2010年高考全国卷1文科数学试题
2010年全国高考文科数学试题及答案-安徽

绝密★启用前2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分l50分,考试时间l20分钟。
参考公式:S 表示底面积,h 表示底面上的高 如果事件A 与B 互斥,那么 棱柱体积V=ShP(A+B)=P(A)+P(B ) 棱锥体积V=13Sh第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分、在每小题给出的四个选项中、只有一项是符合题目要求的、(1)若A={}|10x x +>,B={}|30x x -<,则A B =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3) 答案:C解析:画数轴易知.(2)已知21i =-,则i(1)=i i (C)i (D)i 答案:B 解析:直接计算.(3)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A)a b = (B)22a b =(C)//a b (D)a b -与b 垂直 答案:D解析:利用公式计算,采用排除法.(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是(A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 答案:A解析:利用点斜式方程.(5)设数列{na}的前n项和n s=2n,则8a的值为(A)15 (B) 16 (C) 49 (D)64答案:A 解析:利用8a=S8-S7,即前8项和减去前7项和.(6)设ab c>0,二次函数f(x)=a x2+bx+c的图像可能是答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合ab c>0产生矛盾,采用排除法易知.(7)设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是(A)a>c>b(B)a>b>c(C)c>a>b(D)b>c>a 答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.(8)设x,y满足约束条件260,260,0,x yx yy+-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y的最大值是(A)3 (B) 4 (C) 6 (D)8答案:C 解析:画出可行域易求.(9)一个几何体的三视图如图,该几何体的表面积是(A)372 (C)292(B)360 (D)280答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A)318(B)418(C)518(D)618答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.数学(文科)(安徽卷)第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分、把答案填在答题卡的相应位置·(11)命题“存在x∈R,使得x2+2x+5=0”的否定是答案:对任何X∈R,都有X2+2X+5≠0解析:依据“存在”的否定为“任何、任意”,易知.(12)抛物线y2=8x的焦点坐标是答案:(2,0)解析:利用定义易知.(13)如图所示,程序框图(算法流程图)的输出值x=答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户、从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户、依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是.答案:5.7% 解析:50500099099000=,707001001000=,易知57005.7%100000=.(15)若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是、(写出所有正确命题的编号)、①ab≤1;②a+b≤2;③a2+b2≥2;④a3+b3≥3;211≥+ba⑤答案:①,③,⑤解析:①,⑤化简后相同,令a=b=1排除②、易知④,再利a+b 2易知③正确三、解答题:本大题共6小题、共75分、解答应写出文字说明、证明过程或演算步骤、解答写在答题卡上的指定区域内.(16)△ABC 的面积是30,内角A,B,C,所对边长分别为a ,b ,c ,cosA=1213. (1)求AB AC ⋅(2)若c-b=1,求a 的值.(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力. 解:由cosA=1213 ,得sinA=)21312( 1- =513 .又12 bc sinA=30,∴bc=156、(1)AB AC ⋅=bc cosA=156·1213 =144.(2)a 2=b 2+c 2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2·156·(1-1213 )=25,∴a=5(17)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率21=e .(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.解:(1)设椭圆E 的方程为22221x y a b+= 由e=12 ,得c a =12 ,b 2=a 2-c 2 =3c 2、∴2222143x y c c += 将A (2,3)代入,有22131c c += ,解得:c=2, 椭圆E 的方程为2211612x y += (Ⅱ)由(Ⅰ)知F 1(-2,0),F 2(2,0),所以直线AF 1的方程为 y=34 (X+2), 即3x-4y+6=0、直线AF 2的方程为x=2、由椭圆E 的图形知, ∠F 1AF 2的角平分线所在直线的斜率为正数.设P (x ,y )为∠F 1AF 2的角平分线所在直线上任一点, 则有34625x y x |-+⎥=|-⎥ 若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=-5x+10,即2x-y-1=0.所以∠F 1AF 2的角平分线所在直线的方程为2x-y-1=0.18、(本小题满分13分)某市2010年4月1日—4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表; (Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
