北京化工大学化工原理离心泵性能实验报告

合集下载

化工原理实验~离心泵性能试验

化工原理实验~离心泵性能试验

化工原理实验实验名称:离心泵性能试验 实验目的:1、 了解离心泵的构造,掌握其操作和调节方法。

2、 测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

3、 熟悉孔板流量计的构造、性能及安装方法。

4、 测定孔板流量计的流量系数。

5、 测定管路特性曲线。

实验设备:离心泵性能试验装置一套 实验原理:1、 离心泵特性曲线的测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。

由于实际情况中流体在管内流动时必然会受到阻力而产生阻力损失,从而使实际压头要比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He~Q 、N~Q 和η~Q 三条曲线称为离心泵的特性曲线。

根据此曲线也可以求出泵的最佳操作范围。

(1)、泵的扬程HeHe=H 压力表+H 真空表+H 0 式中,H 压力表——泵出口出的压力,m H 2O 。

H 真空表——泵入口出的真空度,m H 2OH 0——压力表和真空表测压口之间的垂直距离,H 0=0.3m 。

(2)、泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为流量压头图1、离心泵理论压头与实际压头η=Ne/N 轴Ne=QHe ρ/102 式中, Ne ——泵的有效功率,kW Q ——流量,m 3/sHe ——扬程,mρ——流体密度,kg/m 3由泵轴输入离心泵的功率N 轴为 N 轴=N 轴 η电η转式中,N 轴——电机的输入功率,kW η电——电机效率,取0.9η转——传动装置的传动效率,一般取1.0 2、 孔板流量计孔流系数的测定孔板流量计的构造原理如图2所示,在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。

孔板流量计时利用流体通过锐孔的节流作用,使流速增大,压强减少,造成孔板前后压强差,作为测量依据。

离心泵综合实验报告

离心泵综合实验报告
广 东石 油化 工学 院
化工原理 实验报告 化工基础
离心泵综合实验
班 姓 学
级 名ห้องสมุดไป่ตู้号
同组人员 实验日期 指导教师 成 绩
第一部分
一、实验目的
预习报告
二、实验原理
1
三、实验设备流程
四、实验步骤及注意事项
2
第二部分
实验数据记录及数据处理
一、仪器设备及实验材料主要参数
二、实验数据记录与实验结果处理
4
(三)管路特性测定实验
1、管路特性测定实验数据及实验结果列表 序号 1 2 3 4 5 6 7 8 9 10 2、计算举例
5
三、实验曲线
1. 流量计的流量与压差关系曲线
. 流量计的流量与压差关系曲线
6
2. 流量计的流量系数与雷诺数关系曲线
流量计的流量系数与雷诺数关系曲线
7
3. 离心泵特性曲线与管路曲线
(一)离心泵性能测定实验
1、离心泵性能测定实验数据及实验结果列表 水温 序 号 1 2 3 4 5 6 7 8 9 10 11 2、计算举例 ℃ 水密度 ρ = kg/m³ 高度差 h0 = m
3
(二)流量计校核实验
1、流量计校核实验数据及实验结果列表
序号 1 2 3 4 5 6 7 8 9 10 11 2、计算举例
8
第三部分
一、结果分析与讨论
实验结果分析与讨论
二、思考题
9

离心泵性能实验报告

离心泵性能实验报告

北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号: 2010姓名:同组人:实验日期:一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆、电机输入功率Ne 以及流量Q (t V ∆∆/)这些参数的关系,根据公式0e H H H H ++=压力表真空表、转电电轴ηη••=N N 、102e ρ⋅⋅=He Q N 以及轴N Ne =η可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数ρp u C ∆=2/0与雷诺数μρdu =Re 的变化规律作出Re 0-C 图,并找出在Re 大到一定程度时0C 不随Re 变化时的0C 值;最后测量不同阀门开度下,泵入口真空表真P 、泵出口压力表压P 、孔板压差计两端压差P ∆,根据已知公式可以求出不同阀门开度下的Q H -e 关系式,并作图可以得到管路特性曲线图。

