行测排列组合例题
行测中数学问题之年龄排列组合问题

行测中数学问题之年龄、排列组合问题解年龄问题,一般要抓住以下三条规律:(1)不论在哪一年,两个人的年龄差总是确定不变的;(2)随着时间向前(过去)或向后(将来)推移,两个人或两个以上人的年龄一定减少或增加相等的数量;(3)随着时间的变化,两个人年龄之间的倍数关系一定会改变。
【例1】妈妈今年 43岁,女儿今年11岁,几年后妈妈的年龄是女儿的3倍?几年前妈妈的年龄是女儿的5倍?【分析】无论在哪一年,妈妈和女儿的年龄总是相差43-11=32(岁)当妈妈的年龄是女儿的3倍时,女儿的年龄为(43-11)÷(3-1)=16(岁)16-11=5(岁)说明那时是在5年后。
同样道理,由11-(43-11)÷(5-1)=3(年)可知,妈妈年龄是女儿的5倍是在3年前。
【例2】今年,父亲的年龄是女儿的4倍,3年前,父亲和女儿年龄的和是49岁。
父亲、女儿今年各是多少岁?【分析】从3年前到今年,父亲、女儿都长了3岁,他们今年的年龄之和为49+3×2=55(岁)由“55 ÷(4+1)”可算出女儿今年11岁,从而,父亲今年44岁。
【例3】陈辉问王老师今年有多少岁,王老师说:“当我像你这么大时,你才3岁;当你像我这么大时,我已经42岁了。
”问王老师今年多少岁?【分析】我们先要明白:如果我比你大a岁,那么“当我像你这么大时”就是在a年前,“当你像我这么大时”就在a年后。
这样便可根据题意画出下图:从图上可看出,a=13,进一步推算得王老师今年29岁。
排列组合问题I一、知识点:分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示5.排列数公式:(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤) 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.10.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+== 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且组合数的性质1:m n n m n C C -=.规定:10=n C ; 2:m n C 1+=m n C +1-m n C二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个)对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350)解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600)相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.(答案:240)从总体中排除不符合条件的方法数,这是一种间接解题的方法.b 、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有_________条.(答案:30)三、讲解范例:例1 由数字1、2、3、4、5、6、7组成无重复数字的七位数(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解 (1):因为三个偶数2、4、6必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将1、3、5、7四个数字排好有44P种不同的排法;第二步将2、4、6三个数字“捆绑”在一起有33P种不同的“捆绑”方法;第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有15P种不同的“插入”方法根据乘法原理共有153344PPP∙∙=720种不同的排法720个符合条件的七位数解(2):因为三个偶数2、4、6互不相邻,所以要得到符合条件的七位数可以分为如下两步:第一步将1、3、5、7四个数字排好,有44P种不同的排法;第二步将2、4、6分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有35P种“插入”方法根据乘法原理共有3544PP∙=1440种不同的排法所以共有1440个符合条件的七位数例2将A、B、C、D、E、F分成三组,共有多少种不同的分法?