2010年高考试题——数学文(天津卷)含答案

2010年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第I 卷1至3页。
第Ⅱ卷4至11页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.答I 卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。
3.本卷共10小题,每小题5分,共50分。
参考公式:如果事件A 、B 互斥,那么 棱柱的体积公式V=Sh.()()()P A B P A P B ⋃=+ 其中S 表示棱柱的底面积.h 表示棱柱的高 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)i 是虚数单位,复数31ii+-= (A)1+2i (B)2+4i (C)-1-2i (D)2-i(2)设变量x ,y 满足约束条件3,1,1,x y x y y +≤⎧⎪-≥-⎨⎪≥⎩则目标函数z=4x+2y 的最大值为(A )12 (B )10 (C )8 (D )2(3)阅读右边的程序框图,运行相应的程序,则输出s 的值为 (A)-1 (B)0 (C)1 (D)3(4)函数f (x )=2xe x +-的零点所在的一个区间是(A)(-2,-1) (B) (-1,0) (C) (0,1) (D) (1,2) (5)下列命题中,真命题是(A)m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数(6)设554a log 4b log c log ===25,(3),,则 (A)a<c<b (B) )b<c<a (C) )a<b<c (D) )b<a<c(7)设集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是(A){}a |0a 6≤≤ (B){}|2,a a ≤≥或a 4 (C){}|0,6a a ≤≥或a (D){}|24a a ≤≤(8)5y Asinx x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点 (A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(9)如图,在ΔABC 中,AD AB ⊥,3BC =BD ,1AD =,则AC AD ⋅=(A )23 (B )32 (C )33(D )3 (10)设函数2()2()g x x x R =-∈,()4,(),(),().(){g x x x g x g x x x g x f x ++<-≥=则()f x 的值域是(A )9,0(1,)4⎡⎤-⋃+∞⎢⎥⎣⎦ (B )[0,)+∞ (C )9[,)4-+∞(D )9,0(2,)4⎡⎤-⋃+∞⎢⎥⎣⎦2010年普通高等学校招生全国统一考试(天津卷)数 学(文史类)第Ⅱ卷注意事项:1. 答卷前将密封线内的项目填写清楚。
2010年全国卷(1)(文科数学)

2010年普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)(适用:宁夏、河南、山西、广西、河北)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos300=oA.2-12- C.12D.2 2.设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N C M =IA.{}1,3B.{}1,5C.{}3,5D.{}4,53.若变量x ,y 满足约束条件1020y x y x y ≤⎧⎪+≥⎨⎪--≤⎩,则2z x y =-的最大值为A .4B .3C .2D .14.已知各项均为正数比数列{}n a 中,1235a a a =,78910a a a =,则456a a a =A.7 C.6D.5.23(1)(1x -的展开式中2x 的系数是A.6-B.3-C.0D.36.直三棱柱111ABC A B C -中,若90BAC ∠=o ,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于A.30oB.45oC.60oD.90o7.已知函数()lg f x x =.若a b ≠,且()()f a f b =,则a b +的取值范围是A.(1,)+∞B.[1)+∞,C.(2,)+∞D.[2,)+∞ 8.已知1F ,2F 为双曲线C :221x y -=的左,右焦点,点P 在C 上,12F PF ∠60=o , 则1PF ⋅2PF =A.2B.4C.6D.89.正方体1111ABCD A B C D -中,1BB 与平面1ACD 所成角的余弦值为2310.设3log 2a =,ln 2a =,125c -=,则A.a b c <<B.b c a <<C.c a b <<D.c b a <<11.已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ⋅u u u r u u u r 的最小值为A.4-B.3-+C.4-+3-+12.已知在半径为2的球面上有A ,B ,C ,D 四点,若2AB CD ==,则四面体ABCD 的体积的最大值A B C .二、填空题:本大题共4小题,每小题5分,共20分.13.不等式22032x x x ->++的解集是 . 14.已知α为第一象限的角,3sin 5α=,则tan 2α= . 15.某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)16.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且2BF FD =u u u r u u u r ,则C 的离心率为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)记等差数列{}n a 的前n 项和为n S ,设312S =,且12a ,2a ,31a +成等比数列,求n S .18.