排列组合的21种例题

排列组合的21种例题
排列组合的21种例题

高考数学复习 解排列组合应用题的21种策略

排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略.

1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.

例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有

A 、60种

B 、48种

C 、36种

D 、24种

2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.

例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种

3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.

例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是

A 、24种

B 、60种

C 、90种

D 、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.

例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有

A 、6种

B 、9种

C 、11种

D 、23种

5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是

A 、1260种

B 、2025种

C 、2520种

D 、5040种

(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有

A 、44412

8

4

C C C 种 B 、44412

8

4

3C C C 种 C 、44312

8

3

C C A 种

D 、4441284

3

3

C C C A 种 6.全员分配问题分组法:

例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?

(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 7.名额分配问题隔板法:

例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?

8.限制条件的分配问题分类法:

例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.

例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有

A 、210种

B 、300种

C 、464种

D 、600种

(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?

(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.

例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?

11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

例11.1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?

12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.

例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是 A 、36种 B 、120种 C 、720种 D 、1440种

(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 13.“至少”“至多”问题用间接排除法或分类法:抽取两类混合元素不能分步抽. 例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有

A 、140种

B 、80种

C 、70种

D 、35种

14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.

例14.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?

(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?

15.部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.

例15.(1)以正方体的顶点为顶点的四面体共有

A 、70种

B 、64种

C 、58种

D 、52种

(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有 A 、150种 B 、147种 C 、144种 D 、141种

16.圆排问题线排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列n 个普通排列:

123

23411,,,;,,,

,,

;,,

,n n n n a a a a a a a a a a a -在圆排列中只算一种,因为旋转后可以重

合,故认为相同,n 个元素的圆排列数有

!

n n

种.因此可将某个元素固定展成线排,其它

的1n -元素全排列.

例16.5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?

17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n 个不同元素排在m 个不同位置的排列数有n m 种方法.

例17.把6名实习生分配到7个车间实习共有多少种不同方法? 18.复杂排列组合问题构造模型法:

例18.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种? 19.元素个数较少的排列组合问题可以考虑枚举法:

例19.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?

20.复杂的排列组合问题也可用分解与合成法: 例20.(1)30030能被多少个不同偶数整除? (2)正方体8个顶点可连成多少队异面直线?

21.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.

例21.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点最多有多少个? (2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A 到B 的最短路径有多少种?

答案

1.解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4

4

24A =种,答案:D .

2.解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的

排法种数是52

5

63600A A =种,选B . 3.解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即5

5

1602

A =种,选

B . 4.解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .

A

B

5.解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,

第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110

872520C C C =种,选C . 6.答案:A .

7.解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.

说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配.

8.答案:B .

9.解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.

10.解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有

28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.

11.解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113

433A A A 、113

333A A A 、

113233A A A 和1333A A 个,合并总计300个,选B .

12.解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14

个元素,不能被7整除的数组成的集合记做{}1,2,3,4,

,100I A =e共有86个元素;由此

可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A e中任取一个共有111486C C ,两种情形共符合要求的取法有21114

14861295C C C +=种. 13.解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集

{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集

{}2,6,

,98C =,能被4除余3的数集{}3,7,11,

99D =,易见这四个集合中每一个有

25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有

211225252525C C C C ++种.

14,解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:

()()()()n I n A n B n A B --+?4332

6554252A A A A =--+=种. .法;所以共有14

3

472A A =种. 16.解析:前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共

种,选C .

17.解析:看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素

排在后半段的四个位置中选一个有1

4A 种,其余5个元素任排5个位置上有55A 种,故共有125

4

455760A A A =种排法. 18.解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电

视机,故不同的取法共有333

9

4570C C C --=种,选.C 解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2

台乙型1台;故不同的取法有2112

54

5470C C C C +=台,选C . 19.解析:“先取”四个球中二个为一组,另二组各一个球的方法有24C 种,“再排”在四

个盒中每次排3个有34A 种,故共有23

4

4144C A =种. 20.解析:先取男女运动员各2名,有2254C C 种,这四名运动员混和双打练习有22A 中排法,

故共有222

54

2120C C A =种. 21.解析:正方体8个顶点从中每次取四点,理论上可构成48C 四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有481258C -=个.

22.解析:10个点中任取4个点共有4

10C 种,其中四点共面的有三种情况:①在四面体的

四个面上,每面内四点共面的情况为46C ,四个面共有464C 个;②过空间四边形各边中点的平行四边形共3个;③过棱上三点与对棱中点的三角形共6个.所以四点不共面的情

况的种数是4

410

6436141C C ---=种. 23.解析:首先可让5位姐姐站成一圈,属圆排列有44A 种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2种方式,故不同的安排方式5242768?=种不同站法.

