大学物理简谐运动
大学物理简谐运动

电磁振荡的简谐运动
总结词
电磁振荡的简谐运动是指电磁场中的电荷或电流在电 场和磁场的作用下做周期性振动。这种振动可以产生 无线电波,是通信技术中的重要应用之一。
详细描述
电磁振荡的简谐运动是指电磁场中的电荷或电流在电场 和磁场的作用下做周期性振动。这种振动可以产生无线 电波,是通信技术中的重要应用之一。电磁振荡的频率 范围很广,从低频的无线电波到高频的X射线,都可以 通过电磁振荡产生。在通信技术中,电磁振荡被广泛应 用于信号传输、广播、电视等领域。电磁振荡的振荡频 率、幅度和相位都可以通过电路元件进行调节和控制, 从而实现信息的传输和接收。
实验器材与步骤
步骤 1. 安装摆球和支架,确保摆球可以自由摆动。
2. 将光电门传感器放置在摆球的平衡位置附近,并与数据采集器连接。
实验器材与步骤
3. 启动数据采集器, 记录摆球摆动的位置 和时间数据。
5. 将实验结果与理论 值进行比较,验证简 谐运动的规律。
4. 分析数据,计算摆 球的速度和加速度。
简谐运动的特点
位移与时间的关系是正弦 或余弦函数。
速度和加速度随时间按正 弦或余弦规律变化。
回复力与位移大小成正比, 方向相反。
简谐运动的能量是守恒的。
简谐运动的分类
01
根据位移和时间的关系,简谐运动可分为正弦简谐 运动和余弦简谐运动。
02
根据振幅和频率是否变化,简谐运动可分为自由简 谐运动和受迫简谐运动。
对未来科技发展的影响与启示
简谐运动的研究不仅对于当前科技发 展具有重要意义,也为未来科技发展 提供了启示和方向。
通过深入探索简谐运动背后的物理规 律和原理,可以启发新的科技思想和 实验方法,推动物理学和其他学科的 交叉融合和创新发展。
大学物理简谐运动汇总

x xt图
A
o
t
T
A
v vt 图
v A sin(t ) A
A cos(t π )
2
o
A
a
T
a t图
t
a A 2 cos(t ) A 2 o
A 2 cos(t π ) A 2
Tt
3-1-2 简谐运动的特征量
一 振幅
A xmax
二 周期、频率
x Acos(t )
试求(1)t 1.0s 时,物体所处的位置和所受的力
v
x/m
0.08 0.04 o 0.04 0.08
解(1)先求运动方程 设 x Acos(t )
A 0.08m
2π π s1
T2
A 0.08m 2π π s1
T2
t 0, x 0.04m
v0 0
π
3
A
π3
x/m
14 – 1 简谐运动
第十四章 机械振动
机械振动 与机械波
1振4 –动1和简波谐动运是动物质的基本运动形式第十,四是章自机然械界振动 的普遍现象,在力学中有机械振动和机械波, 在电磁学中有电磁振荡和电磁波,声是机械波, 光是电磁波,近代物理研究表明,一切微观粒 子都具有波动性
——尽管在物质不同的运动形式中,振 动与波动的具体内容不同,本质不同,但在形 式上它们具有相似性,都遵循相同的运动规律, 都能用相同的数学方法描述,这说明不同的振 动与波动之间具有共同的特性。
14 – 1 简谐运动
第十四章 机械振动
任一物理量在某一定值附近往复变化 ——振动.
机械振动: 物体围绕一固定位置往复运动.
例如一切发声体、心脏、海浪起伏、地震 以及晶体中原子的振动等.