(本小题满分12分)已知ABC ∆的内角A ,B 所对的边分别为a ,b 满足cot cot a b a A b B +=+,求内角C .19.(本小题满分12分)投到某杂志的稿件,先由两位专家进行评审,若能通过两位初审专家的评审,则予以录用;若两位专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(本小题满分12分)如图,四棱锥S ABCD -中,SD ⊥底面ABCD ,AB ∥DC ,AD DC ⊥, 1AB AD ==,2CD SD ==,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:2SE EB =;(Ⅱ)求二面角A DE C --的大小.21.(本小题满分12分)已知函数42()32(32)4f x ax a x x =-++. (Ⅰ)当16a =时,求()f x 的极值; (Ⅱ)若()f x 在(1,1)-上是增函数,求a 的取值范围.22.(本小题满分12分)已知抛物线C :24y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A ,B 两点,点A 关于x 轴的对称点为D .(Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设FA FB ⋅u u u v u u u v =89,求BDK ∆的内切圆M 的方程. A E S D C B。
2010年全国1卷高考数学(含答案)

绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效......... ﻩ3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B互斥,那么 球的表面积公式P(A +B )=P (A )+P (B) 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P(B ) 球的体积公式 如果事件A在一次试验中发生的概率是P,那么 334R V π=球 n次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k k n n P P C k P --=)1()(一、选择题(1)复数=-+i i 3223 (A )i (B)i -ﻩ(C)i 1312-(D)i 1312+ (2)记k =︒-)80cos(,那么=︒100tan(A)k k 21- (B)-k k 21-ﻩ(C )21k k - (D )-21k k-(3)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+≤.02,0,1y x y x y 则y x z 2-=的最大值为 ﻩ(A)4 (B )3 (C )2ﻩ(D)1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则===ﻩ(A)25ﻩ(B )7ﻩ(C)6ﻩ(D )24(5)533)1()21(x x -+的展开式中x 的系数是ﻩ(A )-4ﻩ(B)-2ﻩ(C)2 (D )4(6)某校开设A 类选修课3门,B类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有ﻩ(A)30种ﻩ(B)35种 (C )42种ﻩ(D)48种(7)正方体AB CD —A 1B1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为ﻩ(A)32 (B)33 (C)32ﻩ(D )36 (8)设2135,2ln ,2log -===c b a ,则 ﻩ(A)c b a <<ﻩ(B)a c b << (C)b a c << (D)a b c <<(9)已知F 1、F 2为双曲线1:22=-y x C 的左、右焦点,点P在C 上,︒=∠6021PF F ,则P 到x轴的距离为(A)23 (B)26ﻩ(C)3ﻩ(D )6 (10)已知函数)()(,0.|lg |)(b f a f b a x x f =<<=且若,则b a 2+的取值范围是 ﻩ(A )),22(+∞ﻩ(B)[)+∞,22 (C )),3(+∞ (D )[)+∞,3(11)已知圆O的半径为1,PA、P B为该圆的两条切线,A 、B为两切点,那么⋅的最小值为(A)24+- (B)23+- (C)224+- (D )223+-(12)已知在半径为2的球面上有A 、B、C 、D 四点,若AC=CD=2,则四面体AB CD 的体积的最大值为(A)332ﻩ(B)334 (C )32ﻩ(D)338 绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
【历年高考】2010年全国高考文科数学试题及答案-安徽

绝密★启用前2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。
全卷满分l50分,考试时间l20分钟。
参考公式:S 表示底面积,h 表示底面上的高 如果事件A 与B 互斥,那么 棱柱体积V=ShP(A+B)=P(A)+P(B ) 棱锥体积V=13Sh第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1)若A={}|10x x +>,B={}|30x x -<,则A B =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3) 答案:C解析:画数轴易知.(2)已知21i =-,则i(1)=i i (C)i (D)i 答案:B 解析:直接计算.(3)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A)a b = (B)22a b =(C)//a b (D)a b -与b 垂直 答案:D解析:利用公式计算,采用排除法.(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是(A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 答案:A解析:利用点斜式方程.(5)设数列{na}的前n项和n s=2n,则8a的值为(A)15 (B) 16 (C) 49 (D)64答案:A 解析:利用8a=S8-S7,即前8项和减去前7项和.(6)设ab c>0,二次函数f(x)=a x2+bx+c的图像可能是答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合ab c>0产生矛盾,采用排除法易知.