函数型问题(含答案)
高一数学函数试题答案及解析

高一数学函数试题答案及解析1.设,的整数部分用表示,则的值是 .【答案】1546【解析】,,,,所以.【考点】信息给予题,要善于捕捉信息,灵活运用2.在R上定义运算,若不等式成立,则实数a的取值范围是().A.{a|}B.{a|}C.{a|}D.{a|}【答案】C【解析】由题知∴不等式对任意实数x都成立转化为对任意实数x都成立,即恒成立,解可得.故选A.【考点】本题考查了在新定义下对函数恒成立问题的应用.关于新定义型的题,关键是理解定义,并会用定义来解题.3.已知点是直线上的任意一点,则的最小值为()A.B.C.D.【答案】A【解析】点是直线上的任意一点,则有,即,所以有,显然当时,有最小值.【考点】消元法,二次函数中配方法求最值.4.一次函数的图像过点和,则下列各点在函数的图像上的是( ) A.B.C.D.【答案】C【解析】法一:设,由该函数的图像过点及,可得,求解得,所以,依次将A、B、C、D中的横坐标代入计算可知,只有点符合要求,故选C;法二:一次函数的图像是一条直线,由该函数的图像过点及可知,,所以直线的方程为:即,依次将各点的纵坐标减去横坐标,看是否为1,是1的点就在直线上,即该点在函数的图像上,最后确定只有C答案满足要求.【考点】1.一次函数的解析式;2.直线的方程.5.下列函数在上单调递增的是()A.B.C.D.【答案】D【解析】:对于A选项,函数在递减,故A不正确;对于B选项,函数在递减,在递增,故B不正确;对于C选项,函数在递减,故C不正确;对于D选项,函数在上单调递增,合题意综上知,D选项是正确选项【考点】本题考查指数函数、对数函数、幂函数、反比例函数等常见函数的单调性.6.函数的最小值是【答案】【解析】,则函数的最小值为。
【考点】函数的性质点评:本题通过构造形式用基本不等式求最值,训练答题都观察、化归的能力.7.已知f(x)是实数集上的偶函数,且在区间上是增函数,则的大小关系是()A.B.C.D.【答案】D【解析】因为,f(x)是实数集上的偶函数,且在区间上是增函数,所以,函数的图象关于y 轴对称,在区间是减函数。
函数的奇偶性问题练习题(含答案)

...函数的奇偶性问题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx () A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则() A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2) 解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x 2+2x )=-x 2-2x =x (-x -2). ∴(2)(0)()(2)(0),,x x x f x x x x ⎧⎨⎩-≥=--<即f (x )=x (|x |-2)答案:D4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( ) A .-26 B .-18 C .-10 D .10 解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.函数1111)(22+++-++=x xx x x f 是()A .偶函数B .奇函数C .非奇非偶函数D .既是奇函数又是偶函数 解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B 6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3解析:)(x ϕ、g (x )为奇函数,∴()2()()f x a x bg x φ-=+为奇函数. 又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3. ∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C 二、填空题 7.函数2122)(xx x f ---=的奇偶性为____奇函数____(填奇函数或偶函数) .8.若y =(m -1)x 2+2mx +3是偶函数,则m =____0_____. 解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为____11)(2-=xx f ___.解析:由f (x )是偶函数,g (x )是奇函数,...可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f . 10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为___0 _____. 三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.(21<m ) 12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0,试证f (x )是偶函数.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.f (x )是定义在(-∞,-5]Y [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明. 解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2),求证f (x )是偶函数.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证, f (1)=2f (1),∴f (1)=0. 又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0, ∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数. 点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