二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。

②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

③熟悉孔板流量计的构造、性能及安装方法。

④测定孔板流量计的孔流系数。

⑤测定管路特性曲线。

三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。

由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q 、N-Q 和η-Q 三条曲线称为离心泵的特性曲线。

另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。

(1)泵的扬程He :e 0H H H H =++真空表压力表v1.0 可编辑可修改式中:H 真空表——泵出口的压力,2mH O ,H 压力表——泵入口的压力,2mH O0H ——两测压口间的垂直距离,0H 0.85m = 。

离心泵性能实验报告

离心泵性能实验报告

北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号:2010姓名:同组人:实验日期:2012.10.7一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P 、电机输入功率Ne 以及流量Q(V/t )这些参数的关系,根据公式H e H 真空表H 压力表H0、N轴N 电电转、 Ne Q He以及Ne 可以得出102N 轴离心泵的特性曲线;再根据孔板流量计的孔流系数C 0u 0 / 2 p 与雷诺数Re du的变化规律作出C0Re 图,并找出在Re 大到一定程度时 C 0不随Re变化时的 C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P ,根据已知公式可以求出不同阀门开度下的H e Q 关系式,并作图可以得到管路特性曲线图。

二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。

②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

③熟悉孔板流量计的构造、性能及安装方法。

④测定孔板流量计的孔流系数。

⑤测定管路特性曲线。

三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。

由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、 N-Q 和η-Q 三条曲线称为离心泵的特性曲线。

另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。

(1)泵的扬程He:H e H 真空表H 压力表H 0式中: H 真空表——泵出口的压力,mH 2O ,H 压力表——泵入口的压力,mH 2 OH 0——两测压口间的垂直距离,H 00.85m。

(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为:Ne Q HeN 轴, Ne102式中 Ne ——泵的有效效率,kW ;Q ——流量, m 3/s ; He ——扬程, m ;3由泵输入离心泵的功率N 轴为: N 轴 N 电电 转式中: N 电 ——电机的输入功率, kW电 ——电机效率,取0.9;转 ——传动装置的效率,一般取1.0;2.孔板流量计空留系数的测定在水平管路上装有一块孔板, 其两侧接测压管, 分别与压差传感器两端连接。

离心泵性能综合实验(化工原理实验)

离心泵性能综合实验(化工原理实验)

离心泵性能综合实验一、实验目的1、观察离心泵汽蚀、气缚现象,了解汽蚀、气缚现象产生原因及其防止方法;2、学习工业上流量、功率、转速、压力和温度等参数的测量方法,了解转子流量计的工作原理;3、测定离心泵特性曲线,绘制出扬程、功率和效率与流量的关系曲线图。

二、实验原理1、气缚现象离心泵靠离心力输送液体。

离心力大小,除与叶轮直径及叶轮旋转速度有关外,还与流体重度有关。

若离心泵启动时,泵壳内存在大量空气,则由于空气的重度远远低于液体的重度,叶轮旋转所造成的离心力也很小,导致泵入口与水池液面间的压差太小,不能把水池内液体抽压到叶轮中心,就会发生离心泵空转却送不出液体的状况,这种现象称“气缚”。

所以,离心泵若安装在液面上方时,启动前必须先使泵体及吸入管路中充满液体(所谓“灌泵”)。

同时,在运转过程中也要防止外界空气大量漏入,以免产生气缚。

2、汽蚀现象离心泵之所以能吸取液体,是由于泵的叶轮旋转时,将液体抛向外沿,而中心形成真空,而贮槽液面上的压力却为大气压,因此,泵就依靠此压差将液体压入泵内,如果输送的是水,并设叶轮进口处为绝对真空,管路阻力为零,液面上为一个标准大气压,那么最大几何吸上高度也不超过10.33米。

图1离心泵吸上真空度参照图1,列0~0,1~1截面间柏努利方程式:0120112s f p p u Z h g g g ρρ-⎛⎫=-++∑ ⎪⎝⎭(1)式中s Z 为几何安装高度。