解:要将A、B、C、D、E、F分成三组,可以分为三类办法:下面分别计算每一类的方法数:解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有46 C解法二:从六个元素中先取出一个元素作为一个组有16C种选法,再从余下的五个元素中取出一个元素作为一个组有15C种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以2 2 P所以共有221516PCC∙=15种不同的分组方法第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有16C种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有25C种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有2516CC∙=60种不同的分组方法第三类(2-2-2)分法,这是一类整体“等分”的问题,首先从六个不同元素中选取出两个不同元素作为一个组有26C种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有24C种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以33P,因此共有332426PCC∙=15种不同的分组方法根据加法原理,将A、B、C、D、E、F六个元素分成三组共有:15+60+15=90种例3一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有66P种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有35C种不同的“插入”方法根据乘法原理共有3566CP∙=7200种不同的坐法排列组合问题II一、相临问题——整体捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。
圆桌排列问题

圆桌排列问题排列组合中有这么一类问题,它的名字叫做圆桌排列,好多学生都对其表示头痛,身为是排列组合的一个特殊题型,这种题型相对来说考的比较少,但是近几年国家公务员考试考试中又重出江湖,出现在国家公务员考试行测考试数学运算中.从n个不同元素中,每次取出r个元素,仅按元素间的相对位置而不分首尾地围成一圈,整体旋转后相同的排列算同一种排列,这种排列称为圆排列(或称环状排列),即圆桌问题。
首先来看一道例题例1:有5对夫妻参加一场婚礼,他们被安排在一张10个座位的圆桌就餐,但是操办者不知道他们之间的关系,随机安排座位,问5对夫妻恰好相邻而坐的概率是多少?A.千分之一到千分之五之间B。
千分之五到百分之一C.超过百分之一D。
不超过千分之一要研究圆桌排列,就必须知道它和直线排列组合的区别,举个例子,5个人排成一排有多少种方式?同学们都知道A(5,5)=5!,但是当5个人坐成一圈时,有多少种方式?很多同学会陷入死胡同,其实两个题目关键区别在于直线排列时排列之前相对位置已经被确定,但是圆桌问题时每个位置都不确定,但是这种题目我们只需要先找寻任意一人A坐下,其余人相对位置也就确定了,比如我们可以说一个在A左面,或者是A对面等等,所以当5个人坐成一圈时,有A(4,4)=4!,具体到公式:n个不同元素围成一个圈,其组合有A(n-1,n—1)=(n-1)!例2: a、b、c、d、e五人围着一张圆桌就坐(1)一共有多少种不同的入座方式?(2)如果a、b二人相邻,有多少种不同的入座方式?(3)如果a、b二人不相邻,有多少种不同的入座方式?解析:(1)共有(5—1)!=24种不同的入座方式。
(2)将a、b绑在一起围成一圈有(4-1)!=6种方式,解开a、b的绳子,a、b的入座方式有两种,按乘法原理, a、b二人相邻的入座方式有2×6=12种.(3)由于a、b只有相邻与不相邻两种情形,所以a、 b二人不相邻的入座方式有24—12=12种.因此例1也就不难了,先把每对夫妻捆绑,只要捆绑必出现排列,然后将每对夫妻看做一个整体进行圆桌排列,再比上总的情况数即为10个人围绕圆桌坐的种类数,不难得出答案选A。
2023山西省考行测数量关系必考题型排列组合问题

2023山西省考行测数量关系必考题型排列组合问题排列组合是在数量关系里面比较特殊的题型,说它特殊是因为他的研究对象独特,研究问题的方法和我们以前学习的不同,知识系统也相对独立。
同时也是我们学习概率问题的一个基础。
从最近几年的公务员考试形势来看,这部分考题的难度有逐年上升的趋势,而且题型也越来越灵活。
一.排列1、概念:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n 个不同元素中取出m(m≤n)个元素的一个排列。
2、排列数:从n个不同元素中,任取m(m≤n)个元素的所有排列的个数叫做从n个元素中取出m元素的排列数,用符号表示。
3、排列数的计算:=n(n-1)(n-2)??(n-m+1)二、组合1、概念:从n个不同元素中取出m(m≤n)个元素组成一组,称为从n 个不同元素中取出m(m≤n)个元素的一个组合。
2、组合数:从n个不同元素中,任取m(m≤n)个元素的所有组合的个数叫做从n个元素中取出m元素的组合数,用符号表示。
