平面汇交力系的平衡条件及例题
工程力学9 平面汇交力系的合成与平衡

2、再利用解析法求合力的大小和方向。
RX F1X F2X 17.3 20 37.3KN RY F1Y F2Y 10 34.6 44.6KN
R
R
2 x
R
2 y
37.32 44.62 58.1KN
tan R y Rx
44.6 37.3
1.1957
α=50.1°
4.平面汇交力系平衡的解析条件
平面汇交力系平衡的充要条件是其合力为零。
解析式: R
R
2 x
R
2 y
0
即:
R x Fx 0 R y Fy 0
此式称为平面汇交力系的平衡方。若一个平
衡的汇交力系中存在两个未知力,可应用这两个独立
方程求得。
F
例 3:求图示绳子BC和BD的拉力。
解:1、绳子为柔性约束,只能承受拉力,由
CB
Fx
bx
正方向
F在坐标轴上的投影正负规定:当从力F始 端的投影a到终端b的方向与投影的正向一 致时,力的投影取正值;反之,取负值。
例题1:已知F1=100N,F2=F3=150N,F4=200N,试求各力 在在坐标轴上的投影值大小。
y
F1Y=F1sin45°=100 ×0.707=70.7N
F1
F1Y
FBD 14.14KN FBC 10KN
tan
Ry Rx
Y X
为合力R与x轴所夹的锐角, 角在哪个象限由各力在轴上
投影和正负确定。
例题2:如图所示,力F1和F2汇交于O点,已知
F1=20KN,F2=40KN,试求R的大小和方向。
Ry
y
F2y
F2
R 我们可以利用解析法 求合力的大小和方向
平面汇交力系的平衡条件及例题

• 平面汇交力系平衡的充分与必要条件,也 平面汇交力系平衡的充分与必要条件,
可解析地表达为: 可解析地表达为:力系中各力在两个坐标 轴上投影的代数和分别为零。 轴上投影的代数和分别为零。
FR = ∑பைடு நூலகம்Fix + ∑ Fiy = 0 i =1 i =1
A
B
30 0
C
300
D
W
A
y
B
300
C
30 0
D
x
FCA FCB F
' T
300 300
C
W
FT
∑F
x
=0
0 ' T 0
FCB + FCA cos 30 + F cos 30 = 0
∑F
y
=0
0 ' T 0
FCA sin 30 − F sin 30 − FT = 0
FCA = 300kN
FCB = 346.4kN
n n 2 2
∑F
i =1
n
xi
=0
∑F
i =1
n
yi
=0
平面汇交力系应用举例
• 例3-2 小滑轮C铰接在三脚架ABC上,绳索 小滑轮C铰接在三脚架ABC上,绳索
绕过滑轮,一端连接在绞车上,另一端悬 挂重为W=100kN的重物。不计各构件的自 挂重为W=100kN的重物。不计各构件的自 重和滑轮的尺寸。试求AC和BC所受的力。 重和滑轮的尺寸。试求AC和BC所受的力。
§3-1-3平面汇交力系的平衡条件及应用
• 平面汇交力系平衡的充分和必要条件是: 平面汇交力系平衡的充分和必要条件是:
平面力系-平面汇交力系的简化与平衡方程(常用版)

