数字图像处理技术在识别领域的应用

合集下载

数字图像处理技术发展与应用

数字图像处理技术发展与应用

数字图像处理技术发展与应用数字图像处理技术是指利用计算机对图像进行处理、分析、存储和传输的技术。

随着计算机技术和数字信号处理技术的发展,数字图像处理技术也得到了极大的发展。

这项技术已经广泛应用于医学、军事、环境、电子商务等领域。

数字图像处理技术发展简史:数字图像处理技术的发展经历了以下几个阶段:(1)数字图像采集阶段:20世纪50年代相机的普及使得物理图像被转化为影像,此后相似设备的提升促进了数字图像采集设备的发展。

(2)数字信号处理技术阶段:数字电视和数字化显微镜、数字照相机等设备的出现,使得数字信号处理技术得到迅猛发展。

(3)计算机视觉阶段:计算机视觉利用了数字图形处理技术来分析现实世界,做出更加精准和智能的决策,减少人的参与。

数字图像处理技术应用领域:数字图像处理技术可以对图像进行增强、滤波、分割和压缩等处理。

随着技术的不断发展,数字图像处理技术的应用也越来越广泛。

(1)医学诊断领域:数字图像处理对医学影像诊断有很好的应用。

如CT,MRI影像的处理和分析都依赖于数字图像处理技术。

(2)安防领域:数字图像处理技术的视觉辨认能力可以用于安全领域的人脸识别、车牌识别等,从而提高安全检测的效率和精度。

(3)电子商务领域:数字图像处理技术可以用于产品展示、商品搜索和客户关系管理等方面,使得电子商务更加便捷和高效。

(4)游戏和虚拟现实领域:数字图像处理技术不仅用于计算机游戏的制作,还用于虚拟现实技术的开发。

数字图像处理技术未来发展方向:随着技术的不断进步,数字图像处理技术的发展将朝着更加高效和智能的方向发展。

例如,人工智能可以通过机器学习和深度学习等算法实现目标检测、分类、识别等功能,并将在数字图像处理领域得到更广泛的应用。

在未来,数字图像处理技术的发展将催生出更多新的应用领域和新的商业模式,推动数字经济的发展。

数字图像处理在智能识别中的应用:技术、原理与应用研究

数字图像处理在智能识别中的应用:技术、原理与应用研究

数字图像处理在智能识别中的应用:技术、原理与应用研究第一章:引言1.1 研究背景数字图像处理是指使用计算机对图像进行处理、分析和识别的一门技术。

随着计算机技术的发展和应用的广泛,数字图像处理在各个领域都得到了广泛的应用,尤其是在智能识别领域。

智能识别是指通过计算机对图像中的对象、特征进行自动识别和分类的技术,包括人脸识别、指纹识别、车牌识别等。

数字图像处理在智能识别中起着重要的作用,可以提高识别的准确性和效率。

1.2 研究目的本文旨在探讨数字图像处理在智能识别中的应用,介绍相关的技术、原理和应用研究,以期对智能识别的发展起到推动作用。

第二章:数字图像处理技术2.1 数字图像处理的基本概念数字图像是指由像素组成的图像,每个像素的灰度值表示了图像上的亮度或颜色信息。

数字图像处理是对图像进行数字化处理的过程,包括图像增强、滤波、分割、压缩等操作。

2.2 图像增强图像增强是指通过一系列的处理操作,改善图像的质量,提高图像的视觉效果。

常用的图像增强方法包括灰度拉伸、直方图均衡化、滤波等。

2.3 图像滤波图像滤波是指通过一系列的滤波操作,对图像进行平滑或增强的处理。

常用的图像滤波方法包括线性滤波、非线性滤波、边缘检测等。

2.4 图像分割图像分割是指将图像分成多个区域的过程,每个区域具有相似的特征。

常用的图像分割方法包括阈值分割、边缘分割、区域分割等。

2.5 图像压缩图像压缩是指将图像的数据表示方式转换为更紧凑的形式,以减少存储空间和传输带宽。

常用的图像压缩方法包括有损压缩和无损压缩。

第三章:数字图像处理在智能识别中的应用3.1 人脸识别人脸识别是指通过计算机对人脸图像进行识别和识别的技术。