3、组合数的计算:=n(n-1)(n-2)??(n-m+1)/m!三、常用方法1、优先法:对于有限制条件的元素(或位置)的排列组合问题,在解题时优先考虑这些元素(或位置),再去解决其它元素(或位置)。
【例题】由数字1、2、3、4、5、6、7组成无重复数字的七位数,求数字1必须在首位或末尾的七位数的个数。
A.720B.1440C.4801600【中公解析】B。
使用优先法,先排1,有2种排法,再将剩下的数字全排列,有=720种排法,因此共有2×720=1440种排法,所以共有1440个满足条件的七位数。
2、捆绑法:在解决对于几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个大元素进行排序,然后再考虑大元素内部各元素间顺序的解题策略。
【例题】学校举行六一儿童节联欢活动,整个活动由2个舞蹈、2个演唱和3个小品组成。
要求同类型的节目连续演出,有多少种不同的出场顺序?A.24B.72C.144D.288【中公解析】C。
行测数学运算:排列组合问题

行测数学运算:排列组合问题基本知识点:加法原理:分类用加法乘法原理:分步用乘法排列:与顺序有关组合:与顺序无关排列公式:Pmn=Amn=n!(n-m)!=n×(n-1)×(n-2)×…×(n-m+1)组合公式:Cmn=Cn-mn=Amnm!=n!m!(n-m)!=n×(n-1)×(n-2)×…×(n-m+1)m×(m-1)×(m-2)×…×1一、基础公式型【例1】(吉林2009乙-9)甲、乙、丙三个人到旅店住店,旅店里只有三个房间,恰好每个房间住一个人,问一共有()种住法。
A. 5B. 6C. 7D. 8[答案]B[解析]本题等价于从3个人里挑出3个来排一个顺序:A33=6。
【例2】(陕西2008-12)在一条线段中间另有6个点,则这8个点可以构成多少条线段?()A. 15B. 21C. 28D. 36[答案]C[解析]本题等价于从8个点中挑出2个构成一条线段,即:C28=28。
【例3】(国家2004B类-44)把4个不同的球放入4个不同的盒子中,每个盒子放一个球,有多少种放法?()A. 24B. 4C. 12D. 10[答案]A[解析]本题等价于从4个球里挑出4个来排一个顺序:A44=24。
【例4】(上海2004-18)参加会议的人两两都彼此握手,有人统计共握手36次,到会共有多少人?()A. 9B. 10C. 11D. 12[答案]A[解析]本题等价于从N个人中挑出2个成为一个组合,即:C2N=N×(N-1)2×1=36,解得N=9。
【例5】(国家2004A类-47)林辉在自助餐店就餐,他准备挑选三种肉类中的一种肉类,四种蔬菜中的两种不同蔬菜,以及四种点心中的一种点心。
若不考虑食物的挑选次序,则他可以有多少种不同的选择方法?()A. 4B. 24C. 72D. 144[答案]C[解析]根据乘法原理:共有C13×C24×C14=72种不同的选择方法。
行测——排列组合的常见题型及其解法汇总(例题)

行测——排列组合的常见题型及其解法汇总(例题)一. 特殊元素(位置)用优先法把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。
例1. 6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。
元素分析法因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上,有120 种站法,故站法共有:480(种)二. 相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,与其他元素进行排列,然后相邻元素内部再进行排列。
例2. 5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有6x5x4x3x2种,然后女生内部再进行排列,有6种,所以排法共有:4320(种)。
三. 相离问题用插空法元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先将其余4人排成一排,有4x3x2x1种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有5x4x3 种,所以排法共有:1440 (种)四. 定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。
解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有种排列方法。
例4. 由数字0、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?解:不考虑限制条件,组成的六位数有C(1,5)*P(5,5)种,其中个位与十位上的数字一定,所以所求的六位数有:C(1,5)*P(5,5)/2(个)五. 分排问题用直排法对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。
