光纤的分类 特性 优缺点 详解
光缆基本知识介绍

光缆基本知识介绍光缆是一种用光来传输信息的通信线缆。
它由一个或多个光纤组成,每个光纤都由一个玻璃或塑料的纤维芯和外面的保护层组成。
光缆的传输原理是利用光的全反射现象。
当光线沿着纤芯传播时,由于纤芯的折射率高于外层的保护层,光线会一直在纤芯内反射,从而实现信号的传输。
光缆具有许多优点。
首先,光缆具有巨大的传输带宽。
光纤可以传输大量的信息,从而满足了现代通信系统对传输速率的需求。
其次,光缆的抗干扰性能非常强。
光纤内部不会受到电磁干扰的影响,从而实现了稳定的传输。
此外,光缆的体积小、重量轻,便于安装和维护。
根据光缆的用途和结构,可以将光缆分为多种类型。
常见的光缆类型包括单模光缆和多模光缆。
单模光缆适用于长距离传输,其纤芯较细,只能传输单一模式的光信号。
而多模光缆适用于短距离传输,其纤芯较粗,可以传输多种光模式的信号。
根据光缆的结构,可以将光缆分为光纤框式光缆和光纤缆式光缆。
光纤框式光缆是将光纤用塑料套管保护,然后通过一定的方式固定在光缆框上,适用于死机架等固定结构。
光纤缆式光缆是将光纤放在光缆内,然后通过一定的方法绞合在一起,适用于需要移动布线的场合。
除了传输信息外,光缆还可以用于传感器和加密等领域。
光缆传感器可以基于光的传播特性来进行测量和检测。
光缆加密技术利用光的传输特性来实现信息的安全传输,保护通信内容不被窃听。
在实际应用中,常见的光缆故障有断纤和弯曲损害。
断纤是指光纤断裂,导致信号无法传输。
弯曲损害是指光纤过度弯曲导致信号传输中断。
为了避免光缆故障,需要进行光缆的正确安装和维护。
常见的光缆维护方法包括定期清洁光缆和保持光缆的曲率半径。
总之,光缆是一种重要的通信技术,具有广泛的应用前景。
通过光缆的使用,可以实现高速、稳定和安全的信息传输,推动现代社会的发展和进步。
光纤的分类及比较(包括各种单模光纤的色散及衰减特性)

4 对各种单模光纤特性的比较
• G652 • G653 • G654 • G655
1 )G652光纤又被称为标准单模光纤,这种光纤是目前应用在1310nm窗口的最广泛的零色散波长的单模光纤。
2)其特点是当工作波长在1310nm时,光纤的色散很小,约为3.5ps/nm*km,系统的传输距离基本上只受光纤衰减所限制;但在1550nm波段色散较大,约为20ps/nm*km。
1)G654光纤又称为非零色散光纤,这是一种改进的色散位移光纤,其零色散波长不在1550nm处,而在1525nm或1585nm处。 2)零色散光纤同时削减了色散效应和四波混频效应,所以非零色散光纤综合了标准单模光纤和色散位移光纤,有比较好的传输特性,特别适合于高密度的波分复用系统的传输。
G655
A(l) = 10lg p1 (dB)
p2
p1、p2分别为光纤注入端和输出端的光功率。 ( dB与dBm)
光纤损耗(衰减)的定义
若光纤是均匀的,则还可以用单位长 度的衰减即衰减系数α来表示:
a (l) = 1 A(l) = 1 10 lg p1 (dB / km)
L
L
p2
光脉冲注入光纤后,长距离传输后脉冲的宽 度被展宽
色散补偿技术
当前,发展比较成熟的、主流的色散补偿技术主要是采用色散补偿光纤(DCF)来进行色散补偿。其主要技术是在每个(或几个)光纤段的输入或输出端通过放置 DCF色散补偿模块(DCM),周期性地使光纤链路上累积的色散接近零,从而可以使单信道1550nm外调制光纤干线的色散得到较好的补偿。
因此,对于超长距离的光纤传输,现有的色散补偿技术可以相对较好的解决色散问题,对于超远距离的传输,其首要考虑的因素是光纤的衰减特性。
ps/nm·km
光纤的分类和特点

光纤的分类和特点
光纤是一种利用光的传输介质,通过光的全反射来传输数据和信息。
根据不同的标准和用途,光纤可以分为单模光纤和多模光纤。
下面将分别介绍这两种光纤的分类和特点。
单模光纤是一种通过单一传输模式来传输光信号的光纤。
它的直径通常在8-10微米左右,光信号在光纤中传输时只沿着光纤的中心轴传播,因此传输距离更远,传输损耗更小。
单模光纤适用于需要高速、长距离传输的场景,如长距离通信、数据中心互联等。
单模光纤的特点主要有传输距离远、传输速度快、传输带宽大、传输损耗小等。
多模光纤是一种通过多种传输模式来传输光信号的光纤。
它的直径通常在50-62.5微米左右,光信号在光纤中传输时会沿着多个路径传播,因此传输距离相对较短,传输损耗较大。