(7)设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是(A)a>c>b(B)a>b>c(C)c>a>b(D)b>c>a 答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.(8)设x,y满足约束条件260,260,0,x yx yy+-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y的最大值是(A)3 (B) 4 (C) 6 (D)8答案:C 解析:画出可行域易求.(9)一个几何体的三视图如图,该几何体的表面积是(A)372 (C)292(B)360 (D)280答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A)318(B)418(C)518(D)618答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.数学(文科)(安徽卷)第Ⅱ卷(非选择题共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置·(11)命题“存在x∈R,使得x2+2x+5=0”的否定是答案:对任何X∈R,都有X2+2X+5≠0解析:依据“存在”的否定为“任何、任意”,易知.(12)抛物线y2=8x的焦点坐标是答案:(2,0)解析:利用定义易知.(13)如图所示,程序框图(算法流程图)的输出值x=答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是.答案:5.7% 解析:50500099099000=,707001001000=,易知57005.7%100000=.(15)若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是、(写出所有正确命题的编号).①ab≤1;②a+b≤2;③a2+b2≥2;④a3+b3≥3;211≥+ba⑤答案:①,③,⑤解析:①,⑤化简后相同,令a=b=1排除②、易知④,再利a+b 2易知③正确三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.(16)△ABC 的面积是30,内角A,B,C,所对边长分别为a ,b ,c ,cosA=1213. (1)求AB AC ⋅(2)若c-b=1,求a 的值.(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力. 解:由cosA=1213 ,得sinA=)21312( 1- =513 .又12 bc sinA=30,∴bc=156、(1)AB AC ⋅=bc cosA=156·1213 =144.(2)a 2=b 2+c 2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2·156·(1-1213 )=25,∴a=5(17)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率21=e .(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.解:(1)设椭圆E 的方程为22221x y a b+= 由e=12 ,得c a =12 ,b 2=a 2-c 2 =3c 2、∴2222143x y c c += 将A (2,3)代入,有22131c c += ,解得:c=2, 椭圆E 的方程为2211612x y += (Ⅱ)由(Ⅰ)知F 1(-2,0),F 2(2,0),所以直线AF 1的方程为 y=34 (X+2), 即3x-4y+6=0、直线AF 2的方程为x=2、由椭圆E 的图形知, ∠F 1AF 2的角平分线所在直线的斜率为正数.设P (x ,y )为∠F 1AF 2的角平分线所在直线上任一点, 则有34625x y x |-+⎥=|-⎥ 若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=-5x+10,即2x-y-1=0.所以∠F 1AF 2的角平分线所在直线的方程为2x-y-1=0.18、(本小题满分13分)某市2010年4月1日—4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表; (Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
[上海]2010年全国高考文科数学试题及答案.doc
![[上海]2010年全国高考文科数学试题及答案.doc](https://img.taocdn.com/s3/m/16a3bf22336c1eb91b375d35.png)
2010年普通高等学校招生全国统一考试(上海卷)数学(文科)考生注意:1.答卷前,考生务必在答题纸上将姓名、高考准考证号填写清楚,并在规定的区域内贴上条形码2.本试卷共有23道试题,满分150分,考试时间120分钟。
一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1.已知集合{}1,3,A m =,{}3,4B =,{}1,2,3,4A B =则m = 。
2.不等式204xx ->+的解集是 。
3.行列式cossin 66sincos66ππππ的值是 。
4.若复数12z i =-(i 为虚数单位),则z z z ⋅+= 。
5.将一个总数为A 、B 、C 三层,其个体数之比为5:3:2。
若用分层抽样方法抽取容量为100的样本,则应从C 中抽取 个个体。
6.已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 。
7.圆22:2440C x y x y +--+=的圆心到直线3440x y ++=的距离d = 。
8.动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则P 的轨迹方程为 。
9.函数3()l o g (3)f x x=+的反函数的图像与y 轴的交点坐标是 。
10. 从一副混合后的扑克牌(52张)中随机抽取2张,则“抽出的2张均为红桃”的概率为 (结果用最简分数表示)。
11. 2010年上海世博会园区每天9:00开园,20:00停止入园。