一次函数经典题型+习题(精华,含答案)

一次函数题型一、点的坐标方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数; 若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B 关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。
题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________; 1、 点C (0,-5)到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________;2、 点D (a,b )到x 轴的距离是_________;到y 轴的距离是____________;到原点的距离是____________; 3、 已知点P (3,0),Q(-2,0),则PQ=__________,已知点110,,0,22M N ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,则MQ=________; ()()2,1,2,8E F --,则EF 两点之间的距离是__________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;4、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;5、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为___________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
二次函数解决实际问题专项练习60题(有答案过程)ok

二次函数的应用专项练习60题(有答案)1.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于50%,经试销发现,销售量y(件)与销售单价x(元)的关系符合一次函数y=﹣x+140.(1)直接写出销售单价x的取值范围.(2)若销售该服装获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价为多少元时,可获得最大利润,最大利润是多少元?(3)若获得利润不低于1200元,试确定销售单价x的范围.2.某商店准备进一批季节性小家电,单价40元.经市场预测,若销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个,定价每减少1元,销售量将增加10个.(1)商店若准备获利2000元,则定价为多少元?应进货多少个?(2)请你为商店估算一下,当定价为多少元时,获得的利润最大?并求最大利润.3.某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p=﹣0.4m2+2m;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!4.商场销售一批衬衫,每天可售出20件,每件盈利40元,为了扩大销售,减少库存,决定采取适当的降价措施,经调查发现,如果一件衬衫每降价1元,每天可多售出2件.①设每件降价x元,每天盈利y元,列出y与x之间的函数关系式;②每件降价多少元时,商场每天的盈利达到最大?盈利最大是多少元?5.某产品每件的成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系式y=﹣x+200,为获得最大利润,每件产品的销售价应定为多少元?此时每日的销售利润是多少?6.一个横截面为抛物线形的遂道底部宽12米,高6米,如图,车辆双向通行,规定车辆必须在中心线右侧距道路边缘2米这一范围内行驶,并保持车辆顶部与遂道有不少于米的空隙,你能否根据这些要求,建立适当的坐标系,利用所学的函数知识,确定通过隧道车辆的高度限制.7.在数学活动课上,同学们用一根长为1米的细绳围矩形.(1)小芳围出了一个面积为600cm2的矩形,请你算一算,她围成的矩形的边长是多少?(2)小华想用这根细绳围成一个面积尽可能大的矩形,请你用所学过的知识帮他分析应该怎么围,并求出最大面积?8.近期,海峡两岸关系的气氛大为改善.大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售.某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:每千克售价(元)40 39 38 37 (30)每天销量(千克)60 65 70 75 (110)设当单价从40元/千克下调了x元时,销售量为y千克;(1)写出y与x间的函数关系式;(2)如果凤梨的进价是20元/千克,若不考虑其他情况,那么单价从40元/千克下调多少元时,当天的销售利润W 最大?利润最大是多少?9.某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,如果每提价1元,其销售量减少20件,(1)现要获利12000元,且销售成本不超过24000元,问这种服装销售单价应确定为多少元适宜?这时应进多少服装?(2)12000是不是可能获得的最大利润?如果是,说明理由;如果不是,请求出最大利润是多少?10.养鸡专业户小李要建一个露天养鸡场,鸡场的一边靠墙(墙足够长),其他边用竹篱笆围成,竹篱笆的长为40m,读九年级的儿子小军为他设计了如下方案:如图,把养鸡场围成等腰梯形ABCD,且∠ABC=120°.(1)当AB为何值时,所围的面积是132;(2)当AB为何值时,所围的面积最大?11.在数学活动课上,同学们用一根长为100cm的细绳围矩形.