高等数学下册复习
高等数学下册复习资料

高等数学下册复习资料高等数学下册是一门重要的大学数学课程,也是有挑战性的一门课程。
学生们需要透彻地掌握这门课程的基本概念、理论和实际应用,才能够为以后的学习和工作做好充分的准备。
因此,复习高等数学下册是非常必要的。
一、复习重点1.微分方程微分方程是高等数学下册中比较难理解和掌握的知识点之一。
在这个部分中,学生们需要掌握常微分方程及其解法、初始值问题、高阶微分方程、齐次方程和非齐次方程等。
2.多元函数微积分学多元函数微积分学是高等数学下册的另一个难点,包括多重积分、曲线积分、曲面积分、矢量场的线积分和面积分等。
3.线性代数线性代数是高等数学下册另一个重要的知识点。
这个部分需要学生们掌握线性空间、矩阵、行列式和特征值及其应用、线性方程组及其应用等。
二、复习方法1.理解基本概念和理论高等数学下册有很多基本的概念和理论,这些知识点是这门课程的基础。
学生们需要花费足够的时间来学习和理解这些概念和理论,从而能够透彻地掌握整个课程。
2.做题巩固知识点在学习中,做题是非常重要的一部分。
学生们需要选择一些代表性和难度适当的例题和习题来练习,从而加深对知识点的理解和掌握。
同时,做题也可以帮助学生们检查自己的学习效果。
3.查阅资料和参考书籍在复习过程中,学生们可以查阅相关资料和参考书籍,例如高等数学下册的教材、辅读书和网上资料等。
通过阅读和学习这些资料,学生们可以更深入地了解和掌握相关知识点。
4.参加辅导课和讨论小组参加辅导课和讨论小组,可以让学生们更好地交流和学习。
在这个过程中,学生们可以和老师和同学们一起讨论和解决问题,不断提高自己的学习能力。
三、总结复习高等数学下册需要花费足够的时间和精力,但是这个过程是非常重要的。
通过理解基本概念和理论、做题巩固知识点、查阅资料和参考书籍、参加辅导课和讨论小组等方法,学生们可以逐渐掌握高等数学下册的知识点,为以后的学习和工作打下坚实的基础。
高数下册常用常见知识点

高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分)1.曲线⎩⎨⎧=+=012x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z .2.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{.4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0.5.设周期函数在一个周期内的表达式为⎩⎨⎧≤<+≤<-=,0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π+.6.全微分方程0d d =+y x x y 的通解为Cxy =.7.写出微分方程xe y y y =-'+''2的特解的形式xaxe y =*.二、解答题(共18分 每小题6分)1.求过点)1,2,1(-且垂直于直线⎩⎨⎧=+-+=-+-02032z y x z y x 的平面方程.解:设所求平面的法向量为n ,则{}3,2,1111121=--=kj i n(4分)所求平面方程为 032=++z y x (6分) 2.将积分⎰⎰⎰Ωv z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面)(222y x z +-=及22y x z +=所围成的区域.解: πθ20 ,10 ,2 :2≤≤≤≤-≤≤Ωr r z r (3分)⎰⎰⎰Ωv z y x f d ),,(⎰⎰⎰-=221020d ),sin ,cos (d d r rz z r r f r r θθθπ (6分)3.计算二重积分⎰⎰+-=Dy x y x eI d d )(22,其中闭区域.4:22≤+y x D解⎰⎰-=2020d d 2r r eI r πθ⎰⎰--=-20220)(d d 212r e r πθ⎰-⋅-=202d 221r e π)1(4--=e π三、解答题(共35分 每题7分)1.设vue z =,而22y x u +=,xy v =,求z d .解:)2(232y y x x e y ue x e xv v z x u u z x z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (3分))2(223xy x y e x ue y e yv v z y u u z y z xy v v ++=⋅+⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂ (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分)2.