在右边的框图中,S 表示上海世博会官方网站在每个整点报道的入园总人数,a 表示整点报道前1个小时内入园人数,则空白的执行框内应填入 。
12.在n 行m 列矩阵12321234113*********n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅ ⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中,记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅。
2010年高考数学试题及答案(全国卷文数3套)

2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b 的值.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x )的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S=4πR2,即可得到答案.球【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:方法一:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.方法二:这种随机模拟的方法是在[0,1]内生成了N个点,而满足几条曲线围成的区域内的点是N1个,所以根据比例关系=,而正方形的面积为1,所以随机模拟方法得到的面积为.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD 推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.0500.0100.001k3.8416.63510.828附:K 2=.【分析】(1)由样本的频率率估计总体的概率,(2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.14.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.36.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)(2010•全国大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2B.4C.6D.89.(5分)(2010•全国大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)(2010•全国大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 11.(5分)(2010•全国大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.12.(5分)(2010•全国大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•全国大纲版Ⅰ)不等式的解集是.14.(5分)(2010•全国大纲版Ⅰ)已知α为第二象限角,sinα=,则tan2α=.15.(5分)(2010•全国大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)(2010•全国大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)(2010•全国大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)(2010•全国大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=a cot A+b cot B,求内角C.19.(12分)(2010•全国大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)(2010•全国大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)(2010•全国大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)(2010•全国大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选:C.【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求∁U M,再根据交集的意义求N∩(∁U M).【解答】解:(∁U M)={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.故选:C.【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题.3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y 轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选:A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选:A.【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.6.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.【点评】本小题主要考查直三棱柱ABC﹣A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0。
2010年全国高考文科数学试题及答案-全国2