数字图像处理在人脸识别中可以用于人脸检测、特征提取和特征匹配等方面。

常用的人脸识别算法包括PCA、LDA、SVM等。

3.2 指纹识别指纹识别是指通过计算机对指纹图像进行识别和验证的技术。

数字图像处理在指纹识别中可以用于指纹图像增强、特征提取和特征匹配等方面。

数字图像处理技术的应用

数字图像处理技术的应用

数字图像处理技术的应用随着计算机技术的不断发展,我们的生活中越来越多地出现数字图像。

随着这种图像的增多,数字图像处理技术也变得更加重要。

数字图像处理技术是一种将数字图像转换为更好的形式的技术。

它可以从图像中提取智能信息,以便在许多领域中使用和分析。

数字图像处理技术应用广泛,在医学、工业、科学研究、安全及视频监控、娱乐等领域中都起到了重要的作用。

在医学领域中,数字图像处理技术被应用于各种形式的医学图像。

例如,医生可以使用数字图像处理技术来处理X光图像、CT扫描图像和MRI图像。

这些技术允许医生更好地识别疾病和损伤,从而更准确地进行诊断和治疗。

此外,医生还可以使用数字图像处理技术进行手术规划和定位,以确保手术成功。

在工业方面,数字图像处理技术可以用于各种不同的应用。

例如,它可以用于检测制造过程中的缺陷和损伤,以便及时处理。

它也可以用于质量控制,以确保制造的产品达到标准。

在科学研究方面,数字图像处理技术可以帮助科学家对实验数据进行分析。

例如,科学家可以使用数字图像处理技术来分析显微镜图像,以了解细胞结构和变化。

此外,数字图像处理技术还可以用于研究气候变化和地球监测等领域。

在安全及视频监控方面,数字图像处理技术可以帮助人们更好地监控和保护他们的财产和安全。

例如,数字图像处理技术可以用于监测银行ATM机的使用,以确保安全和防止欺诈。

此外,在视频监控领域,数字图像处理技术可以用于检测不寻常的活动和行为,以便识别潜在的犯罪行为。

在娱乐方面,电影制作中数字图像处理技术已经变得越来越普遍。

数字图像处理技术可以用于创造特殊效果和增强电影的视觉吸引力。

此外,在电子游戏中,数字图像处理技术可以用于创造更逼真的游戏世界和角色。

总之,数字图像处理技术在各个领域中都扮演着重要角色。

它不仅可以提高工作效率和准确性,还可以帮助实现更安全和可靠的生活。

随着这种技术的不断发展,我们可以期待更广泛的应用和更高效的结果。

数字图像处理在指纹识别中的应用本科毕业设计

数字图像处理在指纹识别中的应用本科毕业设计

数字图像处理在指纹识别中的应用摘要指纹具有唯一性和稳定性,因此被人们用来当作鉴别个人身份的主要依据。

随着光学技术、化工技术、纳米技术等多种学科的快速发展.指纹显现和提取技术取得了较快的控展。

但有不少显现或提取得到的指纹效果较差,不易分辨指纹纹线与客体背景主间的差异或指纹纹线成像模糊等,主要表现为指纹纹统与客体背景的反差较弱。

指纹纹线受客体背景的干扰、两枚或多枚指纹相互重叠干扰、弯曲表面客体上的指数威像问题等。

但由于存在指纹图像的噪声和皮肤弹性等因素影响,指纹识别一直存在识别率不高、运算速度较慢的问题。

这时可利用数字图像处理技术对不易辨识的指纹进行增强处理.便于后续的指纹识别鉴定。

本文总结了基于小波变换的数字图像处理在指纹图像增强、指纹图像二值化、指纹图像压缩编码、指纹图像细化、指纹图像特征提取等方向的各种算法及技术。

另外本文还给出了基于matlab软件的指纹自动识别系统实现。

在指纹图像的预处理中,首先进行分块归一化,为后续处理提供统一的规格图像;在求方向图中,用沿着某个方向的灰度方差代替Metre方法中的灰度变化,相当于在求点方向图之前先进行了一次均滤波操作,这样得到的方向图更有鲁棒性;在二值化中,阀值的选取引入最大熵的概念,使图像具有抗噪性。