函数),(y x z z =由方程0=-xyz e z所确定,求yz x z ∂∂∂∂,. 解:令xyz e z y x F z-=),,(, (2分)则 ,yz F x -=,xz F y -=,xy e F zz -= (5分)xye yzF F x z zz x -=-=∂∂, xy e xz F F y z z z y -=-=∂∂. (7分) 3.计算曲线积分⎰+-Ly x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有向弧段.解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林公式⎰⎰⎰⎰+--=+-OA DL y x x y y x y x x y d d d d 2d d (5分)ππ=-⋅=022 (7分)4.设曲线积分⎰++Lx y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,求)(x f .解: 由xQ y P ∂∂=∂∂ 得 )()(x f x f e x'=+, 即xe xf x f =-')()( (3分)所以 )d ()(d d )1(C x e e e x f x x x+⋅=⎰⎰---⎰)(C x e x +=, (6分) 代入初始条件,解得1=C ,所以)1()(+=x e x f x. (7分)5.判断级数∑∞=12)!2()!(n n n 的敛散性.解: 因为)!2()!()!22(])!1[(lim lim221n n n n u u n nn n ++=∞→+∞→ (3分) )12)(22()1(lim2+++=∞→n n n n 141<= (6分) 故该级数收敛. (7分)四、(7分)计算曲面积分⎰⎰∑++y x z x z y z y x d d d d d d ,其中∑是上半球面221z y x --=的上侧.解:添加辅助曲面1,0:221≤+=∑y x z ,取下侧,则在由1∑和∑所围成的空间闭区域Ω上应用高斯公式得⎰⎰∑++y x z x z y z y x d d d d d d ⎰⎰∑+∑++=1d d d d d d y x z x z y z y x⎰⎰∑++-1d d d d d d y x z x z y z y x (4分)0d 3-=⎰⎰⎰Ωv (6分)34213π⋅⋅=π2=. (7分) 五、(6分)在半径为R 的圆的内接三角形中,求其面积为最大的三角形.解:设三角形各边所对圆心角分别为z y x ,,,则π2=++z y x , 且面积为)sin sin (sin 212z y x R A ++=, 令)2(sin sin sin πλ-+++++=z y x z y x F (3分)由 ⎪⎪⎩⎪⎪⎨⎧=++=+==+==+=πλλλ20cos 0cos 0cos z y x z F y F x F z yx (4分)得32π===z y x .此时,其边长为R R 3232=⋅.由于实际问题存在最大值且驻点唯一,故当内接三角形为等边三角形时其面积最大. (6分)六、(8分)求级数∑∞=1n nnx 的收敛域,并求其和函数.解: 1)1(lim lim1=+==∞→+∞→nn a a R n n n n ,故收敛半径为1=R . (2分) 当1-=x 时,根据莱布尼茨判别法,级数收敛; 当1=x 时, 级数为调和级数,发散.故原级数的收敛域为)1,1[-. (5分)设和为)(x S ,即∑∞==1)(n nnx x S ,求导得∑∞=-='11)(n n x x S x-=11, (6分) 再积分得 ⎰'=xx x S x S 0d )()(x xxd 110⎰-=)1ln(x --=,)11(<≤-x (8分) 七、(5分)设函数)(x f 在正实轴上连续,且等式⎰⎰⎰+=yx x yt t f x t t f y t t f 111d )(d )(d )(对任何0,0>>y x 成立.如果3)1(=f ,求)(x f . 解:等式两边对y 求偏导得)(d )()(1y f x t t f y x f x x+=⎰ (2分)上式对任何0,0>>y x 仍成立.令1=y ,且因3)1(=f ,故有⎰+=xx t t f x xf 13d )()(. (3分)由于上式右边可导,所以左边也可导.两边求导,得3)()()(+=+'x f x f x f x 即)0(3)(>='x xx f .