说明:从n 个不同元素中取出m 个元素作圆形排列共有

1m

n A m

种不同排法. 24.解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知

共有67种不同方案.

25.解析:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C 种方法,所以满足条件的关灯方案有10种.

说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决.

26.解析:从5个球中取出2个与盒子对号有25C 种,还剩下3个球与3个盒子序号不能对应,利用枚举法分析,如果剩下3,4,5号球与3,4,5号盒子时,3号球不能装入3号盒子,当3号球装入4号盒子时,4,5号球只有1种装法,3号球装入5号盒子时,4,5号球也只有1种装法,所以剩下三球只有2种装法,因此总共装法数为25220C =种. 27.解析:先把30030分解成质因数的形式:30030=2×3×5×7×11×13;依题意偶因数2必取,3,5,7,11,13这5个因数中任取若干个组成成积,所有的偶因数为

012345

55555532C C C C C C +++++=个.

28解析:因为四面体中仅有3对异面直线,可将问题分解成正方体的8个顶点可构成多少个不同的四面体,从正方体8个顶点中任取四个顶点构成的四面体有481258C -=个,所以8个顶点可连成的异面直线有3×58=174对.

29.解析:因为圆的一个内接四边形的两条对角线相交于圆内一点,一个圆的内接四边形就对应着两条弦相交于圆内的一个交点,于是问题就转化为圆周上的10个点可以确

定多少个不同的四边形,显然有4

10C 个,所以圆周上有10点,以这些点为端点的弦相交于圆内的交点有410C 个.

30.解析:可将图中矩形的一边叫一小段,从A 到B 最短路线必须走7小段,其中:向东4段,向北3段;而且前一段的尾接后一段的首,所以只要确定向东走过4段的走法,便能确定路径,因此不同走法有47C 种.

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 A.81 B.64 C.24 D.4 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) A.81 B.64 C.24 D.4 (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有 。 例2(1)如图为一电路图,从A 到B 共有 条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、 四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是 D C B A

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法? (2)如果女生必须全分开,可有多少种不同的排法? (3)如果两端都不能排女生,可有多少种不同的排法? (4)如果两端不能都排女生,可有多少种不同的排法? 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种? (2)歌唱节目与舞蹈节目间隔排列的方法有多少种? 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例5现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种? 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法? 例77名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法?

(2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法? (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法? (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法? 例8计算下列各题: (1) 215 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法? 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且不彩画不放在两端,那么不同陈列方式有 例12 由数字5,4,3,2,1,0组成没有重复数字的六位数,其中个位数字小于十位数的个数共有( ). 例13 用5,4,3,2,1,这五个数字,组成没有重复数字的三位数,其中偶数共有( ). 例14 用543210、、、、、共六个数字,组成无重复数字的自然数,(1)可以组成多少个无重 复数字的3位偶数?(2)可以组成多少个无重复数字且被3整除的三位数?

排列组合的21种例题

高考数学复习 解排列组合应用题的21种策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、4441284 3 3 C C C A 种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 7.名额分配问题隔板法: 例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

初中排列组合公式例题.

复习排列与组合 考试内容:两个原理;排列、排列数公式;组合、组合数公式。 考试要求:1)掌握加法原理及乘法原理,并能用这两个原理分析和解决一些简单的问题。 2)理解排列、组合的意义。掌握排列数、组合数的计算公式,并能用它们解决一些简单的问题。 重点:两个原理尤其是乘法原理的应用。 难点:不重不漏。 知识要点及典型例题分析: 1.加法原理和乘法原理 两个原理是理解排列与组合的概念,推导排列数及组合数公式,分析和解决排列与组合的应用问题的基本原则和依据;完成一件事共有多少种不同方法,这是两个原理所要回答的共同问题。而两者的区别在于完成一件事可分几类办法和需要分几个步骤。 例1.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。 (1)若从这些书中任取一本,有多少种不同的取法? (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法? (3)若从这些书中取不同的科目的书两本,有多少种不同的取法。 解:(1)由于从书架上任取一本书,就可以完成这件事,故应分类,由于有3种书,则分为3类然后依据加法原理,得到的取法种数是:3+5+6=14种。 (2)由于从书架上任取数学书、语文书、英语书各1本,需要分成3个步骤完成,据乘法原理,得到不同的取法种数是:3×5×6=90(种)。 (3)由于从书架上任取不同科目的书两本,可以有3类情况(数语各1本,数英各1本,语英各1本)而在每一类情况中又需分2个步骤才能完成。故应依据加法与乘法两个原理计算出共得到的不同的取法种数是:3×5+3×6+5×6=63(种)。 例2.已知两个集合A={1,2,3},B={a,b,c,d,e},从A到B建立映射,问可建立多少个不同的映射? 分析:首先应明确本题中的“这件事是指映射,何谓映射?即对A中的每一个元素,在B中都有唯一的元素与之对应。” 因A中有3个元素,则必须将这3个元素都在B中找到家,这件事才完成。因此,应分3个步骤,当这三个步骤全进行完,一个映射就被建立了,据乘法原理,共可建立不同的映射数目为:5×5×5=125(种)。 2.排列数与组合数的两个公式 排列数与组合数公式各有两种形式,一是连乘积的形式,这种形式主要用于计算;二是阶乘的形式,这种形式主要用于化简与证明。 连乘积的形式阶乘形式 Anm=n(n-1)(n-2)……(n-m+1) = Cnm= 例3.求证:Anm+mAnm-1=An+1m 证明:左边= ∴等式成立。 评述:这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质:n!(n+1)=(n+1)!可使变形