《简谐运动》 知识清单

《简谐运动》知识清单一、什么是简谐运动简谐运动是一种理想化的机械运动模型。
它的定义是:如果一个物体所受到的力跟它偏离平衡位置的位移大小成正比,并且力的方向总是指向平衡位置,那么这个物体的运动就叫做简谐运动。
比如常见的弹簧振子,就是一种典型的简谐运动。
当弹簧一端固定,另一端连接一个物体,将物体拉离平衡位置后释放,它就会在平衡位置附近做往复运动,这种运动就是简谐运动。
二、简谐运动的特点1、受力特点物体所受的回复力F 与位移x 大小成正比,方向相反,即F =kx,其中 k 是比例系数,叫做回复力系数。
回复力是使物体回到平衡位置的力。
在弹簧振子中,回复力就是弹簧的弹力;在单摆中,回复力是重力沿圆弧切线方向的分力。
2、运动特点简谐运动是一种周期性运动,具有重复性和对称性。
(1)重复性:物体在相同的时间间隔内,重复相同的运动状态。
(2)对称性:关于平衡位置对称的两点,速度大小相等、方向相反;加速度大小相等、方向相反;位移大小相等、方向相反。
3、能量特点在简谐运动中,系统的机械能守恒。
当物体远离平衡位置时,动能减小,势能增大;当物体靠近平衡位置时,动能增大,势能减小。
但总的机械能保持不变。
三、简谐运动的表达式简谐运动的位移时间关系可以用正弦函数或余弦函数来表示:x =A sin(ωt +φ) 或 x =A cos(ωt +φ)其中,A 表示振幅,是物体离开平衡位置的最大距离;ω 是角频率,ω =2π/T,T 是周期;φ 是初相位,决定了运动的初始状态。
四、简谐运动的周期和频率1、周期完成一次全振动所需要的时间叫做周期,用 T 表示。
周期的大小由振动系统本身的性质决定,与振幅无关。
对于弹簧振子,T =2π√(m/k),其中 m 是振子的质量,k 是弹簧的劲度系数。
对于单摆,T =2π√(L/g),其中 L 是摆长,g 是重力加速度。
2、频率单位时间内完成全振动的次数叫做频率,用 f 表示。
频率与周期互为倒数,即 f = 1/T。
大学物理第九章简谐运动

o
x/m
0.04
0.08
21
旋转矢量法;
2 π π 1 解 A 0.08 m s T 2 t 0,x 0.04 m
代入 x A cos(t )
v0 0 v0 A sin( ) 0 Biblioteka π 33
简谐运动方程:
x 0.08 cos( t ) 2 3
22
t 1.0 s, x, F 可求(1) t 1 .0 s 代入上式得 x 0.069 m
1.70 10 N
3
法二:求运动方程
v
A
o
x v
x
23
代数法;
旋转矢量法;
(2)由起始位置运动到x = -0.04 m处所需 要的最短时间.
法一 设由起始位置运动到x= -0.04 m处所 需要的最短时间为t
合成
简谐运动 谐振子 分解 复杂振动
作简谐运动的物体
8
弹簧振子的振动模型
弹簧和一谐振子组成的振动系统。
l0 k
m
x
C
o
B
x xB F FB
x 0 F 0 平衡位置
x xc v 0
9
振动的成因
a 回复力
b 惯性
10
弹簧振子的动力学分析
F
o
F kx ma
2
m
x
18
(2)对同一简谐运动,相位差可以给出 两运动状态间变化所需的时间.
