稳恒磁场习题答案

合集下载

大学物理稳恒磁场习题及答案 (1)

大学物理稳恒磁场习题及答案 (1)

衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dI j n dS ⊥=v v,单位是:安培每平方米(A/m 2) 。

2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量? = 0 .若通过S 面上某面元d Sv的元磁通为d ?,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d ?',则d ?∶d ?'= 1:2 。

3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。

4、一磁场的磁感强度为k c j b i a B ϖϖϖϖ++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb 。

5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :d B l ⋅⎰v v Ñ=____μ0I __;对环路b :d B l ⋅⎰vv Ñ=___0____; 对环路c :d B l ⋅⎰v v Ñ =__2μ0I __。

6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。

二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B v垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2?r 2BB.??r 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. B. C. D.( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )4、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为A.R 140πμ B. R120πμ C .0 D .R140μ ( C )5、如图4,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度??绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度??绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 =21B 2 D .B 1 = B 2 /4 ( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。

习题第06章(稳恒磁场)-参考答案.

习题第06章(稳恒磁场)-参考答案.

第六章 稳恒磁场思考题6-1 为什么不能把磁场作用于运动电荷的力的方向,定义为磁感强度的方向?答:对于给定的电流分布来说,它所激发的磁场分布是一定的,场中任一点的B 有确定的方向和确定的大小,与该点有无运动电荷通过无关。

而运动电荷在给定的磁场中某点 P 所受的磁力F ,无论就大小或方向而言,都与运动电荷有关。

当电荷以速度v 沿不同方向通过P 点时,v 的大小一般不等,方向一般说也要改变。

可见,如果用v 的方向来定义B 的方向,则B 的方向不确定,所以我们不能把作用于运动电荷的磁力方向定义为磁感应强度B 的方向。

6-2 从毕奥-萨伐尔定律能导出无限长直电流的磁场公式aIB πμ2=。

当考察点无限接近导线(0→a )时,则∞→B ,这是没有物理意义的,如何解释?答:毕奥-萨伐尔定律是关于部分电流(电流元)产生部分电场(dB )的公式,在考察点无限接近导线(0→a )时,电流元的假设不再成立了,所以也不能应用由毕奥-萨伐尔定律推导得到的无限长直电流的磁场公式aIB πμ2=。

6-3 试比较点电荷的电场强度公式与毕奥-萨伐尔定律的类似与差别。

根据这两个公式加上场叠加原理就能解决任意的静电场和磁场的空间分布。

从这里,你能否体会到物理学中解决某些问题的基本思想与方法?答:库仑场强公式0204dqr dE rπε=,毕奥一萨伐定律0024Idl r dB r μπ⨯= 类似之处:(1)都是元场源产生场的公式。

一个是电荷元(或点电荷)的场强公式,一个是电流元的磁感应强度的公式。

(2)dE 和dB 大小都是与场源到场点的距离平方成反比。

(3)都是计算E 和B 的基本公式,与场强叠加原理联合使用,原则上可以求解任意分布的电荷的静电场与任意形状的稳恒电流的磁场。

不同之处: (1)库仑场强公式是直接从实验总结出来的。

毕奥一萨伐尔定律是从概括闭合电流磁场的实验数据间接得到的。

(2)电荷元的电场强度dE 的方向与r 方向一致或相反,而电流元的磁感应强度dB 的方向既不是Idl 方向,也不是r 的方向,而是垂直于dl 与r 组成的平面,由右手螺旋法则确定。

第十五章 稳恒磁场自测题答案

第十五章 稳恒磁场自测题答案

第十五章 稳恒磁场一、选择题答案: 1-10 DABAB CCBBD 11-20DCABB BBDAB 二、填空题答案 1. 0 2. 3a x = 3.BIR2 4. 2104.2-⨯ 5. 0 6. I 02μ 7. 2:1 8. απcos 2B R 9.不变10. < 11.RI 20μ 12. qB mv 13. 2:1 14. = 15 k13108.0-⨯ 16 4109-⨯ 17无源有旋18. 1.4A 19. 2 20. I a 2 B/2三、计算题1. 如右图,在一平面上,有一载流导线通有恒定电流I ,电流从左边无穷远流来,流过半径为R 的半圆后,又沿切线方向流向无穷远,求半圆圆心O 处的磁感应强度的大小和方向。

