穴浓度。
3. 说明pn 结空间电荷区如何形成?并导出pn 结接触电势差的计算公式。
4. 试定性分析Si 的电阻率与温度的变化关系。
答:Si 的电阻率与温度的变化关系可以分为三个阶段:(1) 温度很低时,电阻率随温度升高而降低。
因为这时本征激发极弱,可以忽略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。
(2) 温度进一步增加(含室温),电阻率随温度升高而升高。
在这一温度范围内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。
对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。
(3) 温度再进一步增加,电阻率随温度升高而降低。
这时本征激发越来越多,虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。
当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。
5. 漂移运动和扩散运动有什么不同?两者之间有什么联系?答:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。
前者的推动力是外电场,后者的推动力则是载流子的分布引起的。
漂移运动与扩散运动之间通过迁移率与扩散系数相联系。
而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。
即 T k q D 0=μ6. 说明能带中载流子迁移率的物理意义和作用。
答:载流子迁移率反映了单位电场强度下载流子的平均漂移速度,其定义式为:E vd =μ; 其单位为:cm 2/V s半导体载流子迁移率的计算公式为:*=m q τμ 其大小与能带中载流子的有效质量成反比,与载流子连续两次散射间的平均自由时间成正比。
确定了载流子迁移率和载流子浓度就可确定该载流子的电导率。
7.请解释什么是肖特基势垒二极管,并说明其与pn 结二极管的异同。
答:利用金属半导体接触形成的具有整流特性的二极管称为肖特基势垒二极管。
肖特基势垒二极管和pn 结二极管具有类似的电流电压关系,即都具有单向导电性;但两者有如下区别:pn 结二极管正向导通电流由p 区和n 区的少数载流子承担, 即从p 区注入n 区的空穴和从n 区注入p 区的电子组成。
少数载流子要先形成一定的积累,然后依靠扩散运动形成电流,因此pn 结二极管的高频性能不佳。
而肖特基势垒二极管的正向导通电流主要由半导体中的多数载流子进入金属形成的,从半导体中越过界面进入金属的电子并不发生积累,而是直接成为漂移电流而流走。
因此具有更好的高频特性。
此外,肖特基势垒二极管对于同样的电流, 具有较低的正向导通电压。
因此,肖特基势垒二极管在高速集成电路、微波技术等领域具有重要应用。
8. 请解释什么是欧姆接触?如何实现?欧姆接触是指不产生明显的附加阻抗的,接触电阻很小的金属与半导体的非整流接触。
半导体器件一般利用金属电极输入或输出电流,因此要求金属和半导体之间形成良好的欧姆接触,尤其在大功率和超高频器件中,欧姆接触是设计制造的关键问题之一。
不考虑表面态的影响,若金属功函数小于半导体功函数,金属和n型半导体接触可形成反阻挡层;若金属功函数大于半导体功函数,则金属和p型半导体接触可形成反阻挡层;理论上,选择适当功函数的金属材料即可形成欧姆接触。
实际上,由于半导体材料常常具有很高的表面态密度,无论n型或p型半导体与金属接触都会形成势垒阻挡层,而与金属功函数关系不大。
因此,不能用选择金属材料的办法来形成欧姆接触。
常用的方法是在n型或p型半导体上制作一层重掺杂区后再与金属接触。
重掺杂半导体的势垒区宽度变得很薄,因此电子可以通过量子隧道效应穿过势垒形成相当大的隧道电流,此时接触电阻可以很小,从而可以形成良好的欧姆接触。
9. 什么叫施主?施主电离前后有何特征?试举例说明之,并用能带图表征出n型半导体。
答:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向导带提供电子,这种杂质就叫施主。
施主电离成为带正电离子(中心)的过程就叫施主电离。
施主电离前不带电,电离后带正电。
例如,在Si中掺P,P为Ⅴ族元素,本征半导体Si为Ⅳ族元素,P掺入Si 中后,P的最外层电子有四个与Si的最外层四个电子配对成为共价电子,而P 的第五个外层电子将受到热激发挣脱原子实的束缚进入导带成为自由电子。
这个过程就是施主电离。
n型半导体的能带图如图所示:其费米能级位于禁带上方10.什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p型半导体。
解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主。
受主电离成为带负电的离子(中心)的过程就叫受主电离。
受主电离前带不带电,电离后带负电。
例如,在Si 中掺B ,B 为Ⅲ族元素,而本征半导体Si 为Ⅳ族元素,P 掺入B 中后,B 的最外层三个电子与Si 的最外层四个电子配对成为共价电子,而B 倾向于接受一个由价带热激发的电子。
这个过程就是受主电离。
p 型半导体的能带图如图所示:其费米能级位于禁带下方11. 试分别说明:1)在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度越高;2)对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。
答:(1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需的能量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。
由公式Tk E v c i ge N N n 02-=也可知道,温度不变而减少本征材料的禁带宽度,上式中的指数项将因此而增加,从而使得载流子浓度因此而增加。
(2)对一定的材料,当掺杂浓度一定时,温度越高,受激发的载流子将因此而增加。
由公式可知,这时两式中的指数项将因此而增加,从而导致载流子浓度增加。