设:01s p p H gρ-=,s H 为吸上真空高度,则012112o s s f p p u H Z h g gρ--==++∑(2)由此可知,1p 愈小,s H 愈大。

但当1p 低达v p (输送液体的饱和蒸汽压)时,液体就要汽化,就产生汽蚀现象,使泵无法工作,所以对1p 的降低幅度应有限制。

由上式可见,1p 随着泵的几何安装高度s Z 提高而降低,故最终应对泵的几何安装高度加以限制。

在离心泵的铭牌(性能表)上一般都列有允许吸上真空高度s H 允许和汽蚀余量h ∆允许,二者均是对泵的安装高度加以限制,以避免汽蚀现象发生。

化工原理实验离心泵

化工原理实验离心泵

u u =C 2 gh
2 0 2 1
(2—7)
对于不可压缩流体,根据连续性方程式又可得:
u1 =
s0 s1
(2—8)
将式(2—8)代入式(2—7)整理后得:
u0 =
c 2gh s0 2 1 ( ) s1
(2—9)
令 c0
=
c s0 2 1 ( ) s1
则式(2—9)简化为:
u0 = c0
根据u0 和
制作人
杨小伟 周坤 牛娅丽 贾海峰 九九化工系
单位
指导教师
梁英华 李国江
泵的扬程用下式计算
H e = H 压力表 + H 真空表 u u + h0 + 2g
2 2 2 1
(2—1)
式中: 压力表 —泵出口处的压力表读数[m水柱]; H
H 真空表
—泵入口处的真空表读数[m水柱];
h0—压力表和真空表测压接口之间的垂直距离[m]; 本实验的h =0.35m。 0
u 2 —压出管(Φ42.25ⅹ3.25mm)内流体的流速[m/s]
2 gh
(2---10)
s0 即可算出流体的体积流量
m3 [ s
]
2 gR ( ρ R ρ )
Vs = u0 S 0 = c0 S 0 2 gh

Vs = c0 s0
ρ
式中: R—U型压差计的读数[m];
ρ R —压差计中指示液的密度 [ m 3 s ];
——孔流系数。它由孔板锐孔的形状, 测压口的位置、孔径与管径比和雷诺准 数所决定。具体数值由实验确定。当 d 0 一定,Re准过 某个数值后, 就接近与 定值 工业上定型的孔板流量计都规定在c为常数的流动 条件下使用。

化工原理实验报告泵性能测试

化工原理实验报告泵性能测试

Re 0 11618 15817 21273 24966 31783 38389 43679 50574 55486
C0 0 0.7140 0.7108 0.7731 0.6880 0.6979 0.7053 0.6912 0.6979 0.6857
以第 2 组数据为例,计算过程如下: T 为 T1、T2 的平均值: T
化工原理实验
实验二 离心泵性能实验
课程名称: 班 级: 同 组 人: 化工原理实验 化工 1001 李泽州、杨政鸿 实验日期: 2012.11.16 姓 名: 陈双全 学 号:2010011018
一、实验目的及任务
1、了解离心泵的构造,掌握期操作和调节方法。 2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3、熟悉孔板流量计的构造、性能及安装方法。 4、测定孔板流量计的孔流系数。 5、测定管路特性曲线。
表 2:管路特性曲线测定原始记录表 在此此测量过程中 T=17.3℃,近似不变。
f
Hz 20 26 32 38 44 50
Δp
kPa 0.4 0.9 1.5 2.3 3.1 4
组1 P 压力
MPa 0.018 0.042 0.061 0.092 0.121 0.16
组2
组3
P 真空 MPa 0.003 0.004 0.005 0.005 0.006 0.006 Δp kPa 1.2 2.7 4.5 6.6 9.2 12 P 压力 MPa 0.021 0.032 0.051 0.071 0.095 0.12 P 真空 MPa 0.003 0.004 0.004 0.005 0.009 0.018
T1 T2 17.4 0 C ; 2
μ=1.005 mPa.s T 水=20℃,查表得ρ=998.2 kg.m-3 -3 T 水=10℃, 查表得ρ=999.7 kg.m μ=1.305 mPa.s -3 T=17.4℃时 : ρ=998.33 kg.m μ=1.083 mPa.s 用内插法计算:当温度为 T 时的ρ=(30-T)*998.2/10-(20-T)*999.7/10 μ= (30-T)*1.005/10-(20-T)*1.305/10 流量: Vs