故通解为 C x x f +=ln 3)(.当1=x 时,3)1(=f ,故3=C . 因此所求的函数为 )1(ln 3)(+=x x f .(5分) 八. (5分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶线性非齐次微分方程的三个解,求此微分方程. 解1:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故可设此方程为)(2x f y y y =-'-''将x xe y=代入上式,得x x xe e x f 2)(-=,因此所求的微分方程为x x xe e y y y 22-=-'-''解2:由线性微分方程解的结构定理知xe2与xe-是对应齐次方程的两个线性无关的解,xxe 是非齐次方程的一个特解,故x x x e C e C xe y -++=221是所求微分方程的通解,从而有x x x x e C e C xe e y --++='2212, x x x x e C e C xe e y -+++=''22142消去21,C C ,得所求的微分方程为x x xe e y y y 22-=-'-''06高数B一、填空题(共30分 每小题3分)1.xoy 坐标面上的双曲线369422=-y x 绕x 轴旋转一周所生成的旋转曲面方程为36)(94222=+-z y x .2.设函数22),,(z yz x z y x f ++=,则=-)1,0,1(grad f )2,1,2(--.3.直线35422:1z y x L =--=-+与直线⎪⎩⎪⎨⎧+=+-==tz t y tx L 72313:2的夹角为2π.4。
高数下册复习知识

高数下册复习知识.多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数最典型的是二元函数极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念沿坐标轴方向的导数若存在,称之为偏导数通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况高阶偏导数若连续,则求导次序可交换微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。
只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在若偏导数存在,且连续,则微分一定存在极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。
对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。
级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。
若通项趋于零,看是否正项级数。
若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。
高等数学下册知识点

高等数学下册知识点第七章 空间解析几何与向量代数一、填空与选择1、已知点A (,,)321-和点B (,,)723-,取点M 使MB AM 2=,则向量OM=。
2 已知点A (,,)012和点B =-(,,)110,则AB=。
3、设向量与三个坐标面的夹角分别为ξηζ,,,则cos cos cos 222ξηζ++= 。
4、设向量a 的方向角απβ=3,为锐角,γπβ=-4=,则a = 。
5、向量)5,2,7(-=a 在向量)1,2,2(=b 上的投影等于。
6、过点()121-,,P 且与直线1432-=-=+-=t z t y t x ,,, 垂直的平面方程为_____________________________. 7、已知两直线方程是130211:1--=-=-z y x L ,11122:2zy x L =-=+,则过1L 且平行2L 的平面方程为____________________ 8、设直线182511:1+=--=-z y x L ,⎩⎨⎧=-+=--03206:2z y y x L ,则1L 与2L 的夹角为( ) (A ). 6π (B ).4π (C ).3π (D )2π.9、平面Ax By Cz D +++=0过x 轴,则( )(A )A D ==0 (B )B C =≠00, (C )B C ≠=00, (D )B C ==0 10、平面3510x z -+=( )(A )平行于zox 平面 (B )平行于y 轴(C )垂直于y 轴 (D )垂直于x 轴 11、点M (,,)121到平面x y z ++-=22100的距离为( )(A )1 (B )±1 (C )-1 (D )1312、与xoy坐标平面垂直的平面的一般方程为 。