解:如右图,将电流分为ab 、bc 、cd 三段,其中,a 、d 均在无穷远。

各段在O 点产生的磁感应强度分别为:ab 段:B 1=0 (1分) bc 段:大小:RI B 402μ=(2分)方向:垂直纸面向里 (1分) cd 段:大小:RI B πμ403=(2分)方向:垂直纸面向里 (1分) 由磁场叠加原理,得总磁感应强度)1(40321+=++=ππμRI B B B B (2分)方向:垂直纸面向里 (1分)2. 一载有电流I 的长导线弯折成如图所示的形状,CD 为1/4 圆弧,半径为R ,圆心O 在AC 、EF 的延长线上。

求O 点处的磁感应强度。

解:各段电流在O 点产生的磁感应强度分别为:AC 段:B 1=0 (1分) CD 段:大小:RI B 802μ=(2分)方向:垂直纸面向外 (1分) DE 段:大小:RI RI B πμπμ2)135cos 45(cos 224003=-⋅=(2分)方向:垂直纸面向外 (1分) EF 段:B 4=0 (1分) 由磁场叠加原理,得总磁感应强度RI RI B B B B B πμμ28004321+=+++= (1分)方向:垂直纸面向外 (1分)3. 如右图所示,一匝边长为a 的正方形线圈与一无限长直导线共面,置于真空中。

稳恒电流和稳恒磁场习题解答

稳恒电流和稳恒磁场习题解答

第十一章 稳恒电流和稳恒磁场一 选择题1. 两根截面大小相同的直铁丝和直铜丝串联后接入一直流电路,铁丝和铜丝内的电流密度和电场强度分别为J 1,E 1和J 2,E 2,则:( )A. J 1=J 2,E 1=E 2B. J 1>J 2,E 1=E 2C. J 1=J 2,E 1<E 2D. J 1=J 2,E 1>E 2解:直铁丝和直铜丝串联,所以两者电流强度相等21I I =,由⎰⎰⋅=S J d I ,两者截面积相等,则21J J =,因为E J γ=,又铜铁γγ<,则E 1>E 2所以选(D )2. 如图所示的电路中,R L 为可变电阻,当R L为何值时R L 将有最大功率消耗:( )A. 18ΩB. 6ΩC. 4ΩD. 12Ω 解:LLR R R +=1212ab ,LLR R R R U 3122006ab ab ab+=+⋅=∴ε22ab 31240000)R (R R U P L L L L +==,求0d d =LLR P ,可得当Ω=4L R 时将有最大功率消耗。