离心泵综合实验报告

离心泵综合实验报告

离心泵综合实验报告篇一:XX化工原理实验报告(离心泵性能实验)化工原理实验报告(离心泵性能实验)班级:姓名:同组人:XX年11月一、报告摘要本次实验通过测量离心泵工作时,泵入口真空表真P、泵出口压力表压P、孔板压差计两端压差?p、电机输入功率Ne以及流量Q这些参数的关系,根据公式NeQHe??=He?H压力表+H真空表+H0N轴=N电?电?转Ne=102N轴、、以及C0?u0/可以得出离心泵的特性曲线;再根据孔板流量计的孔流系数与雷诺数Re??du?的变化规律作出C0-Re图,并找出在Re大到一定程度时C0不随Re变化时的C0值;最后测量不同阀门开度下,泵入口真空表真P、泵出口压力表压P、孔板压差计两端压差?p,根据已知公式可以求出不同阀门开度下的He-Q关系式,并作图可以得到管路特性曲线图。

二、目的及任务①、了解离心泵的构造,掌握其操作和调节方法。

②、测定离心泵在恒定转速下的特征曲线,并确定泵的最佳工作范围。

③、熟悉孔板流量计的构造、性能及安装方法。

④、测定孔板流量计的孔流系数。

⑤、测定管路特征曲线。

三、实验原理1、离心泵特征曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图中的曲线。

由于流体流经泵是,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等等,因此,实际压头比理论压头小,且难以通过计算求得,因此常通过实验方法,直接测定其参数间的关系,并将测出的He-Q,N-Q,η-Q三条曲线称为离心泵的特性曲线。

另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。

(1)、泵的扬程He式中He?H压力表+H真空表+H0H压力表H真空表——泵出口处的压力,mH2O——泵入口处的真空度,mH2OH0——压力表和真空表测压口之间的垂直距离,H0=0.85m。

(2)、泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为?=NeN轴Ne=QHe?102式中 Ne——泵的有效功率,kW:3Q——流量,m/s;He——扬程,m;3kg/mρ——流体密度,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011精品北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:姓名:学号:实验日期:同组人:实验名称:离心泵性能实验本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。

实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。

实验中直接测量量有P真空表、P压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。

本实验数据由excel处理,所有图形的绘制也由excel来完成。

一、实验目的及任务①了解离心泵的构造,掌握其操作和调节方法。

②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

③熟悉孔板流量计的构造、性能及安装方法。

④测定孔板流量计的孔流系数。

⑤测定管路特性曲线。

二、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。

由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q 和η-Q三条曲线称为离心泵的特性曲线。

另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。

(1)泵的扬程HeHe = H压力表+ H真空表+ H0式中:H真空表——泵出口的压力,m H2O;,H压力表——泵入口的压力,m H2O;H0——两测压口间的垂直距离,H0= 0.85m 。

(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为η=Ne N轴Ne=Q⋅He⋅ρ102式中:Ne——泵的有效效率,kW;Q——流量,m3/s;He——扬程,m;ρ——流体密度,kg/ m3(3)N轴为由泵输入离心泵的功率N轴为N轴= N电•η电•η传式中:N电——电机的输入功率,kWη电——电机效率,取0.9;η传——传动装置的效率,取1.0;2.孔板流量计空留系数的测定孔板流量计结构如图所示:在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器两端连接。

孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。

若管路直径d1,孔板锐孔直接d0,流体流经孔板后形成缩脉的直径为d2,流体密度ρ,孔板前测压导管截面处和缩脉截面处的速度和压强分别为u1、u2和p1、p2,根据伯努利方程,不考虑能量损失,可得:u22−u12=p1−p2=gℎ或u22−u12=2gℎ由于缩脉的位置随流速的变化而变化,故缩脉处截面积S2难以知道,孔口的面积为已知,且测压口的位置在设备制成后也不改变,因此,可用孔板孔径处的u0代替u2,考虑到流体因局部阻力而造成的能量损失,用校正系数C后则有u22−u12=C2gℎ对于不可压缩流体,根据连续性方程有u1=u0S0 S1经过整理后,可得:u0=2gℎ1−(0S1)2令C0=1−(0S1)2则可简化为:u0=C02gℎ根据u0和S2可算出体积流量V s为V s=u0S0=C0S02gℎ或V S=C0S02∇p ρ式中:V s——流体的体积流量,m3/s;△p——孔板压差,Pa;S0——孔口面积,m2;ρ——流体的密度,kg/ m3;C0——孔流系数。

孔流系数的大小由孔板的形状,测压口的位置,孔径与管径比和雷诺数共同决定,具体数值由实验确定。

当d0/d1一定,雷诺数Re超过某个数值后,C0就接近于定值。

通常工业上定性的孔板流量计都在C0为常数的流动条件下使用。

三、实验装置流程图图3.离心泵性能实验装置和流程1、水箱2、离心泵3、涡轮流量计4、管路切换阀5、孔板流量计6、流量调节阀7、变频仪四、操作要点1.检查电机和离心泵是否运转正常。

打开电机电源开关,观察电机和离心泵的运转情况,如无异常,可切断电源,准备实验。

2.在进行实验前,首先要灌泵,排出泵内的气体。

灌泵完毕后,关闭调节阀及灌水阀即可启动离心泵,开始实验。

3.实验时,逐渐打开调节阀以增大流量,并用计量槽计量液体流量。

当流量大时,应当注意及时按动秒表和迅速移动活动接管,并多次测取几次数据。

4.为防止因水面波动而引起的误差,测量时液位计高度差不小于200mm。

5.测取10组数据并验证其中几组数据,若基本吻合后,可以停泵,同时记下设备的相关数据(如离心泵型号、额定流量、扬程和功率等)。

6.测定管路特性曲线时,固定阀门开度,改变频率,测取8~10组数据,并记录。

7.实验结束,停泵,清理现场。

六、原始数据及其处理原始数据表液位高度差ΔL=0.2m孔板流量计:d0=18mm数据处理:1)泵的特性曲线实验(以第二组数据为例): 水温T=30.1℃,此时水密度为995.6kg/m 3He =H 压力表+H 真空表+H 0=21.8+0.5+0.2=22.5m0.405Kw0.19.045.0N =⨯⨯==转电电轴ηηN 8.15%%100405.0033.0=⨯==轴N N e η2)孔板流量计孔留系数的测定(以第二组数据为例):水温T=28.3℃,此时水密度为996.146kg/m 3,黏度为0.8306mPa •sKw He Q Ne 033.010236006.9955.2254.0102=⨯⨯⨯=⋅⋅=ρ3)管路特性曲线(以第二组数据为例):He =H 压力表+H 真空表+H 0=12.7−1.9+0.2=11.0m 经计算机数据处理后得到下表:1.q v =6.0(m 3/h)()()24779.4810306.8146.996851954.0024.0Re 715049543.0146.996100015.091.02018.014.3360098.04242851954.036000242.014.398.044u 4220022=⨯⨯⨯===⨯+⨯⨯⨯⨯=∆=∆==⨯⨯⨯==-μρρπρπdu p d Q p u C d q s m v2.q v=4.0(m3/h)3.f=40Hz七、实验结论及误差分析1. 进行数据处理后利用Excel软件进行关系曲线的绘制,得到结果如下:1)泵的特性曲线:2)孔流系数C 0−Re 关系曲线图3)管路特性曲线2.实验结果分析:1)图1:转速恒定时,随着流体流量的增大,离心泵的扬程逐渐减小,且减小的越来越快,轴功率增大。