13、过点(,,)121与向量k j S k j i S--=--=21,32平行的平面方程为 。
14、平面0218419=++-z y x和0428419=++-z y x 之间的距离等于⎽⎽⎽⎽⎽⎽ 。
高数下知识点复习

高数下知识点复习一、导数与微分1.导数的定义导数是描述函数变化率的概念,表示函数在某一点的瞬时变化率。
导数的定义为:$$f'(x)=\lim_{\Delta x \to 0}{\frac{f(x+\Delta x)-f(x)}{\Delta x}}$$2.导数的性质导数具有如下的性质:(1) 导函数存在的充要条件是函数在该点可导。
(2) 导函数的值表示函数的斜率。
(3) 导函数具有线性性质,即对于常数a和b,有$(af(x)+bg(x))'=af'(x)+bg'(x)$。
(4) 导函数的导数为二阶导数,记作$f''(x)$。
3.微分的定义与性质微分是导数的一种几何解释,表示函数在某一点附近的变化量。
微分的定义为:$$df(x) = f'(x)dx$$微分满足的性质包括:(1) $\Delta f = f(x+\Delta x)-f(x) \approx df$(2) 微分的四则运算:若函数f(x)和g(x)可导,则$$d(f\pm g) = df \pm dg$$$$d(f \cdot g) = g(df) + f(dg)$$$$d\left(\frac{f}{g}\right) = \frac{g(df) - f(dg)}{g^2}$$二、极限与连续1.数列极限数列极限是描述数列趋向某一值的概念。
数列的极限定义为:对于任意给定的正数$\varepsilon$,存在正整数N,使得当$n>N$时,有$|a_n-L|<\varepsilon$。
2.函数极限函数极限是描述函数趋向某一值的概念。
函数的极限定义为:对于任意给定的正数$\varepsilon$,存在正数$\delta$,使得当$0<|x-a|<\delta$时,有$|f(x)-L|<\varepsilon$。
3.极限的性质极限具有如下的性质:(1) 唯一性:如果极限存在,则极限是唯一的。
高等数学下册复习第九章(二重积分)

1 x2 0 0
典型例题
13 把下列积分化为极坐标形式 并计算积分值 (2) dx x y dy (4) dy (x y )dx 14 利用极坐标计算下列各题
a x 2 2 0 0
a
a2 y2
2
2
0
0
(2) ln(1 x y )d , 其中 D 是由圆周 x2y2 1 及坐标轴
(x2
y 2 )]d
y 轴上半平面部分
定理3
设 f x, y 在有界闭区域 D 上连续,若 D
关于原点对称,则
D
0 f x,y d 2 f x,y d D3
f x,-y = f x,y , x,y D f x,-y f x,y , x,y D
第九章 二重积分
内容要点 一、二重积分的概念与性质 1. 二重积分的定义: 和式的极限
n
f ( i ,i ) i D f ( x , y )d lim 0
i 1
2.曲顶柱体的体积: V f ( x, y )d
D
平面薄片的密度: M ( x, y )d
将D分割, 如图. 则 2 2 xyf ( x y )d 0, D2 xd 0. D
D xd D1 xd
2
0 x3 xdx x 3 dy 1
0 4 dx x 1
2 , 5 2 . 5
所以, D x[1 yf
x 2 ( y )
D
c
c
x 2 ( y )
f ( x, y )d f ( x, y )dxdy
高等数学(下)知识点总结

高等数学(下)知识点总结1、二次曲面1)椭圆锥面:2)椭球面:旋转椭球面:3)单叶双曲面:双叶双曲面:4)椭圆抛物面:双曲抛物面(马鞍面):5)椭圆柱面:双曲柱面:6)抛物柱面:(二)平面及其方程1、点法式方程:法向量:,过点2、一般式方程:截距式方程:3、两平面的夹角:,,;4、点到平面的距离:(三)空间直线及其方程1、一般式方程:2、对称式(点向式)方程:方向向量:,过点3、两直线的夹角:,,;4、直线与平面的夹角:直线与它在平面上的投影的夹角,;第九章多元函数微分法及其应用1、连续:2、偏导数:;3、方向导数:其中为的方向角。
4、梯度:,则。