排列组合21种方法

高考数学轻松搞定排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在 1 第2类办法中有 m种不同的方法,…,在第n类办法中有n m种不同 2 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做 1 第2步有 m种不同的方法,…,做第n步有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素

总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 占了这两个位置. 先排末位共有13C 然后排首位共有1 4C 最后排其它位置共有3 4 A 由分步计数原理得113 4 34288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间, 也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也 看成一个复合元素,再与其它元素进行排列,同时对相邻元素部进行自排。由分步计数原理可得共有522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能 连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4 舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种4 6 A 443

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

巧解排列组合的21种模型

巧解排列组合的21种模型 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.实践证明,掌握题型和识别模式,并熟练运用,是解决排列组合的有效途径.下面就系统地介绍巧解排列组合的21种模型. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列, 4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有2 6A 种,不同的排法种数是52 563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即 5 51602 A =种,选 B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,

高考排列组合典型例题

高考排列组合典型例题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

排列组合典型例题 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有39A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439 =+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有39A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千 位数是“0”排列数得:)(283914 A A A -?个 ∴ 没有重复数字的四位偶数有 22961792504)(28391439 =+=-?+A A A A 个.

排列组合常见21种解题方法

排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有 m种不同的方法,在第2类 1 办法中有 m种不同的方法,…,在第n类办法中有n m种不同的方法,那么2 完成这件事共有: 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有 m种不同的方法,做第2步 1 有 m种不同的方法,…,做第n步有n m种不同的方法,那么完成这件事共2 有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.

高中排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; ' (3)111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10=n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ① ;②;③;④ 11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 " 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; ) (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合例题精选

10.1排列与组合 10.1.1学习目标 掌握排列、组合问题的解题策略 10.1.2重点 (1),特殊元素优先安排的策略: (2),合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4 )正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略;(6 )不相邻问题插空处理的策略。 10.1.3难点 综合运用解题策略解决问题。 10.1.4学习过程: (1)知识梳理 1 ?分类计数原理(加法原理):完成一件事,有几类办法,在第一类中有m1种有不同的方法,在第2类中有m2种不同的方法……在第n类型有m n种不同的方法,那么完成这件事 共有N = mn ? m2? m n种不同的方法。 2?分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……,做第n步有m n种不同的方法;那么完成这件事 共有N = mb m2;—心m n种不同的方法。 特别提醒:分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏。 3.排列:从n个不同的元素中任取m(m窃)个元素,按照.一定.顺序.排成一列,叫做从n个不同元素中取出m个元素的一个排列. 4 .排列数:从n个不同元素中取出m(m

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

排列组合专题总结复习及经典例题详解 .docx

排列组合专题复习及经典例题详解 1.学目 掌握排列、合的解策略 2.重点 (1)特殊元素先安排的策略: (2)合理分与准确分步的策略; (3)排列、合混合先后排的策略; (4)正反、等价化的策略; (5)相捆理的策略; (6)不相插空理的策略. 3.点 合运用解策略解决. 4.学程 : (1)知梳理 1.分数原理(加法原理):完成一件事,有几法,在第一法中有m1种不同的方法,在第 2 法中有m2种不同的方法??在第n 型法中有m n种不同的方法,那么完成件事共有N m1m2... m n种不同的方法. 2.分步数原理(乘法原理):完成一件事,需要分成n 个步,做第 1 步有m1种不同的方法,做第 2 步有m2种不同的方法??,做第n 步有m n种不同的方法;那么完成件事共有 N m1 m2...m n种不同的方法. 特提醒: 分数原理与“分”有关,要注意“ ”与“ ”之所具有的独立性和并列性; 分步数原理与“分步”有关,要注意“步”与“步”之具有的相依性和性,用两个原理行正确地分、分步,做到不重复、不漏. 3.排列:从 n 个不同元素中,任取m(m≤n) 个元素,按照一定的序排成一列,叫做从n 个不同元素中取出 m个元素的一个排列,m n叫做排列,m n 叫做全排列. 4.排列数:从 n 个不同元素中,取出m(m≤n) 个元素的所有排列的个数,叫做从n 个不同元素中取出 m个元素的排列数,用符号P n m表示. 5.排列数公式:P n m n(n1)( n2)...( n m1) (n n!( m n,n、 m N)m)! 排列数具有的性: P n m1P n m mP n m 1 特别提醒: 规定 0!=1