但对于部分噪声严重的指纹图像仍然无法识别,另外,算法的运行效率还有待提高。

在指纹图像的降噪中:应用中值滤波与小波包变换相结合去除图像随机噪。

关键词:数字图像,指纹处理,小波变换,matlab,指纹识别系统研究注:本设计(论文)题目来源于教师的国家级(或部级、省级、厅级、市级、校级、企业)科研项目,项目编号为:。

AbstractFingerprint is unique and stability, and therefore are used as main basis of personal identity. With the rapid development of optical technology, chemical technology, nanotechnology and other disciplines. Fingerprint and extraction technology has made rapid development. But many poor fingerprint effect appeared or extract, is not easy to distinguish the difference between background and object of the main ridge or fingerprint image blur, mainly for the contrast fingerprint system and object background of the weak. Interference, fingerprint by object background two or more fingerprints overlap interference, index Wei curved surface objects like problem etc.. But because of the existence of the fingerprint image noise and the elasticity of the skin and other factors, the fingerprint recognition has been the recognition rate is not high, the low speed problem. Then the difficult identification of fingerprint enhancement processing by using digital image processing technique for fingerprint identification later. This paper summarizes the wavelet transform of digital image processing in the fingerprint images enhancement, two values, fingerprint image compression coding, the fingerprint image thinning, fingerprint image feature extraction algorithm based on direction and technology. In addition the system of automatic fingerprint identification system based on MATLAB software. In the fingerprint image preprocessing, the first block normalization, image unified specifications for the subsequent processing; in the pattern of change, gray gray variance in one direction instead of the Metre method, the equivalent of before asking the direction of point to a mean filtering operation, robustness pattern more so obtained; in the two value, threshold selection by introducing the concept of maximum entropy, the image with noise immunity. But for the fingerprint image noise serious still not recognized, in addition, the efficiency of the algorithm is yet to be improved. In the noise of fingerprint image: application of median filtering and wavelet packet transform combined with random noise removal of images.KEY WORDS:digital image, fingerprint processing, wavelet transform, MATLAB, fingerprint recognition system目录本科毕业设计(论文) ......................................................................... 错误!未定义书签。