x1 A cos(t1 )
x2 A cos(t2 )
(t2 ) (t1 )
t t 2 t1
大学物理简谐运动课件

05
简谐运动的应用领域
物理学领域的应用
振动与波动实验
01
简谐运动是振动的基本形式之一,在物理学实验中常被用来研
究振动和波动现象,如共振、干涉和衍射等。
弦的振动
02
弦的振动是一种常见的简谐运动,在研究弦乐器的发声机制、
弦振动方程等方面有重要应用。
电磁波的发射与接收
03
在无线电通信和雷达技术中,信号的发射和接收都涉及到电磁
详细描述
简谐运动的位移公式为x=A*sin(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公式用于描述简 谐运动物体在任意时刻的位置变化。
简谐运动的速率公式
总结词
描述简谐运动物体速度大小的公式
详细描述
简谐运动的速率公式为v=A*ω*cos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相角。该公 式用于描述简谐运动物体在任意时刻的速度大小。
简谐运动的加速度公式
总结词
描述简谐运动物体加速度大小的公式
详细描述
简谐运动的加速度公式为a=A*ω^2*sin(ωt+φ),其中A为振幅, ω为角频率,t为时间,φ为初相角。 该公式用于描述简谐运动物体在任意 时刻的加速度大小。
简谐运动的能量定理
总结词
描述简谐运动物体能量变化的定理
详细描述
简谐运动的能量定理指出,一个做简谐运动的物体,其振动能量E与振幅A的平方成正 比,即E=1/2*k*A^2,其中k为弹簧的劲度系数。该定理用于描述简谐运动物体能量的
受迫振动与共振
受迫振动的定义
受迫振动是指振动物体受到周期性外力作用下的振动,其振动频率与外力频率相同或相近 。
共振的原理
大一简谐运动知识点归纳

大一简谐运动知识点归纳简谐运动是物理学中一个重要的概念,它是指物体在受到一个恢复力(即与偏离平衡位置成正比的力)作用下以一定频率做往复振动的运动。
简谐运动具有许多特点和规律,本文将对大一学生需要掌握的简谐运动知识点进行归纳和总结。
一、简谐运动的基本特点简谐运动的基本特点包括:振动物体的周期、频率、振幅和相位。
周期指的是一个完整振动所需要的时间,通常用T表示,单位是秒。
频率指的是单位时间内完成的振动次数,通常用f表示,单位是赫兹(Hz)。
振幅表示振动物体偏离平衡位置的最大距离。
相位表示振动物体当前所处的状态。
二、简谐运动的描述简谐运动可以通过各种方式进行描述。
其中,最常用的是通过位移-时间图、速度-时间图和加速度-时间图。
位移-时间图是一条曲线,横轴表示时间,纵轴表示位移,它能够直观地展示振动物体的运动情况。
速度-时间图和加速度-时间图同样是使用时间作为横轴,但纵轴分别表示速度和加速度。
三、简谐运动的数学表示简谐运动可以通过使用正弦函数或余弦函数进行数学表示。
设物体的位移为x,时间为t,角频率为ω,初相位为φ,则简谐运动的数学表示可以写为:x = A * sin(ωt + φ)或x = A * cos(ωt + φ)其中,A表示振幅,ω表示角频率,φ表示相位。
这两种表示方式是等效的,可以根据需要选择其中一种进行使用。
四、简谐运动的能量简谐运动的能量由势能和动能组成。
势能是指振动物体由于位置发生变化而具有的能量,动能是指振动物体由于速度发生变化而具有的能量。
在简谐运动中,势能和动能之间相互转化,总能量不变。
五、简谐运动的共振共振是指在外力作用下,当物体的振动频率与外力频率接近或相等时,振幅达到最大的现象。
共振可以放大物体的振动,使其接收到更多的能量。
然而,如果超过物体的势能极限,共振可能会导致物体破坏。
六、简谐运动的应用简谐运动在生活和工程中有着广泛的应用。
例如,钟表的摆锤运动、弹簧振子的振动、音叉的振动等都是简谐运动的实例。
大学物理简谐运动-振幅-周期和频率-相位讲义省公开课获奖课件市赛课比赛一等奖课件

第五版
3 弹簧振子旳运动分析
F
m
Noo
x
x
Image F kx ma
得 d2 x 2 x
dt 2
令 2 k
m 即 a 2 x
具有加速度 a 与位移旳大小x成正比,而方
向相反特征旳振动称为简谐运动
第九章 振 动
8
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
解方程
d2 x 2 x
第九章 振 动
2
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
提琴弦线旳振动
弓
琴码
•