5、全微分:设,则(一)性质1、函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:偏导数存在函数可微函数连续偏导数连续充分条件必要条件定义122342、微分法1)复合函数求导:链式法则若,则,(二)应用1)求函数的极值解方程组求出所有驻点,对于每一个驻点,令,,,① 若,,函数有极小值,若,,函数有极大值;② 若,函数没有极值;③ 若,不定。
2、几何应用1)曲线的切线与法平面曲线,则上一点(对应参数为)处的切线方程为:法平面方程为:2)曲面的切平面与法线曲面,则上一点处的切平面方程为:法线方程为:第章重积分(一)二重积分:几何意义:曲顶柱体的体积1、定义:2、计算:1)直角坐标,,2)极坐标,(二)三重积分1、定义:2、计算:1)直角坐标-----------“先一后二”-----------“先二后一”2)柱面坐标,3)球面坐标(三)应用曲面的面积:第一章曲线积分与曲面积分(一)对弧长的曲线积分1、定义:2、计算:设在曲线弧上有定义且连续,的参数方程为,其中在上具有一阶连续导数,且,则(二)对坐标的曲线积分1、定义:设 L 为面内从 A 到B 的一条有向光滑弧,函数,在 L 上有界,定义,、向量形式:2、计算:设在有向光滑弧上有定义且连续, 的参数方程为,其中在上具有一阶连续导数,且,则3、两类曲线积分之间的关系:设平面有向曲线弧为,上点处的切向量的方向角为:,,,则、(三)格林公式1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数在D 上具有连续一阶偏导数, 则有2、为一个单连通区域,函数在上具有连续一阶偏导数,则曲线积分在内与路径无关(四)对面积的曲面积分1、定义:设为光滑曲面,函数是定义在上的一个有界函数,定义2、计算:—“一投二代三定号”,,在上具有一阶连续偏导数,在上连续,则,为上侧取“ + ”,为下侧取“级数:(二)函数项级数1、定义:函数项级数,收敛域,收敛半径,和函数;2、幂级数:3、收敛半径的求法:,则收敛半径4、泰勒级数展开步骤:(直接展开法)1)求出;2)求出;3)写出;4)验证是否成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、线与线的关系
直线
L1:x
x1 m1
y
y1 n1
z
z1 p1
,
s1 (m1, n1, p1)
直线
L2:x
x2 m2
y
y2 n2
z
z2 p2
,
s2 (m2 , n2 , p2 )
垂直: s1 s2 0
m1m2 n1n2 p1 p2 0
平行: s1 s2 0
m1 n1 p1 m 2 n 2 p2
平面 2 : A2 x B2 y C2 z D2 0, n2 ( A2 , B2 ,C2 )
垂直: n1 n2 0
A1A2 B1B2 C1C2 0
平行: n1 n2 0
A1 B1 C1 A2 B2 C2
夹角公式: cosθ n1 n2 n1 n2
机动 目录 上页 下页 返回 结束
夹角公式: cos s1 s2
s1 s2
机动 目录 上页 下页 返回 结束
3.面与线间的关系
平面: Ax By Cz D 0, n ( A, B , C)
直线: x x y y z z , s (m , n , p) mn p
垂直:s n 0
mn p ABC
平行: s n 0
的方向余弦.
提示: 已知平面的法向量 n1 (7 , 1, 4) 求出已知直线的方向向量 s (1 , 1 , 2)
取所求平面的法向量
i jk
所求为
n s n1 1 1 2 2(3, 5, 4)
7 1 4
cos 3 , cos 5 , cos 4
51
50
50
机动 目录 上页 下页 返回 结束
a (ax ,ay ,az )
a b axbx ayby azbz
叉积:
i jk ab ax ay az
bx by bz
机动 目录 上页 下页 返回 结束
2. 向量关系:
a // b ab
ab 0 ab 0
bx by bz ax ay az axbx ayby azbz 0
二元函数的极限
方法: 主要根据定义求极限、讨论极限; 利用定义求导数;
z x2 y2 x y z 1
此曲线向 xoy 面的投影柱面方程为
x y x2 y2 1
此曲线在 xoy 面上的投影曲线方程为
x y x2 y2 1 z 0
机动 目录 上页 下页 返回 结束
例2.直线 L : x 1 y z 绕 z 轴旋转一周, 求此旋转 转曲面的方程. 0 1 1
从中选择 使其与已知平面垂直:
(1 ) 1 (1 ) 1 (1 ) 1 0
得 1, 从而得投影直线方程
xy
z y
1 z
0 0
这是投影平面
机动 目录 上页 下页 返回 结束
例3.