数字图像处理与模式识别

数字图像处理与模式识别

数字图像处理与模式识别数字图像处理和模式识别是近年来快速发展的技术领域。

随着计算机的普及,数字图像处理和模式识别技术正在越来越广泛地应用于生产、医疗、安全、交通等领域。

本文将介绍数字图像处理和模式识别技术,以及它们的应用。

数字图像处理数字图像处理是对从数字相机、扫描仪等设备中得到的数字图像进行处理的技术。

数字图像处理可以用于增强图像的质量、改变图像的颜色、减少图像噪声、提取图像特征等。

数字图像处理的主要过程包括图像预处理、特征提取和分类。

图像预处理是对图像进行预处理的过程,目的是去除噪声、增强对比度、增加分辨率等。

常用的图像预处理方法包括平滑、边缘检测、二值化等。

平滑技术用于去除图像中的噪声。

边缘检测技术用于提取图像中的边缘信息。

二值化是将图像转换为黑白两色,以便进行下一步的特征提取。

特征提取是指从图像中提取与目标有关的特征。

特征提取通常通过对彩色图像中的像素值进行转换来实现。

在图像处理中,特征可以是形状、颜色、纹理、边缘等。

通过特征提取,可以将目标从图像中分离出来,以便进行下一步的分类。

分类是将图像分为不同类别的过程,目的是区分不同对象,并进行识别和分析。

在图像分类中,常用的方法包括决策树、支持向量机、神经网络等。

决策树是一种通过选择特征来分割数据的方法。

支持向量机是一种通过线性或非线性分类器来分配数据的方法。

神经网络是一种通过训练数据集来识别不同类别的方法。

数字图像处理的应用场景包括生产、医疗、安全、交通等各个方面。

例如,在生产领域中,数字图像处理可以用于检测机器的运行状态,优化流程和提高生产效率。

在医疗领域中,数字图像处理可以用于对医学图像进行处理和分析,以便进行疾病的诊断和治疗。

在安全领域中,数字图像处理可以用于实时监测和识别危险行为和违规行为。

在交通领域中,数字图像处理可以用于车辆和行人的识别,以提高道路安全性。

模式识别模式识别是一种人工智能技术,旨在建立模型,使计算机能够自动从输入数据中学习,从而识别或分类到新的数据。

数字图像处理在人脸识别中的应用

数字图像处理在人脸识别中的应用

数字图像处理在人脸识别中的应用随着人们对科技的追求以及生活水平的提高,人脸识别技术已经越来越普及。

无论是在社会领域还是在个人生活方面,人脸识别技术在保障人民安全、提高用户体验等方面有非常广泛的应用。

而数字图像处理技术正是构建人脸识别系统的核心技术,因此深入研究数字图像处理在人脸识别中的应用具有重要的意义。

数字图像处理技术是指通过计算机对数字图像进行操作和处理的技术。

这种技术通常包含了图像采集、预处理、特征提取以及分类识别等几个步骤。

而当它与人脸识别技术结合时,数字图像处理技术将起到至关重要的作用。

在数字图像处理技术中,最为重要的一步是特征提取。

特征提取的目的是通过不同方式提取出图像中的特征信息,以便于人脸识别算法能够准确地识别不同人脸的特征。

数字图像处理技术中较为常见的人脸特征提取方式包括基于颜色、形态和纹理等几个方面。

其中,基于颜色的人脸识别方式是基于人脸的颜色特征进行识别,比如通过提取人脸区域的颜色直方图,以提高人脸识别的准确度。

除了基于颜色的人脸识别方式之外,基于形态和纹理的人脸识别方式也很重要。

基于形态的人脸识别方式是通过提取人脸的特征形态信息,如轮廓、脸型、面积等来进行识别。

而基于纹理的人脸识别方式是基于人脸纹理特征进行识别,比如通过提取人脸的纹理特征来提高人脸识别的准确率。

这些特征的提取和分类,离不开数字图像处理的强大支持。

在实际的人脸识别应用中,数字图像处理技术的作用更凸显。

人脸检测是人脸识别系统的第一步。

通过技术手段提取图像中有关的人脸数据,挑选其中的特定点,限定面部的形状,并进行相关的计算处理。

这对于后续的人脸识别来说,非常重要。

其次,从确定的关键点坐标中确定人脸位置,以更精细的方式分割出该部分人脸。

接下来,对人脸图像进行预处理,移除噪声和图像背景等无关信息,提高图像质量的同时保护人脸的完整性和特征性。

当人脸图像预处理后,我们需要从中提取有用的特征信息。

人脸识别应用中,数字图像处理技术最为重要的一部分就是特征提取。

数字图像处理技术在医疗图像识别中的应用

数字图像处理技术在医疗图像识别中的应用