绝密★启用前2010年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学第Ⅰ卷 (选择题)本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A 、B 互斥,那么 球的表面积公式(+)()+()P A B P A P B = S=4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ∙=∙ 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34V R 3π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径P ()(1)(0,1,2,,)k k n k n n k C p p k n -=-=一、选择题(1)设全集{}*U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()A B =ð( )(A){}1,4 (B){}1,5 (C){}2,4 (D){}2,5 (2)不等式302x x -<+的解集为( ) (A){}23x x -<< (B){}2x x <- (C){}23x x x <->或 (D){}3x x >(3)已知2sin 3α=,则cos(2)πα-=(A) (B) 19- (C) 19 (D) (4)函数1ln(1)(1)y x x =+->的反函数是(A) 11(0)x y e x +=-> (B) 11(0)x y e x -=+>(C) 11(R)x y e x +=-∈ (D) 11(R)x y e x -=+∈(5) 若变量,x y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩,则2z x y =+的最大值为(A) 1 (B) 2 (C) 3 (D)4(6)如果等差数列{}n a 中,3a +4a +5a =12,那么 1a +2a +…+7a =(A) 14 (B) 21 (C) 28 (D)35(7)若曲线2y x ax b =++在点(0,)b 处的切线方程式10x y -+=,则(A )1,1a b == (B )1,1a b =-=(C )1,1a b ==- (D )1,1a b =-=-(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA=3,那么直线AB 与平面SBC 所成角的正弦值为(A(B(C(D ) 34 (9)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有(A )12种 (B )18种 (C )36种 (D )54种(10)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,CA b =,1,2a b ==,则CD =(A )1233a b + (B )2233a b + (C )3455a b + (D )4355a b + (11)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个(C )有且只有3个 (D )有无数个(12)已知椭圆C :22x a +22b y =1(0)a b >>的离心率为23,过右焦点F 且斜率为k (k >0)的直线与C 相交于A 、B 两点,若AF =3FB ,则k =(A )1 (B )2 (C )3 (D )2第Ⅱ卷(非选择题)二.填空题:本大题共4小题,每小题5分,共20分.(13)已知α是第二象限的角,1tan 2α=,则cos α=___________. (14) 91()x x +的展开式中3x 的系数是__________ (15) 已知抛物线2C 2(0)y px p =>:的准线为l ,过M(1,0)且斜率为l 相交于点A,与C 的一个交点为B,若,AM MB =,则p 等于_________.(16)已知球O 的半径为4,圆M 与圆N 为该球的两个小圆,AB 为圆M与圆N 的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=________________.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)△ABC 中,D 为边BC 上的一点,BD=33,5sin 13B =,3cos 5ADC ∠=.求AD.(18)(本小题满分12分)已知{}n a 是各项均为正数的等比例数列,且 1212112()a a a a +=+,34534511164()a a a a a a ++=++. (Ⅰ) 求{}n a 的通项公式; (Ⅱ)设21()n n nb a a =+,求数列{}n b 的前n 项和n T .(19)(本小题满分12分)如图,直三棱柱ABC-A 1B 1C 1中,AC =BC ,AA 1=AB ,D 为BB 1的中点,E 为AB 1上的一点,AE=3EB 1.(Ⅰ)证明:DE 为异面直线AB 1与CD 的公垂线;(Ⅱ)设异面直线AB 1与CD 的夹角为45o,求二面角A 1-AC 1-B 1的大小.(20)(本小题满分12分)如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9,电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999(Ⅰ)求p ;(Ⅱ)求电流能在M 与N 之间通过的概率.(21)(本小题满分12分)已知函数32()331f x x ax x =-++(Ⅰ)设2a =,求()f x 的单调区间;(Ⅱ)设()f x 在区间(2,3)中至少有一个极值点,求a 的取值范围.(22)(本小题满分12分)已知斜率为1的直线l与双曲线C:22221(0,0)x ya ba b-=>>相交于B、D两点,且BD的中点为M(1,3).(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,DF BF=17∙,证明:过A、B、D三点的圆与x轴相切.2010年普通高等学校招生全国统一考试文科数学试题参考答案和评分参考一、选择题1、C2、A3、B4、D5、C6、C7、A8、D9、B10、B 11、D 12、B二、填空题13、5- 14、84 15、2 16、3 三、解答题(17)解:由3cos 052ADC B π∠=><知 由已知得124cos ,sin 135B ADC =∠=, 从而 sin sin()BAD ADC B ∠=∠-=sin cos cos sin ADC B ADC B ∠-∠41235513513=⨯⨯⨯ 3365=. 由正弦定理得AD sin sin BD B BAD=∠, 所以sin AD sin BD B BAD∙=∠ 53313==253365⨯. (18)解:(Ⅰ)设公比为q ,则11n n a a q -=.