多模光纤适用于短距离、低速传输的场景,如局域网、数据中心内部互联等。
多模光纤的特点主要有成本较低、安装维护方便、适用于短距离传输等。
在实际应用中,根据不同的需求和场景,可以选择使用单模光纤或多模光纤。
单模光纤适用于高速、长距离传输,而多模光纤适用于短距离、低速传输。
在选择光纤时,需要综合考虑传输距离、传输速度、成本、安装维护等因素,选择最适合的光纤类型。
总的来说,光纤作为一种高效、稳定的传输介质,在现代通信和网
络领域发挥着重要作用。
通过了解单模光纤和多模光纤的分类和特点,可以更好地选择和应用光纤,提高数据传输的效率和可靠性。
希望本文对读者对光纤有更深入的了解和认识。
光纤的特点及其原理介绍

光纤的特点及其原理介绍光纤的特点及其原理介绍光是一种电磁波,可见光部分波长范围是:390~760nm(纳米)。
大于760nm部分是红外光,小于390nm部分是紫外光。
光纤中的应用有三种:850nm,1310nm,1550nm。
下面是店铺给大家整理的光纤的特点,希望能帮到大家!光纤的特点(1)通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。
采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。
目前400Gbit/s系统已经投入商业使用。
光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比目前任何传输媒质的损耗都低。
因此,无中继传输距离可达几十、甚至上百公里。
(2)信号串扰小、保密性能好;(3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。
(4)光纤尺寸小、重量轻,便于敷设和运输;(5)材料来源丰富,环境保护好,有利于节约有色金属铜。
(6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。
(7)光缆适应性强,寿命长。
(8)质地脆,机械强度差。
(9)光纤的切断和接续需要一定的工具、设备和技术。
(10)分路、耦合不灵活。
(11)光纤光缆的弯曲半径不能过小(>20cm)(12)有供电困难问题。
利用光波在光导纤维中传输信息的通信方式。
由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光—光纤通信。
结构原理光导纤维是由两层折射率不同的玻璃组成。
内层为光内芯,直径在几微米至几十微米,外层的直径0.1~0.2mm。
一般内芯玻璃的折射率比外层玻璃大1%。
根据光的折射和全反射原理,当光线射到内芯和外层界面的角度大于产生全反射的临界角时,光线透不过界面,全部反射。
传输优点直到1960年,美国科学家Maiman发明了世界上第一台激光器后,为光通讯提供了良好的光源。
随后二十多年,人们对光传输介质进行了攻关,终于制成了低损耗光纤,从而奠定了光通讯的基石。
光纤的分类 特性 优缺点 详解

光纤的分类特性优缺点详解单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
多模光纤:中心玻璃芯较粗(50或μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
传输距离较近,最多几公里。
我只是知道有单模和多模的,单模就是波长在1310NM上,多模就是850NM的,还有就是接口也不同,分LC ,SC ,FC,因本人专业知识有限,其他的是我在网上查找的!请参考!一,光纤的分类些特种光纤如晶体光纤并未列出光纤是光导纤维(OF:Optical Fiber)的简称。
但光通信系统中常常将Optical Fibe(光纤)又简化为Fiber,例如:光纤放大器(Fiber Amplifier)或光纤干线(Fiber Backbone)等等。
有人忽略了Fiber虽有纤维的含义,但在光系统中却是指光纤而言的。
因此,有些光产品的说明中,把fiber直译成“纤维”,显然是不可取的。
光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。
光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。