数字图像处理技术在医疗图像识别中的应用在医疗领域,图像识别技术的发展已经成为了一种不可或缺的技术手段。

数字图像处理技术的应用,可以帮助有效地诊断疾病,降低医疗事故率,提高医疗水平。

因此,数字图像处理技术在医疗图像识别中的应用,已经成为了当前医疗信息化领域的研究热点之一。

数字图像处理技术是一种数字信号处理技术,它将图像信号数字化后,通过算法处理,得出对图像的分析和处理结果。

在医疗图像识别中,数字图像处理技术可以帮助医生准确地分析病情,高效地诊断和治疗疾病。

以下是数字图像处理技术在医疗图像识别中的应用。

一、数字图像处理技术在肝癌检测中的应用数字图像处理技术在肝癌检测中的应用非常广泛。

肝脏是人体重要的代谢器官,而肝癌是一种生命危险很高的疾病。

传统的肝癌检测技术使用超声波或者CT扫描等影像技术,但是这些方法仅仅只是对肿瘤的形态进行简单的描述,无法有效地分析病灶的特征,难以准确地判断肝癌的类型和位置。

数字图像处理技术可以从影像中提取不同的图像特征,包括颜色、形状、纹理等等,通过计算不同的特征值,提高了对影像的描述能力。

医生可以通过数字图像处理技术,将肿瘤的特征进行分析,快速地进行检测。

二、数字图像处理技术在乳腺癌检测中的应用数字图像处理技术在乳腺癌检测中的应用也非常广泛。

乳腺癌是女性最常见的癌症之一,对于早期的发现和治疗是非常重要的。

传统的乳腺癌检测方法,主要是通过人工检查和X光影像技术来发现。

但是这些方法存在误诊率高、不可重复性等问题,无法满足临床诊断需求。

数字图像处理技术可以应用到乳腺癌的各个阶段,特别是早期识别和分类。

数字图像处理技术可以对乳腺影像进行预处理,如背景去除、分块等操作,然后提取乳腺影像的特征,包括颜色、纹理、形状等,通过计算特征值,构建分类器模型,以对乳腺癌进行区分、诊断。

三、数字图像处理技术在眼科诊断中的应用眼科诊断是一种高度技术密集型的医疗领域,数字图像处理技术在眼科诊断中也有广泛的应用。

数字图像处理技术在图像识别中的实际应用

数字图像处理技术在图像识别中的实际应用

数字图像处理技术在图像识别中的实际应用数字图像处理技术是一种将数字图像进行处理和分析的技术手段,广泛应用于图像识别领域。

图像识别是指通过计算机对图像中的目标进行自动识别和分类的过程。

在现代社会中,图像识别技术在人脸识别、车牌识别、图像搜索、安防监控等领域起到了重要作用。

本文将探讨数字图像处理技术在图像识别中的实际应用。

数字图像处理技术在图像识别中的一个重要应用领域是人脸识别。

人脸识别技术旨在通过计算机系统自动识别和鉴定图像或视频中的人脸。

在人脸识别技术中,数字图像处理技术可以应用于人脸图像的预处理、特征提取和匹配等过程。

在预处理阶段,数字图像处理技术可以用于去除图像中的噪声、调整图像的亮度和对比度,以及对图像进行图像增强,从而提高人脸识别的准确性。

在特征提取阶段,数字图像处理技术可以提取人脸图像中的特征点和特征描述符,例如眼睛、鼻子和嘴巴等特征,以便于后续的人脸匹配和识别。

在匹配阶段,数字图像处理技术可以将预处理和特征提取的结果与数据库中的人脸图像进行比对,以判断是否匹配。

通过数字图像处理技术的应用,人脸识别技术在安防领域、人脸支付以及社交娱乐等方面得到了广泛应用。

另外一个重要的实际应用领域是图像搜索。

在互联网时代,图像搜索技术成为了一项重要的研究方向。

图像搜索技术旨在通过对图像进行分析和比对,找到与其相似或相关的其他图像。

数字图像处理技术在图像搜索中发挥着重要的作用。

首先,数字图像处理技术可以对图像进行特征提取和描述,例如提取图像的颜色、纹理和形状等特征,从而实现对图像的内容理解和比对。

其次,数字图像处理技术可以建立图像特征的数据库,对图像进行索引和分类,从而实现高效的图像搜索。

通过数字图像处理技术的应用,图像搜索技术在电商平台、社交媒体、图片存储和检索等领域得到了广泛应用。

此外,数字图像处理技术在车牌识别领域也发挥着重要的作用。

车牌识别技术旨在通过对图像中的车牌进行自动识别和分类。

数字图像处理技术可以用于车牌图像的预处理、字符分割和字符识别等过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理技术在识别领域的应用
1、定义
数字图像处理是利用计算机对图像进行处理,常用的方法技术有去除噪声、复原、增强、分割、提取特征等。