计数应用(排列组合、概率、抽屉原理、容斥)练习题-公务员考试行测试卷与试题

计数应用(排列组合、概率、抽屉原理、容斥)练习题-公务员考试行测试卷与试题1. 抽屉里有黑色小球13只,红色小球7只,现在要选3个球出来,至少要有2只红球的不同选法共有多少种?A. 308B. 378C. 616D. 458答案:A2. 用0、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有多少个?A. 20B. 30C. 40D. 50答案:B3. 一条马路上有编号为l、2、…、9的九盏路灯,现为了节约用电,要将其中的三盏关掉,但不能同时关掉相邻的两盏或三盏,则所有不同的关灯方法有多少种?A. 10B. 20C. 35D. 84答案:C4. 用0、1、2、3、4、5六个数字可组成多少个被10整除且数字不同的六位数?A. 120B. 300C. 600D. 720答案:A5. 7个人排成一排,甲不在最左边,乙不在最右边的情况有几种?A. 3120B. 3720C. 3600D. 7200答案:B6. 7个人站成一排,要求甲乙丙三人相邻的排法有几种?A. 120B. 300C. 600D. 720答案:D7. 将“PROBABILKIY”11个字母排成一列,排列数有多少种?A. 9979200B. 9979201C. 9979202D. 9979203答案:A8. 将“PROBABILlIY”11个字母排成一列,若保持P,R,O次序,则排列数有()种?A. 90720B. 90721C. 90729D. 90726答案:C9. 从4名男生和3名女生中选出3人,分别从事三项不同的工作。
若这三人中至少有1名女生,则选派方案共有多少种?A. 144B. 192C. 186D. 150答案:C10. 用1,2,3,4,5这五个数字,可以组成比20000大并且百位数字不是3的没有重复数字的五位数有多少个?A. 72B. 76C. 78D. 84答案:C11. 甲,乙两个科室各有4名职员,且都是男女各半,现从两个科室中选出4人参加培训,要求女职员比重不得低于一半,且每个科室至少选1人,问有多少种不同的选法?【2011年国考】A. 67B. 63C. 53D. 51答案:D12. 有颜色不同的四盏灯,每次使用一盏、两盏、三盏或四盏,并按一定的次序挂在灯杆上表示信号,问共可表示多少种不同的信号?【2008浙江】A. 24C. 64D. 72答案:C13. 如图,圆被三条线段分成四个部分。
公务员备考题型精解之:排列组合习题
排列组合1、排列:从N不同元素中,任取M个元素(被取元素各不相同)按照一定的顺序排成一列,叫做从N个不同元素中取出M个元素的一个排列。
2、组合:从N个不同元素中取出M个元素并成一组,叫做从N个不同元素中取出M个元素的一个组合(不考虑元素顺序)3、分步计数原理(也称乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有mn种不同的方法。
那么完成这件事共有N=m1×m2×…×mn种不同的方法。
4、分类计数原理:完成一件事有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法,那么完成这件事共有N= m1+ m2+…+ mn种不同的方法。
思路:1.首先明确任务的意义2.注意加法原理与乘法原理的特点,分析是分类还是分步,是排列还是组合3.特殊元素,优先处理;特殊位置,优先考虑题型一、排队(使用捆绑与插空思维):七个同学排成一横排照相:(1)某甲不站在排头也不能在排尾的不同排法有多少种第一步先让六个人排好:6*5*4*3*2*1=720第二步:让甲自由选择中间的空挡5个中的一个,共有5中选法所以:720*5=3600(2)某乙只能在排头或排尾的不同排法有多少种?第一步:确定乙在哪个位置排头排尾选其一C2取1=2第二步:剩下的6个人满足P原则P66=720总数是720×2=1440(3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?3120“坐板凳”:先让甲乙做好的方法有:5+4+4++4+4+5=26其他人:排序坐:5*4*3*2=12026×120 = 3120(4)甲、乙必须相邻的排法有多少种?甲乙看成一个元素,排列6*5*4*3*2=720甲乙相邻有两种选择,2720*2=1440(5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)一共是7个位置,甲出现在乙的左边和出现在乙的右边的概率是一样的。
行测数量关系排列组合题
1.从6名男生和4名女生中选出3名代表参加学校会议,要求至少包含1名女生,则不
同的选法共有多少种?