由已知有1111234111234111112,11164.a a q a a q a q a q a q a q a q a q ⎧⎛⎫+=+⎪ ⎪⎪⎝⎭⎨⎛⎫⎪++=++ ⎪⎪⎝⎭⎩化简得21261264.a q a q ⎧=⎪⎨=⎪⎩, 又10a >,故12,1q a ==所以 12n n a -= (Ⅱ)由(Ⅰ)知221211112424n n n n n n n b a a a a --⎛⎫=+=++=++ ⎪⎝⎭ 因此 ()()1111111411414...41 (22442114)441314n n n n n n n T n n n -----⎛⎫=++++++++=++=-++ ⎪-⎝⎭-(19)解法一:(Ⅰ)连结1A B ,记1A B 与1AB 的交点为F.因为面11AA BB 为正方形,故11A B AB ⊥,且1AF=FB .又1AE=3EB ,所以1FE=EB ,又D 为1BB 的中点,故1DE BF DE AB ⊥∥,.作CG AB ⊥,G 为垂足,由AC=BC 知,G 为AB 中点.又由底面ABC ⊥面11AA B B ,得CG ⊥11AA B B .连结DG ,则1DG AB ∥,故DE DG ⊥,由三垂线定理,得DE CD ⊥.所以DE 为异面直线1AB 与CD 的公垂线.(Ⅱ)因为1DG AB ∥,故CDG ∠为异面直线1AB 与CD 的夹角,CDG=45∠.设AB=2,则1AB =作111B H A C ⊥,H 为垂足,因为底面11111A B C AAC C ⊥面,故111B H AAC C ⊥面, 又作1HK AC ⊥,K 为垂足,连结1B K ,由三垂线定理,得11B K AC ⊥,因此1B KH ∠为二面角111A AC B --的平面角111B H ==13HC ==1111AA HC AC HK AC ⨯====11tan B H B KH HK ∠==所以二面角111A AC B --的大小为解法二:(Ⅰ)以B 为坐标原点,射线BA 为x 轴正半轴,建立如图所示的空间直角坐标系B xyz -.设AB=2,则A (2,0,0,),1B (0,2,0),D (0,1,0),13E(,,0)22, 又设C (1,0,c ),则()()111DE 0B A=2,-2,0,DC=1,-1,c 22⎛⎫= ⎪⎝⎭,,,.于是1DE B A=0,DE DC=0.故1DE B A DE DC ⊥⊥,,所以DE 为异面直线1AB 与CD 的公垂线.(Ⅱ)因为1,B A DC <>等于异面直线1AB 与CD 的夹角,故 11cos 45B A DC B A DC=, 即42⨯=,解得c =AC (,2=-1,又11AA =BB =(0,2,0),所以11AC =AC+AA =(1,2-,设平面11AAC 的法向量为(,,)m x y z =,则110,0m AC m AA ==即2020x y y -+==且令x =1,0z y ==,故m =令平面11AB C 的法向量为(,,)n p q r =则110,0n AC n B A ==,即20,220p q p q -+=-=令p ,则1q r =-,故1)n = 所以 cos ,m n m n m n <>==. 由于,m n <>等于二面角111A -AC -B 的平面角,所以二面角111A -AC -B 的大小为arccos15. (20)解:记1A 表示事件:电流能通过T ,1,2,3,4,i i =A 表示事件:123T T T ,,中至少有一个能通过电流,B 表示事件:电流能在M 与N 之间通过, (Ⅰ)123123A A A A A A A =,,,相互独立, 3123123P()()()()()(1)A P A A A P A P A P A p ===-, 又 P()1P(A)=10.9990.001A =--=,故 3(1)0.0010.9p p -==,, (Ⅱ)44134123B A +A A A +A A A A =,44134123P (B )P (A +A A A +A A A A )=44134123P(A )+P(A A A )+P(A A A A )=44134123P(A )+P(A )P(A )P(A )+P(A )P(A )P(A )P(A )= =0.9+0.1×0.9×0.9+0.1×0.1×0.9×0.9=0.9891(21)解:(Ⅰ)当a=2时,32()631,()3(22f x x x x f x x x '=-++=--当(,2x ∈-∞时()0,()f x f x '>在(,2-∞单调增加;当(2x ∈时()0,()f x f x '<在(2单调减少;当(2)x ∈+∞时()0,()f x f x '>在(2)+∞单调增加;综上所述,()f x 的单调递增区间是(,2-∞和(2)+∞,()f x 的单调递减区间是(2(Ⅱ)22()3[()1]f x x a a '=-++,当210a -≥时,()0,()f x f x '≥为增函数,故()f x 无极值点;当210a -<时,()0f x '=有两个根12x a x a ==+由题意知,23,23a a <<<或 ①式无解,②式的解为5543a <<, 因此a 的取值范围是5543⎛⎫ ⎪⎝⎭,.(22)解:(Ⅰ)由题设知,l 的方程为:2y x =+,代入C 的方程,并化简,得2222222()440b a x a x a a b ----=, 设 1122B(,)(,)x y D x y 、,则22221212222244,a a a b x x x x b a b a ++==--- ① 由(1,3)M 为BD 的中点知1212x x +=,故2221412a b a⨯=- 即223b a =, ②故2c a ==所以C 的离心率2c e a== (Ⅱ)由①②知,C 的方程为:22233x y a -=,2121243(,0),(2,0),2,02a A a F a x x x x ++==< 故不妨设12,x a x a ≤-≥,1BF 2a x ==-,2FD 2x a ==-,22121212BF FD (2)(2)=42()548a x x a x x a x x a a a =---++-=++. 又 BF FD 17=,故 254817a a ++=,解得1a =,或95a =-(舍去),故1212BD ()6x x x -=+=, 连结MA ,则由A (1,0),M(1,3)知MA 3=,从而MA=MB=MD ,且MA x ⊥轴,因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切,所以过A 、B 、D 三点的圆与x 轴相切、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2010年普通高等学校招生全国统一考试