数字图像发展初期,主要应用于提高图片质量,第一次应用该技术是对伦敦和纽约之间海底电缆发送的图片进行改善。

图像处理的应用领域涉及到人类生活的方方面面。

2、数字图像处理的优点
数字图像处理应用于人类依靠图像获取外界的信息经过处理,具有如下优点:①重现性能好,数字图像处理在进行传输、存储、复制等处理从而用来服务于生活。

②数字化处理精度高。

③数字信号处理技术适用面宽。

④数字图像处理的灵活性高。

3、主要研究内容
数字图像处理技术是利用计算机图像处理系统对图像进行输入、加工和输出,主要研究的内容包括以下几项:图像变换;图像增强和复原;图像编码压缩;图像分割。

因为数字图像处理技术应用太过广泛,我在这里仅探究它在识别领域的应用,从这里认识数字图像处理技术的方方面面。

4、数字图像处理在识别领域的应用:
(一)数字图像处理在指纹识别中的应用
传统的利用密码、证件作为身份识别的方式具有易遗忘、易破解、易丢失、易伪造等特点,已不再符合现代数字社会的需求。

指纹,作为人体独一无二的生理特征,虽然只是人体皮肤的一小部分,但是它的纹理复杂度可以提供用于识别的足够特征,具有极高的安全性,并且指纹还具有易获取、无侵犯性、唯一性和不变性等优点,使其成为生物识别技术中的焦点。

为了弥补指纹图像的质量缺陷,保证指纹后处理算法对指纹图像具有足够的鲁棒性,图像增强是十分必要的,采用数字图像处理则可以实现图像的增强。

指纹图像增强目的是为了消除噪声,增强脊线和谷线的对比度,将断裂的脊线和谷线连接起来,消除由于噪声、变形等带来的粘连及由于油污等产生的毛刺等,改善图像质量,保证特征信息提取的准确性和可靠性。

指纹图像的增强由图像规格化、图像再处理、滤波几个部分组成。

(二)数字图像处理在人脸识别中的应用
人脸识别的发展大致经过了三个阶段:非自动识别阶段、人机交互阶段、自动识别阶段。

人脸识别是计算机视觉,模式识别中的一个重要内容,人脸识别大概可以分为三步:人脸器官检测定位,特征提取和分类识别。

人脸器官检测定位是人脸识别系统的。

第一步,也是整个人脸识别系统中的一个关键,在研究人脸检测的问题中,我们碰到的一个非常棘手的问题是如如何从一幅图像中快速的检测出人脸。

目前国内外研究人脸识别的方法比较多,但根据人脸表征方式的不同,采用数字图像处理技术,总体上可以分为以下三种基于几何特征的识别方法,基于代数特征的识别方法和基于连接机制的识别方法。

(1)基于几何特征的人脸正面图像识别方法,将人脸用一组几何特征矢量表示,几何特征矢量是以人脸器官的形状和几何关系为基础的特征矢量,用模式识别中的层次聚类的思想设计分类器以达到识别目标。

由于这种方法对脸部朝向的改变非常敏感,要求有一定的弹性消除时间跨度和光照的影响。

基于几何特征的方法内存要求小,识别速度要比基于模板的方法高,它的缺点是这些特征的准确提取是较难实现的,到目前为止,这种方法在实践中尚没有成功的应用。

(2)基于代数特征的人脸正面图像识别方法,将人脸用代数特征矢量来表示,代数特征是通过对图像灰度进行各种代数变换和矩阵分解提取出来的,这种方法从整体上来捕捉和描述人脸的特征,所用到的主要是一些标准的数理统计和技巧,运算较复杂。