所以选(C )3. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感应强度B 的大小为( )A.l I μπ420 B. lIμπ20L选择题2图选择题3图C .lIμπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应强度由)cos (cos π4210θθμ-=dIB ,可得 lI lIB BC π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里 lI lIB CD π82)2πcos 4π(cosπ400μμ=-=,方向垂直纸面向里 合磁感应强度 lIB B B CD BC π420μ=+= 所以选(A )4. 如图所示,有两根载有相同电流的无限长直导线,分别通过x 1=1、x 2=3的点,且平行于y 轴,则磁感应强度B 等于零的地方是:( )A. x =2的直线上B. 在x >2的区域C. 在x <1的区域D. 不在x 、y 平面上 解:本题选(A )5. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大( )A. Ⅰ区域B. Ⅱ区域 C .Ⅲ区域 D .Ⅳ区域 E .最大不止一个选择题4图Ⅰ Ⅱ Ⅲ Ⅳ选择题5图解:本题选(B )6. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知:( )A. ∮L B d l =0,且环路上任意一点B =0B. ∮L B d l =0,且环路上任意一点B ≠0C. ∮L B d l ≠0,且环路上任意一点B ≠0D. ∮L B d l ≠0,且环路上任意一点B =常量 解:本题选(B )7. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流,设圆柱体内(r <R )的磁感应强度为B i ,圆柱体外(r >R )的磁感应强度为B e ,则有:( )A. B t 、B e 均与r 成正比B. B i 、B e 均与r 成反比C. B i 与r 成反比,B e 与r 成正比D. B i 与r 成正比,B e 与r 成反比 解:导体横截面上的电流密度2πRI J =,以圆柱体轴线为圆心,半径为r的同心圆作为安培环路,当r <R ,20ππ2r J r B i ⋅=⋅μ,20π2RIrB i μ=r <R ,I r B e ⋅=⋅0π2μ, rIB e π20μ=所以选(D )8. 有三个质量相同的质点a 、b 、c ,带有等量的正电荷,它们从相同的高度自由下落,在下落过程中带电质点b 、c 分别进入如图所示的匀强电场与匀强磁B× ×× ×Eabc选择题8图选择题6图I场中,设它们落到同一水平面的动能分别为E a 、E b 、E c ,则( )A. E a <E b =E cB. E a =E b =E cC. E b >E a =E cD. E b >E c >E a解:由于洛伦兹力不做功,当它们落到同一水平面上时,对a 、c 只有重力做功, 则E a =E c ,在此过程中,对b 不仅有重力做功,电场力也要做正功,所以E b >E a =E c所以选(C )9. 图为四个带电粒子在O 点沿相同方向垂直于磁力线射入均匀磁场后的偏转轨迹的照片,磁场方向垂直纸面向外,四个粒子的质量相等,电量大小也相等,则其中动能最大的带负电的粒子的轨迹是:( )A. OaB. ObC. Oc D . Od解:根据B F ⨯=v q ,从图示位置出发,带负电粒子要向下偏转,所以只有Oc 、Od 满足条件,又带电粒子偏转半径Bq m R v=,22k 22qB m E R =∴,质量相同、带电量也相等的粒子,动能大的偏转半径大,所以选Oc 轨迹所以选(C )10. 如图,一矩形样品,放在一均匀磁场中,当样品中的电流I 沿X 轴正向流过时,实验测得样品A 、A两侧的电势差V A V A >0,设此样品的载流子带负电荷,选择题9图cdbaBO• 选择题10图IYOA’ A Z则磁场方向为:( )A . 沿X 轴正方向B .沿X 轴负方向C .沿Z 轴正方向D .沿Z 轴负方向 解:本题选(C )11. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将:( )A. 绕I 2旋转B. 向左运动C. 向右运动D. 向上运动E. 不动解:圆形电流左半圆和右半圆受到长直电流安培力的方向均向右,所以圆形电流将向右运动所以选(C )二 填空题1. 成直角的无限长直导线,流有电流I =10A ,在直角决定的平面内,距两段导线的距离都是a =20cm 处的磁感应强度B = 。

物理学第3版习题解答_第6章稳恒磁场

物理学第3版习题解答_第6章稳恒磁场

I 2 dr
FBC 方向垂直 BC 向上,大小
FBc
d
0 I1 0 I1 I 2 d a ln 2r 2 d
d a
I 2 dl
0 I1 2r

dl FBC
d a
dr cos 45

a
0 I 2 I1dr II d a 0 1 2 ln 2r cos 45 d 2
B dl 8
a


0

ba
B dl 8 0
B dl 0
c


(1)在各条闭合曲线上,各点 B 的大小不相等. (2)在闭合曲线 C 上各点 B 不为零.只是 B 的环路积分为零而非每点 B 为零




图 6-25 思考题
6-4 图
1
6-5 安培定律 dF Idl B 有任意角度?
线,试指出哪一条是表示顺磁质?哪一条是表示抗磁质?哪一条是表示铁磁质? 答: 曲线Ⅱ是顺磁质,曲线Ⅲ是抗磁质,曲线Ⅰ是铁磁质.
图 6-27
思考题-6-8
2
习题
6-1 如图 6-28 所示的正方形线圈 ABCD,每边长为 a,通有电流 I.求正方形中心 O 处 的磁感应强度。 I A D 解 正方形每一边到 O 点的距离都是 a/2,在 O 点产生的磁场 大小相等、方向相同.以 AD 边为例,利用直线电流的磁场公式:
I1 电阻R2 . I 2 பைடு நூலகம்阻R1 2
I 1 产生 B1 方向 纸面向外
B1
0 I 1 (2 ) , 2R 2
I 2 产生 B2 方向 纸面向里