文科数学(必修+选修II)
本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。
第I 卷1至2页。
第Ⅱ卷3 至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
3.第I 卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果事件A 、B 互斥,那么 球的表面积公式
()()()P A B P A P B +=+ 24S R π=
如果事件A 、B 相互独立,那么 其中R 表示球的半径
()()()P A B P A P B = 球的体积公式
如果事件A 在一次试验中发生的概率是p ,那么 334
V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径
()(1)
(0,1,2,)k k n k n n P k C p p k n -=-=…
一、选择题
(1)cos300︒=
(A)12 (C)12
(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()
U N M ⋂=ð
A.{}1,3
B. {}1,5
C. {}3,5
D. {}4,5 (3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩
则2z x y =-的最大值为
(A)4 (B)3 (C)2 (D)1
(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则
456a a a =
(A)
(5)43(1)(1x -的展开式 2x 的系数为
(A)-6 (B)-3 (C)0 (D)3 (6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线 1BA 与1AC 所成的角等于
(A)30° (B)45°(C)60° (D)90°
(7)已知函数()|lg |f x x =.若a b ≠且()()f a f b =,则a b +的取值范围是
(A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞
(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则 12||||PF PF =
(A)2 (B)4 (C) 6 (D) 8
(9)正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为
(A ) 3 (B )3 (C )23 (D )3
(10)设123log 2,ln 2,5a b c -===则
(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<
(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙ 的最
小值为
(A) 4-+3- (C) 4-+3-+(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域 内作答,在试题卷上作答无效.........。
3.第Ⅱ卷共10小题,共90分。
二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效)
(13)1x ≤的解集是 .
(14)已知α为第三象限的角,3sin 5
a =,则tan 2α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程各自少选一门,则不同的选法共有 种.(用数字作答)
(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D , 且BF 2FD =uu r uu r ,则C 的离心率为 .
三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)(注意:在试.....题卷上作答无效.......
) 记等差数列{}n a 的前n 的和为n S ,设312S =,且232,,1a a a a +成等比数列,求n S .
(18)(本小题满分12分)(注意:在试题卷上作答无效............
) 已知ABC V 的内角A ,B 及其对边a ,b 满足cot cot a b a A b B +=+,求内角C .
(19)(本小题满分12分)(注意:在试题卷上作答无效.........).
投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审, 则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评 审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录
用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3. 各专家独立评审.
(I)求投到该杂志的1篇稿件被录用的概率;
(II)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.
(20)(本小题满分12分)(注意:在试题卷上作答无效.........
)
如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC .
(Ⅰ)证明:SE=2EB ;
(Ⅱ)求二面角A-DE-C 的大小 .
(21)(本小题满分12分)(注意:在试题卷上作答无效.........
) 已知函数422()32(31)2(31)4f x ax a x a x x =-+-++
(I )当16
a =时,求()f x 的极值; (II )若()f x 在()1,1-上是增函数,求a 的取值范围
(22)(本小题满分12分)(注意:在试题卷上作答无效.........
) 已知抛物线2
:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .
(Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89
FA FB = ,求BDK ∆的内切圆M 的方程 .。