设矩形的一边长为xcm,面积为ycm2,求y与x的函数关系式;当x为何值时,所围矩形的面积最大,最大是多少?12.某产品每件的成本价是20元,试销阶段,每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如右表:并且日销售量y是每件产品销售价x的一次函数.x/元25 30 35y/件15 10 5(1)求y与x的函数关系式;(2)为获最大销售利润,每件产品的销售价应定为多少元?此时每日的销售利润是多少?13.某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大?14.某超市的某种商品现在的售价为每件50元,每周可以卖出500件.现市场调查反映:如果调整价格,每涨价1元,每周要少卖出10件.已知该种商品的进价为每件40元,问如何定价,才能使利润最大?最大利润是多少?(每件商品的利润=售价﹣进价)15.某超市按每袋20元的价格购进某种干果.销售过程中发现,每月销售量y(袋)与销售单价x(元)之间的关(2)设这种干果每月获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?16.如图,小勇要用长20m的铁栏杆,一面靠墙AD,围成一个矩形的花圃(墙足够长).求AB的长为多少时,花圃的面积最大?并求出这个最大面积.17.某场地有一堵旧墙,张强想利用这堵旧墙为一面,其余三面用100米长的篱笆材料围成一矩形露天仓库.(1)若用该篱笆和旧墙围成一个面积为1200m2的矩形,且旧墙长为50m,求矩形的长和宽;(2)能用该篱笆和旧墙围成一个面积为1260m2的矩形吗?若能,请求出矩形的长和宽,若不能请说明理由.(3)若用该篱笆和足够长的旧墙围成的矩形面积为m平方米,求m的取值范围.18.有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m,建立如图所示的平面直角坐标系.(1)求这条抛物线所对应的函数关系式;(2)在对称轴右边1m处,桥洞离水面的高是多少?19.将一根长为16π厘米的细铁丝剪成两段,并把每段铁丝围成圆,设所得两圆半径分别为r和R,面积分别为S1和S2.(1)求R与r的数量关系式,并写出r的取值范围;(2)记S=S1+S2,求S关于r的函数关系式,并求出S的最小值.20.进价为每件40元的某商品,售价为每件60元时,每星期可卖出300件.市场调查反映:如果每件商品的售价每降1元,每星期可多卖出20件,但售价不能低于每件45元.设每件商品降价x元(x为正整数).(1)每件商品的售价为_________ 元,每件商品的利润为_________ 元;(用x的式子填空)(2)设该商品每星期的销售量为y件,求y与x的函数关系式及自变量x的取值范围;(3)设该商品每星期的利润为w元,求w与x的函数关系式.21.用长度为13m的栅栏围一个长方形养鸡场(其中一边靠墙,若墙的长度足够)(1)问如何分配三边可以使围成的面积为20m2?(2)能否围成养鸡场面积为22m2?为什么?(3)如何分配三边,才能使围成养鸡场的画积最大?最大面积为多少?22.如图是一座抛物线型拱桥,以桥基AB为x轴,AB的中垂线为y轴建立直角坐标系.已知桥基AB的跨度为60米,如果水位从AB处上升5米,就达到警戒线CD处,此时水面CD的宽为米,求抛物线的函数解析式.23.某商店以每件20元的价格购进一批商品,如果以每件30元销售,那么半月内可售出400件.根据销售经验,销售单价每提高1元,半月内的销售量相应减少20件如何提高销售单价,才能在半月内获得最大利润?最大利润是多少?24.某地绿色和特色农产品在国际市场上颇具竞争力.外贸商王经理按市场价格10元/千克在该地收购了6000千克蘑菇存放入冷库中.蘑菇的市场价格每天上涨0.1元/千克;平均每天有10千克的蘑菇损坏不能出售;冷库存放这批蘑菇时每天需要支出各种费用合计300元;蘑菇在冷库中最多保存110天.王经理将这批蘑菇存放x(0<x<110)天后,一次性出售的销售总金额为y元.(1)求y与x之间的函数关系式;(2)若王经理将这批蘑菇一次性出售后所得的利润为9600元,王经理将这批蘑菇存放了多少天?25.某园艺公司计划投资种植花卉及树木,根据市场调查与预测种植花卉的利润y1(万元)与投入资金x(万元)成正比列关系,如图1所示;种植树木的利润y2(万元)与投入资金x(万元)成二次函数关系,如图2所示.(1)分别求出利润y1(万元)与y2(万元)关于投入资金x(万元)的函数关系式;(2)如果该园艺公司以8万元资金投入种植花卉和树木,公司至少能获得多少利润?26.某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润;(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?27.把一根长120cm的铁丝弯曲成一个长方形.(1)设它的长为xcm,面积为ycm2,写出y(cm2)与x(cm)的函数关系式;(2)当x为何值时,这个长方形面积最大,是多少?28.从地面竖直向上抛出一个小球.小球的上升高度h(单位:m)与小球运动时间t(单位:s)的关系式是h=20t ﹣5t2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?29.商场某种商品平均每天可销售32件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品降价1元,商场平均每天可多售出2件,请问:(1)每件商品降价多少元时,商场日盈利可达2160元?(2)每件商品降价多少元时,商场日盈利的最大值是多少?30.某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱降价1元,每天可多售出2箱.(1)如果要使每天销售饮料获利14000元,问每箱应降价多少元?(2)每箱降价多少元超市每天获利最大?最大利润是多少?31.