《大学物理学》习题解答(第13章 稳恒磁场)(1)

《大学物理学》习题解答(第13章 稳恒磁场)(1)
第 13 章 稳恒磁场
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R

(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,

第7章 稳恒磁场习题解答

第7章 稳恒磁场习题解答

第7章 稳恒磁场7-1 如图,一个处在真空中的弓形平面载流线圈acba ,acb 为半径cm 2=R 的圆弧,ab 为圆弧对应的弦,圆心角090aob ∠=,A 40=I ,试求圆心O 点的磁感应强度的大小和方向。

解 由例7-1 线段ba 的磁感应强度 o o 40140(cos45-cos135) =410T4π0.02cos45B μ-=⨯⨯︒方向垂直纸面向外。

由例7-2 圆弧acb 的磁感应强度4002π1402 3.1410T 2π2420.02I μB R μ-==⨯=⨯方向垂直纸面向内。

4120.8610TB B B -=-=⨯方向垂直纸面向外。

7-2 将载流长直导线弯成如图所示的形状,求圆心O 点处磁感应强度。

解 如图,将导线分成1(左侧导线)、2(半圆导线)、3(右侧导线)三部分,设各部分在O 点处产生的磁感应强度分别为1B 、2B 、3B 。

根据叠加原理可知,O 点处磁感应强度321B B B B++=。

01=B024I B Rμ=,方向垂直于纸面向里034πI B Rμ=,方向垂直于纸面向里O 点处磁感应强度大小为习题7-1图0O 23(1π)4πIB B B Rμ=+=+ ,方向垂直于纸面向里。

7-3 一圆形载流导线圆心处的磁感应强度为1B ,若保持导线中的电流强度不变,而将导线变成正方形,此时回路中心处的磁感应强度为2B ,试求21:B B解 设导线长度为l ,为圆环时, 2πl R = 001π2I I B R l μμ==为正方形时,边长为4l,由例7-100024(cos 45cos135)4π8IB lμ=⨯-=⨯212 :πB B =7-4 如图所示,一宽为a 的薄长金属板,均匀地分布电流I ,试求在薄板所在平面、距板的一边为a 的点P 处的磁感应强度。

解 取解用图示电流元,其宽度为d r ,距板下边缘距离为r ,其在P 点处激发的磁感应强度大小为00d d d 2π22π(2)II r B (a r)a r aμμ==--,方向垂直于纸面向外。

稳恒磁场习题(包含答案)

稳恒磁场习题(包含答案)