但对于有线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价廉等。
光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,兹将各种分类举例如下。
(1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(、、)。
(2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型、其它(如三角型、W型、凹陷型等)。
(3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。
光缆的种类及型号

光缆的种类及型号光缆是传输光信号的一种重要的通信线缆,用于将光信号从一个地方传输到另一个地方。
根据不同的应用需求和技术要求,光缆有多种不同的种类及型号。
以下是常见的光缆种类及型号的介绍。
1. 单模光缆(Single Mode Fiber,SMF):单模光缆采用的是一种直径较小的光纤,具有较低的传输损耗和较大的带宽。
它适用于长距离传输和高速传输,如电信、有线电视、数据中心等领域。
常见的单模光缆有G.652D、G.655和G.657- G.652D:G.652D是最常见的单模光缆,适用于大多数的光纤通信应用。
它的波长传输窗口范围为1310nm到1550nm,具有较低的传输损耗。
- G.655:G.655是一种非零色散单模光缆,适用于长距离传输和高速传输。
它的波长传输窗口范围为1525nm到1565nm,具有较大的带宽。
- G.657:G.657是一种用于弯曲应用的折射率变化型单模光缆,适用于需要弯曲或折弯的场景,如Fiber To The Home(FTTH)等。
2. 多模光缆(Multi Mode Fiber,MMF):多模光缆采用的是直径较大的光纤,允许多个光模式同时传输。
它适用于较短距离传输和较低的传输速率,如局域网、多媒体传输等领域。
常见的多模光缆有OM1、OM2、OM3和OM4-OM1:OM1是最早的多模光缆,适用于传输距离不长且速率较低的应用。
它的最大传输距离约为550米(1000BASE-SX)。
-OM2:OM2是一种较新的多模光缆,适用于传输距离适中和速率适中的应用。
它的最大传输距离约为550米(1000BASE-SX)。
-OM3:OM3是一种高带宽多模光缆,适用于较长距离传输和较高速率的应用。
它的最大传输距离约为300米(10GBASE-SR)。
-OM4:OM4是一种超高带宽多模光缆,适用于更长距离传输和更高速率的应用。
它的最大传输距离约为400米(10GBASE-SR)。
3.特殊光缆:除了常见的单模光缆和多模光缆,还有一些特殊用途的光缆,用于特定的应用场景。
特种光纤定义及分类分析 (一)

特种光纤定义及分类分析 (一)特种光纤是一种新兴的光通信和光电领域的材料,也是一种光学特性有别于常见光纤的光纤。
一般特种光纤可分为四大类:增益型、调制型、传感型和非线性型光纤。
一、增益型光纤增益型光纤是指在光纤中注入掺杂了稀土离子的材料,用于激光放大或产生激光。
增益型光纤的优点是具有更大的增益,可以放大较弱的光信号,同时也具有高效,尺寸小、部署方便等特性。
增益型光纤主要分为氟化物增益型光纤、硅酸盐增益型光纤、磷酸盐增益型光纤等。
二、调制型光纤调制型光纤通常是指将掺杂了有源离子的光纤置于电力场中发生电光调制或伏特效应。
调制型光纤除了具备增益型光纤的优点,还可以快速地调制光信号的幅度、频率、相位等参数,可以用于高速光信号传输。
调制型光纤主要分为电吸收型光纤、电调制型光纤和电光混合型光纤。
三、传感型光纤传感型光纤是一种专门用于测量温度、光学、压力、湿度、运动等物理量的光纤。
传感型光纤的原理是通过让被测物理量改变光纤传输的光场,来实现对物理量的测量。
传感型光纤主要分为光纤布拉格光栅传感器、光纤拉曼散射传感器、光纤弯曲传感器等。
四、非线性型光纤非线性型光纤是指在光纤中存在着强的非线性光学效应,主要是光学非线性效应。
非线性型光纤广泛应用于超快光学非线性与量子光学研究领域;在通信领域中,非线性型光纤可用于高速光通信和光信号处理。
非线性型光纤主要分为沟道型非线性光纤、分散式非线性光纤和正常分散型非线性光纤等。