某网站出售一种毛绒兔玩具,试销中发现这种玩具每个获利x元时,一天需销售(60﹣x)个,若要使一天出售该种玩具获利最大利润,那么第个玩具应获利多少元?32.如图,某游乐园要建造一个圆形喷水池,喷水头在水池的正中央,它的高度OB为1米,喷水龙头喷出的水距池中心4米处达到最大高度是5米.问水池的半径OA至少要多少米?33.如图,有一条单向行驶(从正中通过)的公路隧道,其横截面的上部BEC是一段抛物线,A与D、B与C分别关于y轴对称,最高点E离路面AD的距离为8m,点B离路面AD的距离为6m,隧道的宽AD为16m(1)求抛物线的解析式;(2)现有一大型货运汽车,装载某大型设备后,其宽为4m,车载大型设备的顶部与路面的距离为7m,它能否安全通过这个隧道?请说明理由.34.某超市销售一款进价为50元/个的书包,物价部门规定这款书包的售价不得高于70元/个,市场调查发现:以60元/个的价格销售,平均每周销售书包100个;若每个书包的销售价格每提高1元,则平均每周少销售书包2个.(1)求该超市这款书包平均每周的销售量y(个)与销售价x(元/个)之间的函数关系式;(2)求该超市这款书包平均每周的销售利润w(元)与销售价x(元/个)之间的函数关系式;(3)当每个书包的销售价为多少元时,该超市这款书包平均每周的销售利润最大?最大利润是多少元?35.小赵投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月内销售单价不变,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设小赵每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?并求出最大利润.(2)如果小赵想要每月获得的利润不低于2000元,那么如何制定销售单价才可以实现这一目标?36.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,求出自变量x的取值范围,并画出函数的大致图象;(2)当商品的利润为y不低于6000元时,结合函数的图象,求该商品的“降价空间”(即x的取值范围).37.某商店经营一种文化衫,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件文化衫售价不能高于40元.设每件文化衫的销售单价上涨了x元时(x为正整数),月销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围.(2)每件文化衫的售价定为多少元时可使月销售利润最大?最大的月利润是多少?38.在北京奥运晋级赛中,中国男篮与美国“梦八”队之间的对决吸引了全球近20亿观众观看,如图,“梦八”队员甲正在投篮,已知球出手时(点A处)离地面高米,与篮圈中心的水平距离为7米,当球出手后水平距离为4米时到达最大高度4米,设篮球运行路线为抛物线,篮圈距地面3米.(1)建立如下图所示的直角坐标系,问此球能否投中?(2)此时,若中国队员姚明在甲前1米处跳起盖帽拦截,已知姚明的最大摸高为3.1米,那么他能否获得成功?39.恩施州绿色、富晒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在该州收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇每天需支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售金额为y元,试写出y与x之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?40.李大叔想用篱笆围成一个周长为80米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?41.要修建一个圆形喷水池,在池中心竖直安装一根带有喷水头的水管.喷出的水所形成的水流的形状是抛物线,如果要求水流的最高点到水管的水平距离为1m,距离地面的高度为3m,水流落地处到水管的水平距离是3m,求这根带有喷水头的水管在地面以上的高度?42.如图,用一段长为30m的篱笆围出一个一边靠墙的矩形菜园,墙长为18m.设矩形的一边长为xm,面积为ym2.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)菜园的面积能否达到120m2?说明理由.43.某儿童玩具店将进货价为30元一件玩具以40元出售,平均每月能售出600个,调查表明,售价每上涨1元,其销售量将减少10个,为了实现每月10000元的销售利润,这种玩具的售价应定为多少?这时进这种玩具多少个?44.某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高1元其销售量就减少20件.(1)问应将每件售价定为多少元时,才能使每天利润为640元?(2)当售价定为多少时,获得最大利润;最大利润是多少?45.某商店购进一种单价30元的T恤.试销中发现这种T恤每天的销售量p(件)与每件的销售价x(元)满足一次函数关系:p=ax+b,部分对应关系如下表:x …31 32 33 34 35 …p …38 36 34 …(1)请补全上表中的两个空格;(2)求销售量p(件)与每件的销售价x(元)之间的函数解析式;(3)试问:销售价x定为多少元时?每天获得的利润最大.46.某商场书包柜组,将进货价为30元的书包以40元售出,平均每月能售出600个.商场经理调查得知:这种书包的售价每上涨1元,其每月销售量就将减少10个.如果将书包柜组每月利润定为1万元,那么1万元是否为最大利润?请说明理由.47.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月获得的利润为440万元?(3)根据相关部门规定,这种电子产品的销售单价不能高于40元,如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?48.