5 26 3
•
第九章 振 动
3
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
2 简谐振动
简谐运动 最简朴、最基本旳振动
简谐运动
合成 分解
复杂振动
谐振子 作简谐运动旳物体
第九章 振 动
4
物理学
9-1 简谐运动 振幅 周期和频率 相位
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
一 简谐运动
1 机械振动
a 定义:物体或物体旳某一部分在一定位置
附近来回往复旳运动 b 实例:
平衡位置
心脏旳跳动,
钟摆,乐器, 地震等
c 周期和非周期振动
第九章 振 动
1
物理学
9-1 简谐运动 振幅 周期和频率 相位
第五版
口琴旳发音机理
? ? 1 2 3 4 5 6 7 76 5 4 32 1
A
xt图
Tt
T 2
第九章 振 动
12
(完整版)简谐运动

简谐运动一、弹簧振子1.弹簧振子图11-1-1如图11-1-1所示,如果球与杆或斜面之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。
2.平衡位置振子原来静止时的位置。
3.机械振动振子在平衡位置附近所做的往复运动,简称振动。
二、弹簧振子的位移—时间图像1.振动位移从平衡位置指向振子某时刻所在位置的有向线段。
2.建立坐标系的方法以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。
一般规定小球在平衡位置右边(或上边)时,位移为正,在平衡位置左边(或下边)时,位移为负。
3.图像绘制用频闪照相的方法来显示振子在不同时刻的位置。
三、简谐运动及其图像1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。
2.特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。
弹簧振子的运动就是简谐运动。
3.简谐运动的图像(1)形状:正弦曲线,凡是能写成x=A sin(ωt+φ)的曲线均为正弦曲线。
(2)物理意义:表示振动的质点在不同时刻偏离平衡位置的位移,是位移随时间的变化规律。
当堂达标1.(多选)下列运动中属于机械振动的是()A.树枝在风的作用下运动B.竖直向上抛出的物体的运动C.说话时声带的运动D.爆炸声引起窗扇的运动2.(多选)关于简谐运动的图像,下列说法中正确的是()A.表示质点振动的轨迹,是正弦或余弦曲线B.由图像可判断任一时刻质点相对平衡位置的位移方向C.表示质点的位移随时间变化的规律D.由图像可判断任一时刻质点的速度方向3.(多选)如图1所示,弹簧振子在a、b两点间做简谐运动,当振子从最大位移处a向平衡位置O运动过程中()A.加速度方向向左,速度方向向右B.位移方向向左,速度方向向右C.加速度不断增大,速度不断减小D.位移不断减小,速度不断增大4.卡车在水平道路上行驶,货物随车厢上下做简谐运动而不脱离底板,设向下为正方向,其振动图像如图2所示,则货物对底板压力小于货物重力的时刻是()A.时刻t1B.时刻t2C.时刻t4D.无法确定5.一简谐运动的图像如图4所示,在0.1~0.15 s这段时间内()图4A.加速度增大,速度变小,加速度和速度的方向相同B.加速度增大,速度变小,加速度和速度方向相反C.加速度减小,速度变大,加速度和速度方向相同D.加速度减小,速度变大,加速度和速度方向相反6 (1)(多选)弹簧振子做简谐运动,振动图像如图5所示,则下列说法正确的是()图5A.t1、t2时刻振子的速度大小相等,方向相反B.t1、t2时刻振子的位移大小相等,方向相反C.t2、t3时刻振子的速度大小相等,方向相反D.t2、t4时刻振子的位移大小相等,方向相反(2)如图6所示,简谐运动的图像上有a、b、c、d、e、f六个点,其中:图6①与a点位移相同的点有哪些?②与a点速度相同的点有哪些?③图像上从a点到c点,质点经过的路程为多少?7.(1) (多选)弹簧振子以O点为平衡位置,在水平方向上的A、B两点间做简谐运动,以下说法正确的是()图7A.振子在A、B两点时的速度为零位移不为零B.振子在通过O点时速度的方向将发生改变C.振子所受的弹力方向总跟速度方向相反D.振子离开O点的运动总是减速运动,靠近O点的运动总是加速运动E.振子在A、B两点时加速度不相同(2)如图8所示,一轻质弹簧上端系于天花板上,一端挂一质量为m的小球,弹簧的劲度系数为k,将小球从弹簧为自由长度时的竖直位置放手后,小球做简谐运动,则:①小球从放手运动到最低点,下降的高度为多少?②小球运动到最低点时的加速度大小为多少?8、多选)如图11-1-10所示为某质点做简谐运动的图像,若t=0时,质点正经过O点向b点运动,则下列说法正确的是()图11-1-10A.质点在0.7 s时,正在背离平衡位置运动B.质点在1.5 s时的位移最大C.1.2~1.4 s时间内,质点的位移在增大D.1.6~1.8 s时间内,质点的位移在增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t