练习八磁感应强度毕奥—萨伐尔定律(黄色阴影表示答案) 一、选择题如图所示,边长为l的正方形线圈中通有电流I,则此线圈在: AlIπμ220.(C)lIπμ2(D) 以上均不对.电流I由长直导线1沿对角线AC方向经A点流入一电阻均匀分布的正方形导线框,再由D点沿对角线BD方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O点产生的磁感强度分别用B1、B2和B3表示,则O点磁感强度的大小为:A(A) B = 0. 因为B1 = B2 = B3 = 0 .(B) B = 0. 因为虽然B1 0, B2 0, B1+B2 = 0, B3=0(C) B 0. 因为虽然B3 = 0, 但B1+B2 0(D) B0. 因为虽然B1+B2 = 0, 但B3 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I,这三条导线在正三角形中心O点产生的磁感强度为:B(D) B=30I/(3a) . .如图所示,无限长直导线在P处弯成半径为R的圆,当通以电流I时,则在圆心O 点的磁感强度大小等于:C(A)RIπμ20.(B)Iμ.(D) )11(4πμ+RI.二、填空题如图所示,在真空中,电流由长直导线1沿切向经a点流入一电阻均匀分布的圆环,再由b点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I,圆环半径为R,aob=180.则圆心O点处的磁感强度的大小B = .0图图图图图I练习九毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量n与B的夹角为,如图所示. 则通过半球面S的磁通量为:(A) r2B.(B) 2r2B.(C) r2B sin.(D) r2B cos.如图,载流圆线圈(半径为R)与正方形线圈(边长为a)通有相同电流I ,若两线圈中心O1与O2处的磁感应强度大小相同,R: a为(A) 1:1.(B) π2:1.三、计算题1.在无限长直载流导线的右侧有面积为S1和S2的两个矩形回路,回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S1回路的磁通量与通过S2回路的磁通量之比.(此题作为悬赏题)练习十安培环路定理一、选择题2. 无限长直圆柱体,半径为R,沿轴向均匀流有电流. 设圆柱体内(r< R)的磁感强度为B1,圆柱体外(r >R)的磁感强度为B2,则有:(A) B1、B2均与r成正比.(B) B1、B2均与r成反比.(C) B1与r成正比, B2与r成反比.(D) B1与r成反比, B2与r成正比.在图(a)和(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I2和I2,其分布相同,且均在真空中,但在图(b)中,L2回路外有电流I3,P1、P2为两圆形回路上的对应点,则:(A) ⎰⋅1dLlB=⎰⋅2dLlB,21PPBB=.(B) ⎰⋅dLlB⎰⋅dLlB,21PPBB=.图图图图P1L(a)3P2(b)图(D)⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流 出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) 0I . (B) 0I /3. (C) 0I /4. (D) 20I /3 . 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理(B) 0 d =⋅⎰L l B ,且环路上任意点B =0. (C) 0 d ≠⋅⎰Ll B ,且环路上任意点B 0. (D) 0 d ≠⋅⎰Ll B,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路,对于环路a ,=⋅⎰a L l B d ;对于环路b , =⋅⎰bL l B d ;对于环路c ,=⋅⎰cL l B d . 0I , 0, 20I .练习十一安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B,正比于v 2.图图图(C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . lIB πμ0222=lπ01l Iπμ0222.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA 轴转动,导线通电转过 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D)将磁场B 减少1/4,线框中电流强度减少1/4.图图l (1)d图(A)(D) (C)(B) (E)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H = nI = NI / l =
32 A/m
µ = B/H =
6.25×10-4 T·m/A × 496
χ m = µ / µ0 −1 =
四、问答题
15、置于磁场中的磁介质,介质表面形成面磁化电流,试问该 、置于磁场中的磁介质,介质表面形成面磁化电流, 面磁化电流能否产生楞次─焦耳热?为什么? 面磁化电流能否产生楞次 焦耳热?为什么? 焦耳热 答:不能. 不能. 因为它并不是真正在磁介质表面流动的传导电流, 因为它并不是真正在磁介质表面流动的传导电流,而 是由分子电流叠加而成, 是由分子电流叠加而成,只是在产生磁场这一点上与传导 电流相似. 电流相似.
I S 1m
B=
µ0 I
2πR
2
0
r
(r ≤ R)
2R
R
因而, 因而,穿过导体内画斜线部分平面的磁通Φ1为 µ
v v Φ1 = ∫ B ⋅ d S = ∫ B d S =
∫ 2πR
0
µ0 I
2
rdr =
µ0 I