玻璃酒杯的轴截面是一段抛物线(如图所示),请你根据图中的尺寸求出酒面的宽度DC?49.上海世博会期间,某商店出售一种海宝毛绒玩具,每件获利60元,一天可售出20件,经市场调查发现每降价1元可多售出2件,设降价x元,商店每天获利y元.(1)求y与x的函数关系式.(2)当降价多少元时,商店可获最大利润?最大利润是多少?50.一家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件,为了增加销量,公司决定采取降价的办法,经市场调研,每降价1元,月销售量可增加2万件,设每件产品售价为x元.(1)设月销售利润W(万元),请用含有销售单价x(元)的代数式表示w;(2)为获得最大销售利润,每件产品的售价应为多少元?此时,最大月销售利润是多少?(3)为使月销售利润达到480万元,且按物价部门规定此类商品每件的利润率不得高于80%,每件产品的售价为多少?51.某商店经销一批小家电,每个小家电的成本为40元.据市场分析,销售单价定为50元时,一个月能售出500件;若销售单价每涨1元,月销售量就减少10件.针对这种小家电的销售情况,请回答以下问题:(1)当销售单价定为60元时,计算月销售量和月销售利润;(2)设销售单价定为x元(x>50),月销售利润为y元,求y(用含x的代数式表示);(3)现该商店要保证每月盈利8750元,同时又要使顾客得到实惠,那么销售单价应定为多少元?52.2009年4月1日,合武铁路正式建成通车.“和谐号”高速列车武汉到合肥只需2小时,为此,武汉到合肥的时间缩短了8小时.此列车有588座,列车运行每趟的上座率不低于50%.若票价定为120元/票,每趟可卖500张票;若每票涨价1元,则每趟少卖2张票.设每张票涨价为x元(x为正整数).(1)请写出每趟的收入y(元)与x之间的函数关系式,并求出自变量的取值范围;(2)现要求某趟列车的收入为68000元,且票价尽量低,求此时的票价.53.如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为x米.(1)若两个鸡场总面积为96m2,用x的代数式表示AD的长,并求出x;(2)若要使两个鸡场的面积和最大求此时AB的长.54.已知某商品定价(a元/件)上涨2x%,其销售量(b件)便相应减少x%.按规定,税金是从销售额中按一定的比例缴纳,如果这种商品的定价无论如何变化,从销售额中扣除税金后所得的总额总比涨价前的销售额少,求这时生产率P的取值范围(精确到0.1%).55.如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1,为了合理利用这块钢板.将在五边形EABCD内截取一个矩形块MDNP,使点P在AB上,且要求面积最大,求钢板的最大利用率.56.某商店在长期经营中发现,每次降低售价1元,则商品销量增加元,现在假设当售价是100元时,销售量是100件.(1)列出毛收入W与降价x的关系式.(2)试讨论当q变化时,W最大值和x的取值的变化.57.某商场将每件进价为60元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加20件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润7000元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于7000元.58.某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:每件销售价(元)50 60 70 75 80 85 …每天售出件数300 240 180 150 120 90 …假设当天定的售价是不变的,且每天销售情况均服从这种规律.(1)观察这些统计数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式.(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)59.甲、乙两人连续6年对某县农村鳗鱼养殖业的规模(总产量)进行调查,提供了两个方面的信息,分别得到甲、乙两图:甲调查表明:每个鱼池平均产量从第1年1万只鳗鱼上升到第6年2万只.乙调查表明:全县鱼池总个数由第1年30个减少到第6年10个.请你根据提供的信息说明:(1)第2年全县鱼池的个数及全县出产的鳗鱼总数;(2)第6年这个县的鳗鱼养殖业的规模(即总产量)比第1年扩大了还是缩小了?请说明理由;(3)哪一年(取整数)的规律(即总产量)最大?请说明理由.60.备受人们关注的好莱坞大型影片《指环王3》将在宁波电影院放映.该影院共有l000个座位,票价不分等次,根据影院的经营经验:当每张票价不超过l0元时,票可全部售出;当每张票高于l0元时,每提高l元,将有30张票不能售出,为了获得更好的收益,电影院定一个合适的票价,符合的基本的条件是:①为了方便找零和算帐,票价定为1元的整数倍;②票价:不得高于25元;③影院放映一场的成本费用支出为5750元,票房收入必须高于成本支出,用x(元)表示每张票价,用Y(元)表示该影院放映一场的净收入(除去成本后的收入)(1)试问该影院每张最低票价应定为多少?(2)求出y和x的函数关系式,并写出x的取值范围;(3)试问在符合基本条件的前提下,每张票价定为多少元时,放映一场的净收入最多?参考答案:1.(1)60≤x≤90;…(3分)(2)W=(x﹣60)(﹣x+140),…(4分)=﹣x2+200x﹣8400,=﹣(x﹣100)2+1600,…(5分)抛物线的开口向下,∴当x<100时,W随x的增大而增大,而60≤x≤90,∴当x=90时,W=﹣(90﹣100)2+1600=1500.∴当销售单价定为90元时,可获得最大利润,最大利润是1500元.(3)由W=1200,得1200=﹣x2+200x﹣8400,整理得,x2﹣200x+9600=0,解得,x1=80,x2=120,…(11分)可知要使获得利润不低于1200元,销售单价应在80元到120元之间,而60≤x≤90,所以,销售单价x的范围是80≤x≤90.2.