平面力系-平面汇交力系的简化与平衡方程(常用版)(可以直接使用,可编辑完整版资料,欢迎下载)第2章平面力系192.1 平面汇交力系的简化与平衡方程 (19)2.2 力对点之矩合力矩定理 (24)2.3 力偶及其性质 (27)2.4 平面力偶系的合成与平衡方程 (30)2.5 平面一般力系的简化与平衡方程 (32)2.6 物体系统的平衡 (40)*附录Ⅱ:机械应用实例 (49)第2章平面力系本章主要介绍平面力系的简化与平衡问题,平面状态下物系平衡问题的解法。
按照力系中各力的作用线是否在同一平面内,可将力系分为平面力系和空间力系。
若各力作用线都在同一平面内并汇交于一点,则此力系称为平面汇交力系。
按照由特殊到一般的认识规律,我们先研究平面汇交力系的简化与平衡规律。
2.1 平面汇交力系的简化与平衡方程2.1.1 概述设刚体上作用有一个平面汇交力系F1、F2、…、F n,各力汇交于A点(图2-1a)。
根据力的可传性,可将这些力沿其作用线移到A点,从而得到一个平面共点力系(图2-1b)。
故平面汇交力系可简化为平面共点力系。
a )b )图2-1连续应用力的平行四边形法则,可将平面共点力系合成为一个力。
在图2-1b 中,先合成力F 1与F 2(图中未画出力平行四边形),可得力F R1,即 F R1=F 1+ F 2;再将F R1与F 3合成为力F R2,即F R2=F R1+ F 3;依此类推,最后可得F R =F 1+ F 2+…+ F n =∑F i (2-1)式中 F R 即是该力系的合力。
故平面汇交力系的合成结果是一个合力,合力的作用线通过汇交点,其大小和方向由力系中各力的矢量和确定。
因合力与力系等效,故平面汇交力系的平衡条件是该力系的合力为零。
2.1.2力在坐标轴上的投影过F 两端向坐标轴引垂线(图2-2)得垂足a 、b 、a'、b'。
线段ab 和a'b'分别为F 在x 轴和y轴上投影的大小,投影的正负号规定为:从a 到b (或从a'到b')的指向与坐标轴正向相同为正,相反为负。
第二章-1 平面汇交力系与平面力偶系

第二章-1 平面汇交力系与平面力偶系一、判别题(正确和是用√,错误和否×,填入括号内。
)2-1 平面汇交力系平衡的充分与必要的几何条件是:力多边形自行封闭。
(√)2-2 力在某一固定面上的投影是一个代数量。
(×)2-3 两个力F1、F2大小相等,则它们在同一轴上的投影也相等。
(×)2-4 一个力不可能分解为一个力偶;一个力偶也不可能合成一个力。
(√)2-5 力偶无合力、不能用一个力来等袒代替,也不能用一个力来平衡;(√)2-6 力偶无合力,也就是说力偶的合力等于零。
(×)2-7 力偶矩和力对点之矩本质上是二样的,讲的是一回事。
(×)2-8 力偶的作用效果取决于力偶矩的大小和转向。
(√)2-9 只要两力偶的力偶矩代数值相等,就是等效力偶。
(√)2-10 力偶中的两个力对同平面内任一点之矩的代数和等于力偶矩。
(√)2-11 力偶只能用力偶来平衡。
(√)2-12 平面力偶系可简化为一个合力偶。
(√)2-13 力偶可任意改变力的大小和力偶臂的长短。
(×)2-14 力偶的两力在其作用面内任意轴上的投影的代数和都等于零。
(√)2-15 若两个力F1、F2在同一轴上的投影相等,则这两个力相等,即F1 = F2。
(×)2-16 若两个力F1、F2大小相等,则在同一轴Ox上投影相等,即F1x = F2x。
(×)2-17 若两个力F1、F2大小、方向、作用点完全相同,则这两个力在任一轴上的投影相等。
(√)2-18 若两个力大小相等、方向相反,则在任一轴Ox上的投影大小相等。
(√)2-19 若两个力平行,则它们在任一轴上的投影相等。
(×)2-20 若两个力在某轴上的投影均为零,则该两力平行。
(√)2-21 图示为分别作用在刚体上A、B、C、D点的4个共面力,它们所构成的力多边形自行封闭且为平行四边形。
由于力多边形自行封闭,所以是平衡的。
《建筑力学》2.1平面汇交力系的合成与平衡