(3)基于连接机制的人脸正面图像识别方法,将人脸直接用灰度图(二维矩阵)表征,利用神经网络的学习能力及分类能力,这种方法的优点在于保存了人脸图像的材质信息和形状,同时避免了较为复杂的特征提取工作,但是普遍存在的问题是识别率低,过程复杂。

三种人脸识别方法都运用到
(三)数字图像处理在车牌识别系统中的应用
针对交通管理系统的信息化、智能化发展趋势,通过对车牌特征和定位技术的探索,提出了汽车牌照字符识别系统。

系统采用Radon变换对车牌进行倾斜校正,并运用投影直方图进行分析,实现了车牌字符的分割,最后简述了字符识别原理和模板匹配在字符识别中的应用方法。

由实验结果可知,系统能准确实现车牌的定位、校正、分割和识别,具有良好的性能。

通常,车牌识别过程分为图像预处理、车牌定位、车牌校正、车牌分割和车牌识别五个部分。

①图像预处理:在整个车牌识别系统中,由于采集进来的图像为真彩图,再加上实际采集环境的影响以及采集硬件等原因,图像质量并不高,其背景和噪声会影响字符的正确分割和识别,所以在进行车牌分割和识别处理之前,需要先对车牌图像进行图像预处理操作。

②车牌定位:首先对车牌的二值图片进行形态学滤波,使车牌区域形成一个连通区域,然后根据车牌的先验知识对所得到的连通区域进行筛选,获取车牌区域的具体位置,完成从图片中提取车牌的任务。

③车牌校正:由于捕捉图片的摄像头与车身的角度问题,得到的车牌图片不是水平的。

为了顺利进行后续的分割和识别,必须对车牌进行角度校正。

在此,
使用了Radon变换来对车牌进行校正。

④车牌分割:首先对车牌进行水平投影,去除水平边框;再对车牌进行垂直投影。

通过对车牌进行投影分析可知,与最大值峰中心对应的为车牌中第二个字符和第三个字符的间隔,与第二大峰中心距离对应的即为车牌字符的宽度,并以此为依据对车牌进行分割。

⑤字符识别:本文采用模板匹配方法来对车牌进行识别。

识别过程中,首先建立标准字库,再将分割所得到的字符进行归一化,将归一化处理后的字符与标准字库里的字符逐一比较,最后把误差最小的字符作为结果显示出来。

最后,通过综合采用图像处理技术,实现了车牌的定位、倾斜校正、字符分割和识别功能,实现了用数字图像处理技术识别车牌方法是准确、可行的。

5、发展趋势
图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。

随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。

其技术主要在一下几个领域发展:
航天和航空技术方面。

另一方面的应用是在飞机遥感和卫星遥感技术中。

生物医学工程方面。

如染色体分析,癌细胞识别等。

通信工程方面。

主要发展方向是声音、文字、图像和数据结合的多媒体通信。

军事公安方面。

如导弹的精确制导,各种侦查照片的判读等。

文化艺术方面。

如动画的制作,电子图像游戏等。

6、结语
总而言之,利用数字图像处理技术,在模式识别领域有各种应用,如上面提到的指纹识别,人脸识别,车牌识别等。

当然,还有虹膜识别,指针识别,焊缝识别,光学相关识别等等领域,都有广泛的应用。

日常生活中的应用,伴随着各种科技产品进入普通家庭,数据图像处理技术成果也出现在我们周围,如指纹锁、电脑脸部识别、防伪码、条形码、水印等很多地方,这不仅提高了我们的生活质量,也提高了自身财产安全。

数字图像处理识别技术将在未来有非常广阔的发展前景。

通信学院电子五班余佳洁
学号:20104646
10/16/2013
参考文献:
1、《图像处理在人脸检测中的应用》安徽理工大学毕业设计
2、陆福宏.车牌识别技术在智能交通系统中的应用[J].中国科技博览,2010(12):302.
3、《数字图像处理的研究与应用》塔里木大学信息工程学院,新疆阿拉尔843300
4、《数字图像处理技术在图像识别上的应用》徐军孙庭南京广电网络有限责任公司。

相关文档
最新文档