(1)设定价为x元,则进货为180﹣10(x﹣52)=180﹣10x+520=(700﹣10x)个,所以(x﹣40)(700﹣10x)=2000,解得x1=50,x2=60;当x=50时,700﹣10x=700﹣10×50=200个;当x=60时,700﹣10x=700﹣10×60=100个;答:商店若准备获利2000元,则定价为50元,应进货200个;或定价为60元,应进货100个;(2)设利润为w,则w=(x﹣40)(700﹣10x)=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250,因此当x=55时,w最大=2250元;答:当定价为55元时,获得的利润最大,最大利润是2250元3.设涨价x元,利润为y元,则方案一:涨价x元时,该商品每一件利润为:50+x﹣40,销售量为:500﹣10x,∴y=(50+x﹣40)(500﹣10x)=﹣10x2+400x+5000=﹣10(x﹣20)2+9000∵当x=20时,y最大=9000,∴方案一的最大利润为9000元;方案二:该商品售价利润为=(50﹣40)×500p,广告费用为:1000m元,∴y=(50﹣40)×500p﹣1000m=﹣2000m2+9000m=﹣2000(m﹣2.25)2+10125∴方案二的最大利润为10125元;∴选择方案二能获得更大的利润4.①每件降价x元,每天盈利y元,由题意得:y=(40﹣x)(20+2x)=﹣2x2+60x+800②y=﹣2(x2﹣30x)+800=﹣2(x﹣15)2+1250∴当每件降价15元时,盈利最大为1250元5.设日销售利润是W元,依题意得:W=xy﹣120y=x (﹣x+200)﹣120(﹣x+200)=﹣x2+320x﹣24000∴W=﹣x2+320x﹣24000,配方得W=﹣(x﹣160)2+1600∵a=﹣1<0,∴W有最大值.当x=160时,可获得最大利润,且最大利润是1600元6.如图,以抛物线的对称轴为y轴,路面为x轴,建立坐标系,由已知可得,抛物线顶点坐标为(0,6),与x轴的一个交点(6,0),设抛物线解析式为y=ax2+6,把(6,0)代入解析式,得a=﹣,所以,抛物线解析式为y=﹣x2+6,当x=6﹣2=4时,y=,∵﹣=3米,∴通过遂道车辆的高度限制为3米.7.(1)设她围成的矩形的一边长为xcm,得:x(50﹣x)=600(2分),解得x1=20,x2=30,当x=20时,50﹣x=30cm;当x=30时,50﹣x=20cm,(4分)所以小芳围成的矩形的两邻边分别是20cm,30cm(5分)(2)设围成矩形的一边长为xcm,面积为ycm2,则有:y=x(50﹣x),即y=﹣x2+50x,y=﹣(x﹣25)2+625(8分)当x=25时,y最大值=625;此时,50﹣x=25,矩形成为正方形.即用这根细绳围成一个边长为25cm的正方形时,其面积最大,最大面积是625cm28.(1)∵每下调一元,销售量就增加5千克,x表示单价下调数,∴销售量从60千克增加,增加量为5x千克,∴y=60+5x;(2)设销售利润为w,∵销售利润=每千克的利润×销售量,每千克的利润=每千克售价﹣每千克进价,。
高一数学函数经典题目及答案

1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例2. 求函数22x 1x x 1y +++=的值域。
例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。
例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。
(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。
例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
函数单调性经典题目含解析及答案

答案: (3,)或[3,)
3、已知 f (x) x2 2x 3, g(x) f (5 x2 ) ,试求 g(x) 的单调区间
解析:复合函数的单调性,当复合函数内外层单调区间不同时,以外
层函数为界限。
答案:单调减区间为 (,2), (0,2) ,单调增区间 (2,0), (2,) 4、函数 y 2 在区间[2,4] 上的最大值和最小值
答案:[0, 1]
5
8、已知 f (x) | x a |在 (,1) 上是单调函数,则 a 的取值范围 解析: f (x) | x |是偶函数,可以画图像利用图像平移的特点来判断 答案: (,1] 9、若 y (2k 1)x b 是 R 上的减函数,则 K 的取值范围。 解析:利用一元一次函数的图像 答案: (, 1)
x2 2x 1, x [0,)
解析:利用函数图像法求单调区间及最小值
答案:函数的单调增区间为 (,0), (0,) ,最小值为 f (0) 1
7、函数 f (x) ax2 2(a 1)x 2 在区间 (,4] 为减函数,则 a 的取值范围
解析:利用一元两次函数的开口方向及对称轴或一元一次函数
x
解析:利用函数单调性
答案:20。 20、函数 f (x) 2x2 mx 1在区间[1,4]上是单调函数,则实数 m 的取值
范围
解析:二次函数对称轴与区间关系
答案: m 4或m 16
21、若 f (x) x2 bx c , f (1) 0, f (3) 0
(1)求 b,c 的值
ax 5, a,x 1 x
x
1
是
R
上的增函数,则
a
的取值范围
专题训练:嵌套函数的零点问题(含解析)