A.112
B.120
C.196(答案)
D.220
2.一个密码箱有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可
以组成多少个四位数的密码?
A.9000
B.10000(答案)
C.1000
D.9999
3.某公司要从5名男员工和3名女员工中选出3名员工参加培训,要求至少包含1名男
员工,则不同的选法共有多少种?
A.44
B.50
C.56(答案)
D.62
4.一本书有100页,中间缺了一张,小华将残书的页码相加,得到5005。
老师说小华计
算错了,你知道为什么吗?缺的这一张,页码分别是多少?
A.29、30
B.30、31
C.25、26(答案)
D.28、29
5.某单位安排7名员工在10月1日至7日值班,每天1人,每人值班1天。
若7名员
工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有多少种?
A.336
B.504(答案)
C.720
D.1440
6.从1,2,3,…,9这9个自然数中任取3个数,则这3个数中至少有1个是偶数的选
法共有多少种?
A.56
B.64(答案)
C.70
D.72。
排列组合问题
排列组合问题中公教育研究与辅导专家刘爱清省考行测数量常考考点之一就是排列组合问题,近三年省考均有考查,但是得分率普遍较低,主要是其考查形式灵活多样,尤其是近几年,其考查的重点是针对题干的理解和分析,所以导致有些考生掌握了一些方法后,不认真分析题干,想硬用方法,从而导致错误。
接下来,中公教育专家就带领大家一起通过几道题目,从题干材料出发,学习通过对材料的分析,解决排列组合问题。
【例题1】小王在商店消费了90元,口袋里只有1张50元、4张20元、8张10元的钞票,他共有几种付款方式,可以使店家不用找零钱?A.5B.6C.7D.8【答案】C【中公解析】排列组合问题,通过题干的分析,要求的是正好付款90元的付款方式,所以直接枚举即可,共计7种付款方式,故选C项。
【例题2】某大学考场在8个时间段内共安排了10场考试,除了中间某个时间段(非头尾时间段)不安排考试外,其他每个时间段安排1场或2场考试。
那么,考场有多少种考试安排方式(不考虑考试科目的不同)?A.210B.270C.280D.300【答案】A【中公解析】根据题干分析,第一步:“8个时间段,中间某个时间段(非头尾时间段)不安排考试”,因此不安排考试的时段,有616=C种情况;第二步:要在剩下的7个时段安排10场考试,又“每个时间段安排1场或2场考试”,因此7个时段中有3个时段要安排两场考试,有3537=C种情况。
所求考试安排方式有:210356=⨯种。
故选A 项。
【例题3】某公司新近录用五名应聘人员,将分别安排到产品开发、管理、销售和售后服务这四个部门工作,每个部门至少一人。
若其中有两人只能从事销售或售后服务两个部门的工作,其余三人均能从事四个部门的工作,则不同的选派方案共有:A. 12 种B.18种C. 36种D.48种【答案】D【中公解析】设五名应聘人员分别为甲、乙、丙、丁、戊,其中甲和乙只能从事销售或售后服务两个部门的工作。
根据“5个人分配至4个部门,每个部门至少一人”可得有一个部门一定是2个人,又甲乙较为特殊,我们可分为两种情况:因此,不同的选派方案共有4818226=⨯+⨯种。
公务员行测考试排列组合题指导整理
公务员行测考试排列组合题指导整理众所周知,在各类公职类考试中,许多人对于数量关系部分都是保持放弃的态度,主要是由于题目相对较难,觉得性价比相对较低,而行测的考试内容都是大同小异的,下面我给大家带来关于公务员行测考试排列组合题指导,盼望会对大家的工作与学习有所关心。
公务员行测考试排列组合题指导一、隔板模型隔板模型,首先要知道隔板模型的题型特征,也就是什么样的题目属于隔板模型,其实只要包含三个条件即可,1.元素分组;2.元素相同;3.每组至少一个。