在圆形导体外,与导体中心轴线相距 处的磁感强度大小为 在圆形导体外,与导体中心轴线相距r处的磁感强度大小为
1
(2) 在r > R3处磁感强度大小为 处磁感强度大小为________________. . 0
R3 R1 R2 I I
点是半径为R 9、一弯曲的载流导线在同一平面内,形状如图(O点是半径为 1 一弯曲的载流导线在同一平面内,形状如图 点是半径为 的两个半圆弧的共同圆心, 和R2的两个半圆弧的共同圆心,电流自无穷远来到无穷远
= nI = NI / l =
200 A/m 1.06 T
B = µH = µ 0 µ r H =
14、一铁环中心线周长L = 30 cm,横截面 = 1.0 cm2, 、一铁环中心线周长 ,横截面S 环上紧密地绕有N 匝线圈.当导线中电流I 环上紧密地绕有 = 300 匝线圈.当导线中电流 = 32 mA Φ 通过环截面的磁通量 时,通过环截面的磁通量 = 2.0×10-5 Wb.试求铁芯的 × . 磁化率X 磁化率 m . 解: B = Φ /S=2.0×10-2 T
一、选择题
1、通有电流 I 图的无限长直导线有如图三种形状,则P,Q,O各 、 图的无限长直导线有如图三种形状, , , 各 点磁感强度的大小B 间的关系为: 点磁感强度的大小 P,BQ,BO间的关系为: (A) BP > BQ > BO . (B) BQ > BP > BO. [ D ]
a Q I (C) BQ > BO > BP.(D) BO > BQ > BP. I a P I a a I a
4R1 2 2 . 点磁感强度的大小是________________________. 去),则O点磁感强度的大小是 , 点磁感强度的大小是
B0 =
µ0 I
+Hale Waihona Puke µ0I4R−
µ0I
4 πR
I
R1 O R 2
三、计算题
10、已知均匀磁场,其磁感强度B = 2.0 Wb•m-2,方向沿 轴正向, 、已知均匀磁场,其磁感强度 轴正向, ,方向沿x轴正向 如图所示.试求: 如图所示.试求: y 30 cm b e v (1) 通过图中 通过图中abOc面的磁通量; 面的磁通量; 面的磁通量 40 cm B 50 cm a (2) 通过图中 通过图中bedO面的磁通量; 面的磁通量; 面的磁通量 O d x 30 cm c (3) 通过图中 通过图中acde面的磁通量. 面的磁通量. 面的磁通量
i
8、有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均 有一同轴电缆,其尺寸如图所示, 为I,且在横截面上均匀分布,但二者电流的流向正相反,则 ,且在横截面上均匀分布,但二者电流的流向正相反,
µ 0 rI /( 2πR12 ) . (1)在r < R 处磁感强度大小为 处磁感强度大小为________________. 在
P K M µ
O
− +
第五题图
二、填空题
7、图中所示的一无限长直圆筒,沿圆周方向上的面电流密度(单位 图中所示的一无限长直圆筒,沿圆周方向上的面电流密度 单位 垂直长度上流过的电流)为 , 垂直长度上流过的电流 为i,则圆筒内部的磁感强度的大
µ0i ,方向_______________. 小为B 小为 =________,方向 沿轴线方向朝右 .
[ C