嵌套函数的零点问题思路引导函数的零点是命题的热点,常与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,设中间函数为t ,通过换元将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.例题讲解类型一嵌套函数零点个数的判断【典例1】已知函数f (x )=2x +22,x ≤1log 2x -1 ,x >1,则函数F (x )=f f x -2f x -32的零点个数是( )A.4B.5C.6D.7【解题指导】令t =f (x ),F (x )=0→f (t )=2t -32→作函数y =f (x )与y =2x +32图象→两个交点的横坐标为t 1=0,t 2∈(1,2)→f (x )=t 1、f (x )=t 2判断F (x )的零点个数.【解析】令t =f (x ),F (x )=0,则f (t )-2t -32=0,作出y =f (x )的图象和直线y =2x +32,由图象可得有两个交点,设横坐标为t 1,t 2,∴t 1=0,t 2∈(1,2).当f (x )=t 1时,有x =2,即有一解;当f (x )=t 2时,有三个解,∴综上,F (x )=0共有4个解,即有4个零点,故选A【方法总结】1.判断嵌套函数零点个数的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.2.抓住两点:(1)转化换元.(2)充分利用函数的图象与性质.【针对训练】(2022·长春市实验中学高三模拟)已知f(x)=lg x,x>02x ,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是( )A.3B.5C.7D.8【答案】B【分析】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,画出函数f(x)=lg x,x>02x ,x≤0的图象,数形结合可得答案.【详解】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,函数f(x)=lg x,x>02x ,x≤0的图象如下图所示:由图可得方程f(x)=12和f(x)=1共有5个根,即函数y=2f2(x)-3f(x)+1有5个零点,故选B.类型二已知嵌套函数的零点个数求参数【例2】函数f(x)=ln(-x-1),x<-12x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围____.【解题指导】设t=f(x)→令g(x)=f(f(x))-a=0→a=f(t)→作y=a,y=f(t)的图像数形结合根据a的范围分类讨论y=a,y=f(t)的交点个数【解析】设t=f(x),令g(x)=f(f(x))-a=0,则a=f(t).在同一平面直角坐标系内作y=a,y=f(t)的图像:①当a≥-1时,y=a与y=f(t)的图像有两个交点,设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解;当t2≥-1时,t2=f(x)有两解,∴此时g(x)=f(f(x))-a有三个不同的零点,满足题意;②当a<-1时,y=a与y=f(t)的图像有一个交点.设交点的横坐标为t 3,令ln (-t -1)=-1得t =-1-1e ,∴-1-1e<t 3<-1,此时t 3=f (x )有一个解,不满足题意;综上所述,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【方法总结】(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.【针对训练】已知函数f (x )=2x-1 ,x <12-x ,x ≥1,若关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,则实数b 的取值范围是__________.【答案】-32,-2【解析】作出f (x )的函数图象如下:设f (x )=t ,则当t =1或t <0时,方程f (x )=t 只有1解,当t =0时,方程f (x )=t 有2解,当0<t <1时,方程f (x )=t 有3解,当t >1时,方程f (x )=t 无解.∵关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,∴关于t 的方程2t 2+2bt +1=0在0,1 上有两解,∴4b 2-8>00<-b 2<12+2b +1>0,解得-32<b <-2.模拟训练1.(2023春·浙江温州·高二温州中学校联考期末)已知函数f x =x e x 2+axex -2a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2-x 1e x 122-x 2e x22-x 3e x 3=( )A.1B.4C.16D.642.(2023秋·江西景德镇·高二景德镇一中校考期中)已知函数F x =ln x x2+(a -1)ln xx+1-a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.1-aB.a -1C.-1D.13.(2023·全国·高三专题练习)已知函数f (x )=(xe x )2+(a -1)(xe x )+1-a 有三个不同的零点x 1,x 2,x 3.其中x 1<x 2<x 3,则(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2的值为( )A.1B.(a -1)2C.-1D.1-a4.(2023·全国·高三专题练习)已知函数f (x )=x e x 2+axe x -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-x1e x 121-x 2e x21-x 3e x3的值为()A.1B.-1C.aD.-a5.(2023·全国·高三专题练习)已知函数f x =ax +ln x x -ln x -x 2,有三个不同的零点,(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.a -1B.1-aC.