那么,接下来我们看看究竟这种题应当怎么样做。
【例题】某单位有9台相同的电脑,要分给3个部门,每个部门至少1台,问有多少分安排的方式?A.24B.28C.30D.56【解析】依据题意,可以把9台相同电脑排成一排,产生了10个空位,现在只需要在空位中插板子就可以了,插1块板子就会自动分成2组,插2块板子就会自动分成3组,但是头和尾的空位是不能插板子的,由于插上板子后也不会分组,故本题转变成8个空位中插2块板子,共有多少种方法?28,故本题选择B项。
二、错位重排错位重排的题目,其实就是错开位置重新排列,让原本应当在某位置的元素,都不在某个位置,那么这一类题目应当怎么做呢?其实大家只需要记住几个结论就可以了,假如是1个元素错位重排,结果为0;2个元素错位重排,结果为1;3个元素错位重排,结果为2;4个元素错位重排,结果为9。
一起来看下面的例题。
【例题】某次厨艺大赛,四位厨师分别做了一道菜,现在需要他们四位每人选择一道菜进行品尝,问每位厨师都没有尝到自己做的那道菜的结果有多少种?A.1B.5C.8D.9【解析】依据题意,四位厨师本应对应自己的菜品,但是现在要求每位厨师都不选择自己的菜,实际上就是4个元素的错位重排,结果为9,故本题选择D项。
通过这两道题,信任大家对于排列组合中的特别题型也有了肯定的熟悉,假如在考试的时候遇到这样的题目,是肯定可以花时间去做一下的,盼望大家可以多多练习!拓展:公务员行测考试填空题指导精确率低最主要的问题在于做题的方式,信任许多同学有过这样的经受:拿到一道新题目,简洁扫瞄过后便开头尝试选项带入的合理性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合基础知识讲座
首先看一道简单的例题
例1:用1、2、3、4四个数字组成数字不重复的二位数,可以有多少种组法? 解答:
题目的意思是从4个数字中随意选出2个数字,然后组成一个2位数,问一共可以组成多少个这样的2位数。
假设我们随意选取1,2,可以组成12和21,虽然都是由1,2组成,但由于位置不同,仍然是两个不同的数字。
由于和位置有关,所以这是排列问题。
(注意:虽然题目问的是有多少种组法,但仍然属于排列问题)
排列公式的定义如下
r n P 也可写成P (n,r )其中n 表示总共的元素个数,r 表示进行排列的元素个数,!表示阶乘,例如6!=654321⨯⨯⨯⨯⨯,5!= 54321⨯⨯⨯⨯,但要特别注意1!=0!=1。
假设n=5,r=3,则
P (5,3)=5!5432160(53)!21
⨯⨯⨯⨯==-⨯ 在这个题目里,总共的元素个数是4 ,所以n=4,从所有元素中取出2个进行排列,所以r=2。
根据公式
P (4,2)=4!432112(42)!21
⨯⨯⨯==-⨯ 因此共有12种组法。
下面我们一起来看考试当中出现的一个题目:
例2. 黄、白、蓝三个球,从左到右顺次排序,有几种排法?
解答:
假设我们已经找出了两种排列方法(黄、白 、蓝) 和 (蓝、白、黄),可以发现虽然都是用的一样的球,但因为和位置有关,所以还是两种不同的排法。
很明显这属于排列问题。
在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出3个进行排列,所以r=3。
根据公式
P (3,3)=3!3216(33)!1
⨯⨯==- ( 计算的时候注意0!=1) 因此共有6种排法。
如果我们把这个题目改一改,变成
例3 黄、白、蓝三个球,任意取出两个,对这两个球从左到右顺次排序,有几种排法? 解答
这仍然属于排列问题,只不过r 变成了2。
在这里,总共的元素个数是3 ,所以n=3,从所有元素中取出2个进行排列,所以r=2。
根据公式
P (3,2)=3!3216(32)!1
⨯⨯==- ( 计算的时候注意1!=1) 因此还是有6种排法。
下面我们这个题目再变一下
例4 黄、白、蓝三个球,任意取出两个,有几种取法?