(2)建立平衡方程求解未知力FNAC、FNBC
FX FY
0 0
FNACcos60 FNBC 0 FNAC sin 60 W 0
(3)把W=10kN代入解得
FNAC=11.55kN(拉力)
FNBC=5.77kN(压力)
作业
《学习指导与练习》P25—28 填空1、2、3 单选1、2 判断4、5 计算3
平面汇交力系的平衡条件是: 该力系的合力 FR 为零。
(四)平面汇交力系的平衡 ——几何法
平面汇交力系平衡的充要条件是:力多边形自行封闭,
即
FR =0
或
F1+F2+F3+F4=0
F4
F1
O
F2
F3F1 baFra bibliotekF4F2
c
F3
d
(四)平面汇交力系的平衡 ——解析法
由几何法知:平面汇交力系平衡的必要和充分条件
是该力系的合力为零,即 F 0
而
F2 xi
F2 yi
0
则 Fxi 0 , Fyi 0
即平面汇交力系平衡的解析条件是:力系中各力在两个坐标轴
上的投影之代数和均等于零。
FX FY
0 0
练一练
求图示三角支架中杆AC和杆BC所受的力(已知重物D 重W=10 kN)。
解:(1)取铰C为研究对象,其受力图如下
练一练
例2:已知FT1= FT2=10kN,FT=14kN,如下图所示,试计 算FT1、FT2、FT在X、Y轴上的投影。
(1)F1在x、y轴上的投影 Fx1=F1=10kN Fy1=0 (2)F2在x、y轴上的投影 Fx2=0 Fy2=-F2=-20kN
(1) FT1x=-F T1cos45°=-7.07kN FT1y=-F T1sin45°=-7.07kN
2.2平面汇交力系的平衡

教师课时教案课题: 2.2平面汇交力系的平衡目的与要求: 1、能说出平面力系的分类;2、知道平面汇交力系的平衡条件及其平衡方程;3、能运用平面汇交力系的平衡方程计算简单的平衡问题;4、感悟平面汇交力系的平衡问题在工程中的应用;5、通过对平衡问题计算步骤的理解,培养学生的力学素养。
教学模式及教学方法:教学模式:能设计实验,体验三个汇交力作用下处于平衡状态时物体的受力的大小变化以及受力的性质;能探究三个汇交力作用下平衡问题的解题方法。
教学方法:实验法、讲授法、类比法复习要点:力投影正负的判断和投影计算公式新课重点、难点:重点:运用平面汇交力系的平衡方程求解简单的平衡问题;难点:1、建立平面汇交力系的平衡方程;2、感悟平面汇交力系的平衡问题在工程中的应用。
解决措施:通过重点讲解、分步探讨让学生掌握如何解决汇交力系平衡问题本课小结:本节课我们主要学习了汇交力系的平衡方程及应用平衡方程解决力学中的平衡问题。
课外作业(或复习题):1、通过本内容的学习,你有哪些收获?还存在哪些困惑?2、参观构件吊装的施工现场,运用所学知识对吊装方法加以说明。
课后改进措施: 重视基础知识的讲解,循序渐进,让学生打好基础,同时重视习题讲解,而且要让学生自己多练习。
教学过程一、引入1、如图一所示,手提一根弹簧,在弹簧下挂着一个重G=2N的砝码,问弹簧受到拉力有多大?2、在图一中,再用手把另一根弹簧沿水平方向十分缓慢地向右拉,如图二所示,问两根弹簧受到的拉力大小如何变化?如何计算呢?图一图二二、导学提纲1、平面力系的分类(1)各力的作用线全部的平面力系,称为平面平行力系。
(2)各力的作用线都的平面力系,称为平面汇交力系。
(3)各力的作用线即不全,也不全的平面力系,称为平面一般力系。
(4)平面力系按各力的划分为上述三类,请举例说明。
2、平面汇交力系的平衡条件及平衡方程。
(1)平面汇交力系的平衡条件是该力系的。
(2)平面汇交力系的平衡方程是,即力系中所有各力在两个坐标轴上的的代数和分别为。
平面汇交力系