总之,特种光纤作为一种新型光传输材料,其应用领域涉及光纤通信、光纤传感、激光器、生物医疗、能源等多个领域,具有广阔的应用前景。
不同类型的特种光纤在实际应用中具有各自的优缺点,在应用时需根据实际需要进行合理选择。
关于光纤的知识点总结

关于光纤的知识点总结光纤的基本结构包括纤芯、包层和包覆层。
纤芯是光信号传输的主要部分,包层是用来保护纤芯并起到光波导的作用,包覆层则是用来保护光纤整体并增强其机械性能。
光纤的基本工作原理是利用全反射来限制光信号在纤芯内传输,并且减少光信号的衰减。
光纤的优点主要有带宽大、传输速度快、信号衰减小、抗干扰性强等。
这些优点使得光纤在通信领域得到广泛应用,如长距离通信、高速宽带接入、光纤传感等。
此外,光纤还被广泛应用于医疗和工业领域,如光纤内窥镜、光谱分析和激光焊接等。
在光纤通信领域,光纤传输系统主要包括光源、光纤、检测器和探测器等组件。
其中,光源主要用于产生光信号,光纤用于传输光信号,检测器用于接收和解码光信号,探测器用于监测光纤系统的工作状态。
光纤传输系统通过这些组件的相互配合,可以实现高速、稳定、安全的光信号传输。
光纤的制造工艺主要包括拉制法、浸镀法和溅射法等。
拉制法是最常用的光纤制造工艺,其主要过程包括预制棒制备、预拉制备、拉制和收线,并通过这一系列工艺流程,可以制备出高质量的光纤。
而浸镀法主要是利用光纤预拉制备的玻璃棒浸入气相腔中,通过化学反应得到光纤。
溅射法是一种将材料溅射到基片上的制备方法,通过控制溅射材料和基片的相对位置和温度,可以得到所需的光纤材料。
光纤的性能主要包括传输损耗、带宽、波长、色散和非线性等。
传输损耗是光信号在光纤中传输过程中损失的光功率,带宽是光纤支持的频率范围,波长是光信号的波长范围,色散是光信号在光纤中传输过程中频率的扩散,非线性是光信号在高功率或长距离传输过程中的非线性效应。
通过对这些性能的研究和优化,可以提高光纤的传输效率和性能稳定性。
光纤的发展趋势主要包括高带宽、长距离传输、低成本和多功能化等。
随着通信需求的增加,对光纤传输系统的带宽和距离要求也越来越高,因此未来光纤的应用将更加趋向于高速、稳定和长距禿传输。
而随着光纤制造技术的不断发展,光纤制造成本将会降低,使光纤技术的普及更加便宜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤的分类特性优缺点详解单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
多模光纤:中心玻璃芯较粗(50或μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
传输距离较近,最多几公里。
我只是知道有单模和多模的,单模就是波长在1310NM上,多模就是850NM的,还有就是接口也不同,分LC ,SC ,FC,因本人专业知识有限,其他的是我在网上查找的!请参考!一,光纤的分类些特种光纤如晶体光纤并未列出光纤是光导纤维(OF:Optical Fiber)的简称。
但光通信系统中常常将Optical Fibe(光纤)又简化为Fiber,例如:光纤放大器(Fiber Amplifier)或光纤干线(Fiber Backbone)等等。
有人忽略了Fiber虽有纤维的含义,但在光系统中却是指光纤而言的。
因此,有些光产品的说明中,把fiber直译成“纤维”,显然是不可取的。
光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。
光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。
但对于有线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价廉等。
光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,兹将各种分类举例如下。
(1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(、、)。
(2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型、其它(如三角型、W型、凹陷型等)。
(3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。