排列&组合计算公式及经典例题汇总

排列组合公式/排列组合计算公式 排列A------和顺序有关 组合 C -------不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. "排列" 把5本书分给3个人,有几种分法"组合" 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示. A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号

c(n,m) 表示. c(n,m)=A(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!*n2!*...*nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为 c(m+k-1,m). 排列(Anm(n为下标,m为上标)) Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n

排列组合练习题与答案

排列组合习题精选 一、纯排列与组合问题: 1.从9人中选派2人参加某一活动,有多少种不同选法? 2.从9人中选派2人参加文艺活动,1人下乡演出,1人在本地演出,有多少种不同选派法? 3. 现从男、女8名学生干部中选出2名男同学和1名女同学分别参加全校“资源”、“生态”和“环保”三个夏令营活动,已知共有90种不同的案,那么男、女同学的人数是( ) A.男同学2人,女同学6人 B.男同学3人,女同学5人 C. 男同学5人,女同学3人 D. 男同学6人,女同学2人 4.一条铁路原有m 个车站,为了适应客运需要新增加n 个车站(n>1),则客运车票增加了58种(从甲站到乙站与乙站到甲站需要两种不同车票),那么原有的车站有 ( ) A.12个 B.13个 C.14个 D.15个 答案:1、2936C = 2、2972A = 3、选 B. 设男生n 人,则有2138390n n C C A -=。4、22 58m n m A A +-= 选C. 二、相邻问题: 1. A 、B 、C 、D 、E 五个人并排站成一列,若A 、B 必相邻,则有多少种不同排法? 2. 有8本不同的书, 其中3本不同的科技书,2本不同的文艺书,3本不同的体育书,将这些书竖排在书架上,则科技书连在一起,文艺书也连在一起的不同排法种数为( )

A.720 B.1440 C.2880 D.3600 答案:1.24 2448 A A=(2) 选 B 325 3251440 A A A= 三、不相邻问题: 1.要排一个有4个歌唱节目和3个舞蹈节目的演出节目单,任两个舞蹈节目都不相邻,有多少种不同排法? 2、1到7七个自然数组成一个没有重复数字的七位数,其中奇数不相邻的有多少个? 3.4名男生和4名女生站成一排,若要求男女相间,则不同的排法数有() A.2880 B.1152 C.48 D.144 4.排成一排的8个空位上,坐3人,使每人两边都有空位,有多少种不同坐法? 5.8椅子放成一排,4人就坐,恰有连续三个空位的坐法有多少种? 6. 排成一排的9个空位上,坐3人,使三处有连续二个空位,有多少种不同坐法? 7. 排成一排的9个空位上,坐3人,使三处空位中有一处一个空位、有一处连续二个空位、有一处连续三个空位,有多少种不同坐法? 8. 在一次文艺演出中,需给舞台上安装一排彩灯共15只,以不同的点灯式增加舞台效果,要求设计者按照每次点亮时,必须有6只灯是熄灭的,且相邻的灯不能同时熄灭,两端的灯必须点亮的要求进行设计,那么不同的点亮式是() A.28种 B.84种 C.180种 D.360种

排列组合典型例题.

排列组合典型例题 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ; 能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 . 复习巩固 1. 分类计数原理 (加法原理 完成一件事,有 n 类办法,在第 1类办法中有 1 m 种不同的方法,在第 2类办法中有 2 m 种不同的方法,…,在第 n 类办法中有 n m 种不同的方法,那么完成这件事共有: 种不同的方法. 2. 分步计数原理(乘法原理 完成一件事,需要分成 n 个步骤,做第 1步有

1 m 种不同的方法,做第 2步有 2 m 种不同的方法,…,做第 n 步有 n m 种不同的方法,那么完成这件事共有: 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 , 即采取分步还是分类 , 或是分步与分类同时进行 , 确定分多少步及多少类。 3. 确定每一步或每一类是排列问题 (有序还是组合 (无序问题 , 元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一 . 特殊元素和特殊位置优先策略 例 1. 由 0,1,2,3,4,5可以组成多少个没有重复数字五位奇数 . 解 :由于末位和首位有特殊要求 , 应该优先安排 ,

相关文档
最新文档