设一平面平行于已知直线
x
2x z 0 yz5
0
且垂直于已知平面7x y 4z 3 0,求该平面法线的
2 1 5
利用点向式可得方程
(4, 3, 1)
x3 y2 z5
4
3
1
机动 目录 上页 下页 返回 结束
例2.
求直线
xx
y y
z
1 1
0 0
在平面
x
yz0
上的投影直线方程.
提示:过已知直线的平面束方程
x y z 1 (x y z 1) 0 即 (1 )x (1 ) y (1 )z (1 ) 0
mAnB pC 0
夹角公式: sin s n
sn
机动 目录 上页 下页 返回 结束
实例分析
例1. 求与两平面 x – 4 z =3 和 2 x – y –5 z = 1 的交线 平行, 且 过点 (–3 , 2 , 5) 的直线方程.
提示: 所求直线的方向向量可取为
i jk s n1 n2 1 0 4
平面曲线绕坐标轴旋转而成的旋转曲面 的方程
主要利用书中结论: 即绕着哪个轴旋转,这个轴对应的字母不变, 变化的是另一个字母;
例1 求曲线
z x
y 0
2
绕
z
轴旋转的曲面与平面
x y z 1的交线在 xoy 平面的投影曲线方程.
解: 旋转曲面方程为 z x2 y2 ,它与所给平面的
交线为
计算方法; 曲线积分与曲面积分,格林公式和高斯公式的应用; 常数项级数的收敛与绝对收敛,傅立叶级数的收敛性定理,
幂级数的收敛域与和函数。
机动 目录 上页 下页 返回 结束
向量的方向余弦
给定
r
(x,
y,
z)
0,
与三坐标轴的夹角 , ,
为其方向角.
方向角的余弦称为其方向余弦.
cos
x r
高等数学总复习
机动 目录 上页 下页 返回 结束
高等数学复习简介
向量的运算及方向余弦,平面与直线(包括坐标轴)的位置 关系;
平面曲线绕坐标轴旋转而成的旋转曲面的方程; 二元函数的极限; 二元函数的连续,偏导数存在,可微及偏导数连续之间的关
系; 多元隐函数求导,曲面的切平面方程; 复合函数求导(特别是抽象函数的求导问题); 方向导数,多元函数的条件极值问题; 二重积分的计算,对称性的应用,及积分次序的交换; 利用三重积分计算空间立体的体积,三重积分的“先二后一”
x x2 y2 z2
cos
y r
cos
z r
z
r
o
y
x
机动 目录 上页 下页 返回 结束
向量的运算
设 a (ax , ay , az ) , b (bx ,by ,bz ) , c (cx , cy , cz )
1. 向量运算
加减: 数乘: 点积:
a b (ax bx , ay by , az bz )
提示: 在 L 上任取一点 M 0 (1, y0 , z0 )
设 M (x, y, z)为M 0 绕 z 轴旋转轨迹上任一点, 则有
y0 z0 z x2 y2 1 y02 将 y0 z 代入第二方程,
得旋转曲面方程
x2 y2 z2 1
z
L
rr
Mo
M0
y
x
机动 目录 上页 下页 返回 结束
a ,b,c 共面
( ab)c 0
ax ay az bx by bz 0 cx cy cz
平面与直线(包括坐标轴)的位置关系
主要通过向量间的关系来衡量线线关系, 线面关系,面面关系;
问题根源仍然是对向量关系的正确理解;
1、线面之间的相互关系
面与面的关系
平面 1 : A1x B1y C1z D1 0, n1 ( A1, B1,C1)