(4)原材料:石英玻璃、多成分玻璃、塑料、复合材料(如塑料包层、液体纤芯等)、红外材料等。
按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。
(5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。
二,石英光纤是以二氧化硅(SiO2)为主要原料,并按不同的掺杂量,来控制纤芯和包层的折射率分布的光纤。
石英(玻璃)系列光纤,具有低耗、宽带的特点,现在已广泛应用于有线电视和通信系统。
掺氟光纤(Fluorine Doped Fiber)为石英光纤的典型产品之一。
通常,作为波域的通信用光纤中,控制纤芯的掺杂物为二氧化绪(GeO2),包层是用SiO炸作成的。
但接氟光纤的纤芯,大多使用SiO2,而在包层中却是掺入氟素的。
由于,瑞利散射损耗是因折射率的变动而引起的光散射现象。
所以,希望形成折射率变动因素的掺杂物,以少为佳。
氟素的作用主要是可以降低SIO2的折射率。
因而,常用于包层的掺杂。
由于掺氟光纤中,纤芯并不含有影响折射率的氟素掺杂物。
由于它的瑞利散射很小,而且损耗也接近理论的最低值。
所以多用于长距离的光信号传输。
石英光纤(Silica Fiber)与其它原料的光纤相比,还具有从紫外线光到近红外线光的透光广谱,除通信用途之外,还可用于导光和传导图像等领域。
三,红外光纤作为光通信领域所开发的石英系列光纤的工作波长,尽管用在较短的传输距离,也只能用于2pm。
为此,能在更长的红外波长领域工作,所开发的光纤称为红外光纤。
红外光纤(Infrared Optical Fiber)主要用于光能传送。
例如有:温度计量、热图像传输、激光手术刀医疗、热能加工等等,普及率尚低。
四,复台光纤复合光纤(Compound Fiber)在SiO2原料中,再适当混合诸如氧化钠(Na2O)、氧化硼(B2O2)、氧化钾(K2O2)等氧化物的多成分玻璃作成的光纤,特点是多成分玻璃比石英的软化点低且纤芯与包层的折射率差很大。
主要用在医疗业务的光纤内窥镜。
五,氟化物光纤氯化物光纤(Fluoride Fiber)是由氟化物玻璃作成的光纤。
这种光纤原料又简称ZBLAN(即将氟化铝(ZrF4)、氰化钡(BaF2)、氟化镧(LaF3)、氟化铝(A1F2)、氰化钠(NaF)等氯化物玻璃原料简化成的缩语。
主要工作在2~10pm波长的光传输业务。
由于ZBLAN具有超低损耗光纤的可能性,正在进行着用于长距离通信光纤的可行性开发,例如:其理论上的最低损耗,在3pm波长时可达10-2~10-3dB/km,而石英光纤在时却在~Km之间。
目前,ZBLAN光纤由于难于降低散射损耗,只能用在~的温敏器和热图像传输,尚未广泛实用。
最近,为了利用ZBLAN进行长距离传输,正在研制的掺错光纤放大器(PDFA)。
六,塑包光纤塑包光纤(Plastic Clad Fiber)是将高纯度的石英玻璃作成纤芯,而将折射率比石英稍低的如硅胶等塑料作为包层的阶跃型光纤。
它与石英光纤相比较,具有纤芯租、数值孔径(NA)高的特点。
因此,易与发光二极管LED光源结合,损耗也较小。
所以,非常适用于局域网(LAN)和近距离通信。
七,塑料光纤这是将纤芯和包层都用塑料(聚合物)作成的光纤。
早期产品主要用于装饰和导光照明及近距离光键路的光通信中。
原料主要是有机玻璃(PMMA)、聚苯乙稀(PS)和聚碳酸酯(PC)。
损耗受到塑料固有的C-H结合结构制约,一般每km可达几十dB。
为了降低损耗正在开发应用氟索系列塑料。
由于塑料光纤(Plastic Optical fiber)的纤芯直径为1000pm,比单模石英光纤大100倍,接续简单,而且易于弯曲施工容易。
近年来,加上宽带化的进度,作为渐变型(GI)折射率的多模塑料光纤的发展受到了社会的重视。
最近,在汽车内部LAN中应用较快,未来在家庭LAN中也可能得到应用。
八,单模光纤这是指在工作波长中,只能传输一个传播模式的光纤,通常简称为单模光纤(SMF:Single ModeFiber)。
目前,在有线电视和光通信中,是应用最广泛的光纤。
由于,光纤的纤芯很细(约10pm)而且折射率呈阶跃状分布,当归一化频率V参数<时,理论上,只能形成单模传输。
另外,SMF没有多模色散,不仅传输频带较多模光纤更宽,再加上SMF的材料色散和结构色散的相加抵消,其合成特性恰好形成零色散的特性,使传输频带更加拓宽。