由图可确定该该泵的最佳工作范围是3.95—5.90(m 3/h)。

2)图2:在一定范围内,孔流系数Co 的值大小接近,可以近似认为是定值。

在完全湍流区,孔流系数C0随雷诺数Re 的变化不大,此时可认为孔流系数与雷诺数无关,即当雷诺数Re 大于某一值时Co 为一定值。

本实验最终测得Co 的值稳定在0.704,与真实值存在一定的误N-QHe-Qη-QQ=6.0F=40HzF=50HzQ=4.0差。

理论曲线中,Co-Re曲线应当随Re的增加而呈现下降趋势,最后趋于定值。

由于误差影响,,实际测定的曲线会出现一定波动。

3)图3:由管路特性曲线可以看出,随流体流量的增加,管路的压头有递增的趋势;当频率不变时,开度越大,H越小;由He-Q曲线中可以看出,转速越快,扬程也会偏高。

可以从He-Q和H-Q两曲线的交点求出离心泵在频率为50Hz或者40Hz时的工作点。

3.误差分析本次实验误差总体偏小,部分数据测量计算结果与理论值仍有一定偏差,总体较为成功。

实验误差分析如下:1)实验前,管内空气可能未排尽,导致实验时压降值的读数不准确;2)压差计的读数一直在小范围波动,未能完全稳定,只能读出一段时间内的压差求平均值,与真实压降存在数值偏差,从而出现误差。

3)实验使用水在蓄水池中存放时间过久且不纯净。

其黏度、密度不能保证与理想状态完全相同。

4)实验过程中,液体流动会与管壁产生摩擦,产生热量,但管道内各处温度不能保证完全相同。

但检测温度仅为检测点处温度,与实际存在一定偏差。

八、思考题1.根据泵的工作原理,在启动前为何要关闭调节阀6?答:离心泵启动流量最小时,启动电流最小,有利于降低泵启动电流,而漩涡泵属于容积式泵,若启动时出口阀没有关闭,泵出口压力会很高,严重时回打坏选涡轮泵的叶轮。

2、当改变流量调节阀开度时,压力表和真空表的读数按什么规律变化?答:当改变流量调节阀开度,流量增加,由柏努力方程可推知,压力表和真空表的读数都逐渐减小。

3、用孔板流量计测流量时,应根据什么选择孔口尺寸和压差计的量程?答:应根据测量所要求的精度值和能量损失的要求,雷诺数Re等方面来选择孔口尺寸和压差计的量程。

4、试分析气缚现象与汽蚀现象的区别。

答:泵在运转时,吸入管路和泵的轴心常处于负压状态,若管路及轴封密封不良,则因漏入空气而使泵内流体的平均密度下降。

若平均密度下降严重,泵将无法吸上液体,此成为气缚现象;而汽蚀现象是指泵的安装位置过高,使叶轮进口处的压强降至液体的饱和蒸汽压,引起液体部分气化的现象,汽蚀现象会使泵体振动并发生噪声,流量、扬程和效率都明显下降,严重时甚至吸不上液体还会对金属材料发生腐蚀现象,在这种情况下导致叶片过早损坏。

5.根据什么条件来选择离心泵?a.先根据所输送的液体其性质及操作条件来确定泵的类型;b.根据所要求的流量与压头确定泵的型号;c.若被输送的液体的粘度与密度与水相差较大时,应核算泵的特性参数:流量、压头和轴功率。

6.从你所得的特性曲线中分析,如果要增加该泵的流量范围,你认为可采取哪些措施?答:可以减少泵所需要传送的量程,还可以减小液体的粘度,改变液体,使用比重较小的液体。

7.若要实现计算机在线测控,应如何选择测试传感仪表?答:用漩涡式测压计即可得到有效数据。

相关文档
最新文档