t2
t1
x
A
a
b
Ab
A2
t
x
o
A
v
π
A
t π 3 T 1 T
0
A 2
Aa
A
3
2π 6
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
2)对于两个同频率的简谐运动,相位差表示它们间步调 上的差异.(解决振动合成问题)
x1 A1 cos(t 1) x2 A2 cos(t 2 )
物理学教程 (第二版)
x t 用旋转矢量图画简谐运动的
图
x A
x x Acos(t ) π
A
4
*
*
**
O
t O * T T * 3T T 5T
4* 2* 4
4
-A
-A
*
T 2π (旋转矢量旋转一周所需的时间)
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
x t 用旋转矢量图画简谐运动的
3 简5谐– 运1 简动谐的运动能简量谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
例 质量为 0.10kg 的物体,以振幅 1.0102 m 作简谐运
动,其最大加速度为 4.0m s2,求:
(1)振动的周期;
解:
amax A 2
amax 20s1
A
T 2π 0.314s
(2)通过平衡位置的动能;
Ep 1.0103J
由
Ep
1 2
k x2
1 2
m 2 x2
x2
2Ep
m 2
0.5104 m2
x 0.707cm
4-3 两5 –个1 简同谐方运动向简同谐频运动率的简振幅谐周运期动频的率和合相成位
物理学教程 (第二版)
一 两个同方向同频率简谐运动的合成
x1 A1 cos(t 1)
x2 A2 cos(t 2 )
t 1.0s 代入上式得
x 0.069m
F kx m 2x 1.70103 N
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
(2)由起始位置运动到 x 0.04m处所需要的最短时
间.
x/m
0.08 0.04 o 0.04 0.08
法一 设由起始位置运动到 x 0.04m 处所需要的
第8章 简谐振动和简谐波 5 – 1 简谐运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
任一物理量在某一定值附近往复变化均称为振动.
机械振动 物体围绕一固定位置往复运动.
运动形式: 直线、平面和空间振动.
例如一切发声体、心脏、海浪起伏、地震以及晶体 中原子的振动等.
周期和非周期振动
简谐运动 最简单、最基本的振动.
0.08 0.04 o 0.04 0.08
解 A 0.08m
2π π s1
T2
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
A 0.08m
2π π s1
T2
t 0, x 0.04m 代入 x Acos(t )
0.04 0.08cos
物理学教程 (第二版)
以弹簧振子为例
F kx x Acos(t )
v A sin(t )
Ek
1 2
mv2
1 2
m 2 A2
sin2 (t
)
Ep
1 2
k x2
1 2
k A2
cos2 (t
)
2 k /m
E
Ek
Ep
1 2
k A2
A(2 振幅的动力学意义)
线性回复力是保守力,作简谐运动的系统机械能守恒
4
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
例2 一质量为 0.01kg的物体作简谐运动,其振幅
为 0.08m,周期为 4s ,起始时刻物体在 x 0.04m
处,向 Ox轴负方向运动(如图).试求 (1)t 1.0s时,物体所处的位置和所受的力;
x/m
2π
T
t t 时
A
t
以 o为 原点旋转矢 A 量 的端点
x 在 轴上的
o
x x0 x
x Acos(t )
投影点的运 动为简谐运 动.