解答:
假设我们第一次取出黄球,第二次取出白球,或者第一次取出白球,第二次取出黄球,可以发现虽然顺序不同,但都是同一种取法,即(黄,白)和(白,黄)是同一种取法。
由于和取出的球的排列位置无关,因此这属于组合问题。
组合公式的定义如下
r n C 也可写成C (n,r )其中n 表示总共的元素个数,r 表示进行组合的元素个数,!表示阶乘,例如6!=654321⨯⨯⨯⨯⨯,5!= 54321⨯⨯⨯⨯,但要特别注意1!=0!=1。
假设n=5,r=3,则
C (5,3)=5!54321302!(53)!(21)(21)
⨯⨯⨯⨯==-⨯⨯⨯ 另外,为便于计算,还有个公式请记住
例如C(6,2)=C(6,4)
在例4里,总共的元素个数是3 ,所以n=3,从所有元素中任意取出2个进行组合,所以r=2。
根据公式
C (3,2)=3!32132!(32)!21
⨯⨯==-⨯ ( 计算的时候注意1!=1) 因此有3种取法。
基础知识讲完后,我们进行一次随堂模拟考试,下面是公考中曾经出现过的题目
考试题1.
林辉在自助餐店就餐,他准备挑选三种肉类的一种肉类,四种蔬菜中的二种不同蔬菜,以及四种点心中的一种点心。
若不考虑食物的挑选次序,则他可以有多少不同选择方法?
解答:
这里涉及到了解答排列组合问题中常用到一种方法:分步法。
即把完成一件事情的过程分成几步,每一步的可供选择的方案数相乘就是总的可供选择的方案数。
例如完成一件事情需要两步,第一步有2种选择,第二步有3种选择,如果不考虑完成顺序(即先完成第一步再完成第二步,或先完成第二步再完成第一步效果一样),则总的选择数为2乘3等于6。
本题中,就餐分成三步,第一步挑选肉类,第二步挑选蔬菜,第三步挑选点心。
在每一步的挑选中,由于挑选的物品是同一种类(例如从四种蔬菜中挑选两种,虽然种类不同,但挑出的仍然是蔬菜,与挑选时的顺序无关),所以每一步的挑选是组合问题。
第一步的选择数为C(3,1)= 3!32132!(32)!21
⨯⨯==-⨯,
第二步的选择数为C(4,2)=
4!4321
6 2!(42)!2121
⨯⨯⨯
== -⨯⨯⨯
第三步的选择数为C(4,1)=
4!4321
4 1!(41)!1321
⨯⨯⨯
== -⨯⨯⨯
由于不考虑挑选食物的顺序,所以总共有
(3,1)(4,2)(4,1)36472
C C C
⨯⨯=⨯⨯=种
考试题2.
将五封信投入3个邮筒,不同的投法共有()
解答:
这个题也采用分步法。
分成五步,第一步将第一封信投入邮筒,第二步将第二封信投入邮筒,……第五步将第五封信投入邮筒。
在每一步中,每一封信都有三个邮筒的选择,即可选择数是3。
由于结果与五封信的投递次序无关,所以共有
考试题3:
从编号为1-9的队员中选6人组成一个队,问有多少种选法?
解答:
这个题和例题1有相似处,但要注意队与队之间的区别只与组成队员有关,而与队员的排列顺序无关。
例如,1,2,3,4,5,6号队员组成一队,不论他们怎么排列,123456和654321仍然是同一只队。
因为和位置无关,所以这是组合问题。
总共的元素个数是9 ,所以n=9,从所有元素中任意取出6个元素进行组合,所以r=6。
根据公式
C(9,6)=
9!
84 6!(96)!
=
-
因此有84种取法。
(注意:考试时只要求知道计算公式C(9,6),不要求具体计算)。