SMF中,因掺杂物不同与制造方式的差别有许多类型。
凹陷型包层光纤(DePr-essed Clad Fiber),其包层形成两重结构,邻近纤芯的包层,较外倒包层的折射率还低。
另外,有匹配型包层光纤,其包层折射率呈均匀分布。
九,多模光纤将光纤按工作彼长以其传播可能的模式为多个模式的光纤称作多模光纤(MMF:MUlti ModeFiber)。
纤芯直径为50pm,由于传输模式可达几百个,与SMF相比传输带宽主要受模式色散支配。
在历史上曾用于有线电视和通信系统的短距离传输。
自从出现SMF光纤后,似乎形成历史产品。
但实际上,由于MMF较SMF的芯径大且与LED 等光源结合容易,在众多LAN中更有优势。
所以,在短距离通信领域中MMF仍在重新受到重视。
MMF按折射率分布进行分类时,有:渐变(GI)型和阶跃(SI)型两种。
GI型的折射率以纤芯中心为最高,沿向包层徐徐降低。
从几何光学角度来看,在纤芯中前进的光束呈现以蛇行状传播。
由于,光的各个路径所需时间大致相同。
所以,传输容量较SI型大。
SI型MMF光纤的折射率分布,纤芯折射率的分布是相同的,但与包层的界面呈阶梯状。
由于SI型光波在光纤中的反射前进过程中,产生各个光路径的时差,致使射出光波失真,色激较大。
其结果是传输带宽变窄,目前SI型MMF应用较少。
十,色散使移光纤单模光纤的工作波长在时,模场直径约9Pm,其传输损耗约/km。
此时,零色散波长恰好在处。
石英光纤中,从原材料上看段的传输损耗最小(约/km)。
由于现在已经实用的掺铒光纤放大器(EDFA)是工作在波段的,如果在此波段也能实现零色散,就更有利于应用波段的长距离传输。
于是,巧妙地利用光纤材料中的石英材料色散与纤芯结构色散的合成抵消特性,就可使原在段的零色散,移位到段也构成零色散。
因此,被命名为色散位移光纤(DSF:DispersionShifted Fiber)。
加大结构色散的方法,主要是在纤芯的折射率分布性能进行改善。
在光通信的长距离传输中,光纤色散为零是重要的,但不是唯一的。
其它性能还有损耗小、接续容易、成缆化或工作中的特性变化小(包括弯曲、拉伸和环境变化影响)。
DSF就是在设计中,综合考虑这些因素。
十一色散平坦光纤色散移位光纤(DSF)是将单模光纤设计零色散位于波段的光纤。
而色散平坦光纤(DFF:Dispersion Flattened Fiber)却是将从到的较宽波段的色散,都能作到很低,几乎达到零色散的光纤称作DFF。
由于DFF要作到~范围的色散都减少。
就需要对光纤的折射率分布进行复杂的设计。
不过这种光纤对于波分复用(WDM)的线路却是很适宜的。
由于DFF光纤的工艺比较复杂,费用较贵。
今后随着产量的增加,价格也会降低。
十二色散补偿光纤对于采用单模光纤的干线系统,由于多数是利用波段色散为零的光纤构成的。
可是,现在损耗最小的,由于EDFA的实用化,如果能在零色散的光纤上也能令波长工作,将是非常有益的。
因为,在零色散的光纤中,波段的色散约有16ps/km/nm之多。
如果在此光纤线路中,插入一段与此色散符号相反的光纤,就可使整个光线路的色散为零。
为此目的所用的是光纤则称作色散补偿光纤(DCF:DisPersion Compe- nsation Fiber)。
DCF与标准的零色散光纤相比,纤芯直径更细,而且折射率差也较大。
DCF也是WDM光线路的重要组成部分。
十三偏派保持光纤在光纤中传播的光波,因为具有电磁波的性质,所以,除了基本的光波单一模式之外,实质上还存在着电磁场(TE、TM)分布的两个正交模式。
通常,由于光纤截面的结构是圆对称的,这两个偏振模式的传播常数相等,两束偏振光互不干涉。
但实际上,光纤不是完全地圆对称,例如有着弯曲部分,就会出现两个偏振模式之间的结合因素,在光轴上呈不规则分布。
偏振光的这种变化造成的色散,称之偏振模式色散(PMD)。
对于现在以分配图像为主的有线电视,影响尚不太大。
但对于一些未来超宽带有特殊要求的业务,如:①相干通信中采用外差检波,要求光波偏振更稳定时;②光机器等对输入输出特性要求与偏振相关时;③在制作偏振保持光耦合器和偏振器或去偏振器等时;④制作利用光干涉的光纤敏感器等,凡要求偏振波保持恒定的情况下,对光纤经过改进使偏振状态不变的光纤称作偏振保持光纤(PMF:Polarization Maintaining fiber),也有称此为固定偏振光纤的。