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
x Acos(t )
旋转 矢量A的
x 端点在
轴上的投 影点的运 动为简谐 运动.
物理学教程 (第二版)
A
(2)求物体从初位置运动到第一次经过 处时的速度;
2
解 x Acos(t ) Acos(t)
cos(t) x 1
A2
t π 或 5π
33
由旋转矢量图可知 t π
3
v A sint
A
o A Ax
2
0.26m s1 (负号表示速度沿 O轴x负方向)
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
(t 2 ) (t 1) 2 1
0同步
π 反相
超前
为其它 落后
x
x
x
o
o
o
t
t
t
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
例1 如图所示,一轻弹簧的右端连着一物体,弹簧的劲度
系数 k 0.72N m,1 物体的质量 m 20g .
(1)把物体从平衡位置向右拉到 x 0.05m处停下后再释
放,求简谐运动方程;
(2)求物体从初位置运动到第一次经过 A 处时的速度; 2
(3)如果物体在 x 0.05m 处时速度不等于零,而是具有
向右的初速度 v0 0.30m s,1求其运动方程.
x/m
o 0.05
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
2 振幅
A xmax
3 周期、频率
x Acos(t )
x xt图
A
o
Tt
T
A
2
Acos[(t T ) ]
周期 T 2π
频率 1
T 2π
圆频率 2π 2π
T
弹簧振子周期
注意
T 2π m
k
周期和频率仅与振动系 统本身的物理性质有关
8 简5谐– 1运简动谐运旋动 简转谐矢运动量的振简幅谐周期运频动率能和相量位
物理学教程 (第二版)
解 (1) k 0.72N m1 6.0s1
m
0.02kg
A
x02
v02
2
x0
0.05m
tan v0 0 x0
0 或π
oAx
由旋转矢量图可知 0
x Acos(t ) 0.05cos6.0t m
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
4 常数 A和 的确定
x Acos(t )
v A sin(t )
物理学教程 (第二版)
初始条件 t 0 x x0 v v0
x0 A cos v0 Asin
A
x02
v02
2
tan v0 x0
对给定振动系统,周期由系统本身性质决定, 振幅和初相由初始条件决定.
8 简5谐– 1运简动谐运旋动 简转谐矢运动量的振简幅谐周期运频动率能和相量位
图
物理学教程 (第二版)
T 2π (旋转矢量旋转一周所需的时间)
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
讨论 ➢ 相位差:表示两个相位之差 .
1)对同一简谐运动,相位差可以给出两运动状态间变化
所需的时间.
(t2 ) (t1 )
x Acos(t1 ) x Acos(t2 )
π
3
v0 0
π
3
A
π3
0.08 0.04 o 0.04
x/m
0.08
x 0.08cos(π t π ) 23
二 旋5 转– 1矢简谐量运动 简谐运动的振幅 周期 频率和相位
物理学教程 (第二版)
m 0.01kg
0.08 0. t π ) 23
物理学教程 (第二版)
讨论 A A12 A22 2A1A2 cos(2 1) 1)相位差 2 1 2kπ (k 0,1, 2, )
xx
o
A1
o
A2
A
T
t
A A1 A2
2 1 2kπ
简谐运动
合成 分解
复杂振动
谐振子: 作简谐运动的物体.
8 简5谐– 1运简动谐运旋动 简转谐矢运动量的振简幅谐周期运频动率能和相量位
一 简谐运动 弹簧振子的振动
物理学教程 (第二版)
l0 k
A
x0 F 0
m
x
o
A
8 简5谐– 1运简动谐运旋动 简转谐矢运动量的振简幅谐周期运频动率能和相量位
Fm
物理学教程 (第二版)
讨论 已知 t 0, x 0, v 0求
0 Acos
π
2
v0 A sin 0
sin 0 取 π
2
x Acos(t π )
2
x
A
o
A
v
x
o
Tt
T 2
8 简5谐– 1运简动谐运旋动 简转谐矢运动量的振简幅谐周期运频动率能和相量位