第二章 平面汇交力系一、内容提要本章讲述了研究平面汇交力系的合成和平衡条件的两种方法:几何法和解析法。
1.求平面汇交力系的合力 (1) 几何法求合力。
根据力多边形法则求合力,即力多边形缺口的封闭边代表合力的大小和方向。
F R =ΣF合力的作用线通过原力系各力的汇交点。
(2) 解析法求合力。
根据合力投影定理,利用力系中各分力在两个正交轴上的投影的代数和,来确定合力的大小和方向为()()2Y 2X 2RY 2X R F F F F F R ∑+∑=+=XY XRY tan F F F F R ∑∑==αα为合力F R 与x 轴所夹的锐角。
合力F R 的指向由ΣF Y 和ΣF X 的正负号来确定,合力的作用线通过原力系各力的汇交点。
2.平面汇交力系的平衡条件(1) 平衡的必要和充分条件:平面汇交力系的合力为零,即F R =ΣF =0(2) 平衡的几何条件:平面汇交力系的力多边形自行封闭。
(3) 平衡的解析条件:平面汇交力系中所有各力在两个坐标轴上投影的代数和分别等于零。
即ΣF X =0 ΣF Y =0通过这两个独立的平衡方程,可求解出两个未知量。
3.力在坐标轴上的投影为F X =±F cosαF Y =±F sinα式中α为力F 与坐标轴x 所夹的锐角。
二、典型例题解析例 简易起重机如图2-1a 所示。
B 、C 为铰支座,钢丝绳的一端缠绕在卷扬机的点D 上。
杆件AB 、AC 及滑轮的自重不计,滑轮的半径也不计。
试求杆件AB 、AC 所受的力。
(空13行) 图2-1知识点:平面汇交力系的平衡条件及应用。
解 (1)取铰A 为研究对象。
杆AB 、AC 均为二力杆,可设为拉力。
由于A 处为定滑轮,故钢丝绳两端的拉力相等,都等于物体的重量W = 20kN 。
不计滑轮半径,则铰A 的受力图如图2-1b 所示。
(2)几何法求解作闭合的力多边形。
在选定比例尺后,先画已知力F T D 和W ,考虑到实际情况,F N C 应该为压力,所以应向上,且与水平成60°角。
平面力系的平衡方程及应用

各力的作用线都在同一平面内且 汇交于一点的力系。
正文
力在直角坐标轴上的投影
1
Fx=F·cosa ; Fy=F·sina = F ·cosb
说明: (1)力在坐标轴上的投影为代数量; (2)力的指向与坐标轴的正向一致时,力的投影为正值,否则为负。
正文
合力投影定理
推论1:力偶对刚体的作用与力偶在其作用面内的位置无关;
推论2:只要保持力偶矩的大小和力偶的转向不变,可以同时改变力偶中力的大小和力偶臂的长短,而不改变力偶对刚体的作用。
M
M
M
力偶表示方法
正文
思考:
力偶与力的异同
共同点:单位统一,符号规定统一。 差异点:1.力矩随矩心位置不同而变化;力 偶矩对物体作用效果与矩心选取无关。 2.力偶矩可以完全描述一个力偶;力对点之矩不能完全描述一个力。
′
F
M
单 手 攻 丝
正文
平面任意力系的简化
1
平面一般力系向平面内一点简化
F3
F1
F2
O
O
O
F
R′
MO
F
1′
M1
F1 =F1
′ M1=MO(F1)
F
2′
M2
F
3′
M3
F2 =F2
′ M2=MO(F2)
F3 =F3
′ M3=MO(F3)
简化中心
O
FR=F1+F2+F3= F1+F2+F3 MO=M1+M2+M3=MO(F1)+ MO(F2) + MO(F3)
正文
平面力偶系的合成与平衡
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FR
n
2
Fix
n
2
Fiy
0
i1 i1
n
Fxi 0
i 1
n
Fyi 0
i 1
平面汇交力系应用举例
• 例3-2 小滑轮C铰接在三脚架ABC上,绳索
绕过滑轮,一端连接在绞车上,另一端悬 挂重为W=100kN的重物。不计各构件的自 重和滑轮的尺寸。试求AC和BC所受的力。
§3-1-3平面汇交力系的平衡条件及应用
• 平面汇交力系平衡的充分和必要条件是:
该力系的合力等于零,即力系中各力的矢 量和为零:
n
FR Fi 0 i 1
• 平面汇交力系平衡的几何条件:该力系
的力多边形是自身封闭的力多边形。
• 平面汇交力系平衡的充分与必要条件,也
可解析地表达为:力系中00
C
300
D
W
A
y
B
300
C
300 D
x
FCA 300
F 300 CB
C
FT'
W
FT
Fx 0
FCB FCA cos 30 0 FT' cos 30 0 0
Fy 0
FCA sin 30 0 FT' sin 30 0 FT 0
FCA 300 kN FCB 346 .4kN