(B) 其动能和动量都改变. 其动能和动量都改变. (D) 其动能、动量都不变. 其动能、动量都不变.
4、把轻的导线圈用线挂在磁铁N极附近,磁铁的轴线穿过线圈中心, 、把轻的导线圈用线挂在磁铁 极附近 磁铁的轴线穿过线圈中心, 极附近, 且与线圈在同一平面内,如图所示. 且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电 流时, 流时,线圈将 [ B ] (A) 不动. 不动. (B) 发生转动,同时靠近磁铁. 发生转动,同时靠近磁铁. (C) 发生转动,同时离开磁铁. 发生转动,同时离开磁铁. (D) 不发生转动,只靠近磁铁. 不发生转动,只靠近磁铁. (E) 不发生转动,只离开磁铁. 不发生转动,只离开磁铁.
1
µ 0 R22 I 2
[ R + (b − x) ]
2 2 2 3/ 2
]
v v 方向为沿x轴正方向 轴正方向. 若B > 0,则 B 方向为沿 轴正方向.若B < 0,则 B , ,
的方向为沿x轴负方向. 的方向为沿 轴负方向. 轴负方向
13、螺绕环中心周长L= 10 cm,环上均匀密绕线圈 = 、螺绕环中心周长 ,环上均匀密绕线圈N 200匝,线圈中通有电流I = 0.1 A.管内充满相对磁导率 匝 线圈中通有电流 . 的磁介质. r = 4200的磁介质.求管内磁场强度和磁感强度的大 的磁介质 µ 小. 解: H
v v 的磁通量为: 解:匀强磁场 B 对平面 S 的磁通量为:
v v Φ = B ⋅ S = BS cos θ
设各面向外的法线方向为正
z
Φ abOc = BS abOc cos π = −0.24 Wb
Φ bedO = BS bedO cos(π / 2) = 0
Φ acde = BSacde cos θ = 0.24
Wb
11、一无限长圆柱形铜导体( 磁导率 ),半径为 ,通有均匀分布 、一无限长圆柱形铜导体 磁导率 ,半径为R, 的电流 I .今取一矩形平面S (长为 m,宽为2 R),位置如右图中画 今取一矩形平面 长为1 ,宽为 , 长为 斜线部分所示,求通过该矩形平面的磁通量. 斜线部分所示,求通过该矩形平面的磁通量. 解:在圆柱体内部与导体中心轴线相距为r处的 在圆柱体内部与导体中心轴线相距为 处的 磁感强度的大小,由安培环路定律可得: 磁感强度的大小,由安培环路定律可得:
2a aOI
2、在阴极射线管外,如图所示放置一个蹄形磁铁,则阴极射线将 、在阴极射线管外,如图所示放置一个蹄形磁铁, (A) 向下偏. 向下偏. (C) 向纸外偏. 向纸外偏. (B) 向上偏. 向上偏. (D) 向纸内偏. 向纸内偏.
+ S N -
[ B ]
3、一运动电荷q,质量为 ,进入均匀磁场中, 、一运动电荷 ,质量为m,进入均匀磁场中, (A) 其动能改变,动量不变. 其动能改变,动量不变. (C) 其动能不变,动量改变. 其动能不变,动量改变.
B=
µ0 I
2πr
(r > R)
因而, 因而,穿过导体外画斜线部分平面的磁通Φ2为
v v Φ2 = ∫ B ⋅d S
2R
=
∫ 2πr d r = 2π ln 2
R
µ0 I
µ0 I
穿过整个矩形平面的磁通量
Φ = Φ1 + Φ 2
=
µ0 I

+
µ0 I
2π 2π
ln 2
12、如图两共轴线圈,半径分别为R1、R2,电流为 1、I2.电流的方向 、如图两共轴线圈,半径分别为 电流为I 相反,求轴线上相距中点 为 处的 点的磁感强度. 处的P点的磁感强度 相反,求轴线上相距中点O为x处的 点的磁感强度. 轴向右, 解:取x轴向右,那么有 轴向右
B1 =
B2 =
µ0 R I
µ 0 R22 I 2
2 1 1
I1
沿x轴正方向 轴正方向
I2
OP x 2b
2[ R12 + (b + x) 2 ]3 / 2
2 2[ R2 + (b − x) 2 ]3 / 2
R1
沿x轴负方向 轴负方向
µ 0 R12 I 1
R2 x
B = B1 − B2 =
µ0
2
[ [ R 2 + (b + x) 2 ]3 / 2 −
S
N
I
5、附图中,M、P、O为由软磁材料制成的棒,三者在同一平面内, 、附图中, 、 、 为由软磁材料制成的棒 三者在同一平面内, 为由软磁材料制成的棒, 闭合后, 当K闭合后, 闭合后 [ B ] (A) M的左端出现 极. (B) P的左端出现 极. 的左端出现N极 的左端出现N极 的左端出现 的左端出现 (C) O的右端出现 极. (D) P的右端出现 极. 的右端出现N极 的右端出现N极 的右端出现 的右端出现 6、用细导线均匀密绕成长为L、半径为 (L>> a)、总匝数为 的螺线 、用细导线均匀密绕成长为 、半径为a 、总匝数为N的螺线 µ 管内充满相对磁导率为 的均匀磁介质. 管,管内充满相对磁导率为 r 的均匀磁介质.若线圈中载有稳恒电流 I,则管中任意一点的 。 , [ D ] (A) 磁感强度大小为 = NI 磁感强度大小为B µ0µr (B) 磁感强度大小为 = r NI / L 磁感强度大小为B µ (C) 磁场强度大小为 = 0 NI / L 磁场强度大小为H µ (D) 磁场强度大小为 = NI / L 磁场强度大小为H
相关文档
最新文档