-1D.16.(2023·辽宁·校联考二模)已知函数f x =9ln x 2+a -3 x ln x +33-a x 2有三个不同的零点x 1,x 2,x 3,且x 1<1<x 2<x 3,则3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3的值为( )A.81B.-81C.-9D.97.(2023春·全国·高三专题练习)已知函数f (x )=ae x-x +3e 2xe x -x有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x 121-x 2e x 21-x3ex 3的值为( )A.1B.3C.4D.98.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数f (x )满足f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3, 则3-x 1e x123-x 2e x23-x 3e x 3的值是( )A.81 B.-81 C.9 D.-99.(2023秋·江西宜春·高三江西省丰城中学校考期中)已知函数f (x )=2(a +2)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3,则2-x 1e x122-x 2e x22-x 3e x 3的值为( )A.3B.6C.9D.3610.(2023·陕西·统考模拟预测)已知函数f (x )=(a +3)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x121-x 2e x21-x 3e x 3的值为( )A.3B.4C.9D.1611.(2023春·江苏扬州·高三扬州中学校考开学考试)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为( )A.eB.1C.4D.1-m12.(2023秋·山西太原·高三山西大附中校考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的取值范围为( )A.0,1eB.0,eC.1,eD.0,113.(2023·山西阳泉·统考三模)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为A.eB.1C.1+mD.1-m14.(多选题)(2023秋·山东临沂·高三校联考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为( )A.1B.2e 3C.1e 2D.1e15.(2023秋·河南信阳·高三信阳高中校考开学考试)已知函数f (x )=x x -e x +e 2x +me x x -e x 有三个零点x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e =2.718为自然对数的底数,则m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 的范围为______.嵌套函数的零点问题思路引导函数的零点是命题的热点,常与函数的性质和相关问题交汇.对于嵌套函数的零点,通常先“换元解套”,设中间函数为t ,通过换元将复合函数拆解为两个相对简单的函数,借助函数的图象、性质求解.例题讲解类型一嵌套函数零点个数的判断【典例1】已知函数f (x )=2x +22,x ≤1log 2x -1 ,x >1,则函数F (x )=f f x -2f x -32的零点个数是( )A.4B.5C.6D.7【解题指导】令t =f (x ),F (x )=0→f (t )=2t -32→作函数y =f (x )与y =2x +32图象→两个交点的横坐标为t 1=0,t 2∈(1,2)→f (x )=t 1、f (x )=t 2判断F (x )的零点个数.【解析】令t =f (x ),F (x )=0,则f (t )-2t -32=0,作出y =f (x )的图象和直线y =2x +32,由图象可得有两个交点,设横坐标为t 1,t 2,∴t 1=0,t 2∈(1,2).当f (x )=t 1时,有x =2,即有一解;当f (x )=t 2时,有三个解,∴综上,F (x )=0共有4个解,即有4个零点,故选A【方法总结】1.判断嵌套函数零点个数的主要步骤(1)换元解套,转化为t =g (x )与y =f (t )的零点.(2)依次解方程,令f(t)=0,求t,代入t=g(x)求出x的值或判断图象交点个数.2.抓住两点:(1)转化换元.(2)充分利用函数的图象与性质.【针对训练】(2022·长春市实验中学高三模拟)已知f(x)=lg x,x>02x ,x≤0,则函数y=2[f(x)]2-3f(x)+1的零点个数是( )A.3B.5C.7D.8【答案】B【分析】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,画出函数f(x)=lg x,x>02x ,x≤0的图象,数形结合可得答案.【详解】函数y=2f2(x)-3f(x)+1=[2f(x)-1][f(x)-1]的零点,即方程f(x)=12和f(x)=1的根,函数f(x)=lg x,x>02x ,x≤0的图象如下图所示:由图可得方程f(x)=12和f(x)=1共有5个根,即函数y=2f2(x)-3f(x)+1有5个零点,故选B.类型二已知嵌套函数的零点个数求参数【例2】函数f(x)=ln(-x-1),x<-12x+1,x≥-1,若函数g(x)=f(f(x))-a有三个不同的零点,则实数a的取值范围____.【解题指导】设t=f(x)→令g(x)=f(f(x))-a=0→a=f(t)→作y=a,y=f(t)的图像数形结合根据a的范围分类讨论y=a,y=f(t)的交点个数【解析】设t=f(x),令g(x)=f(f(x))-a=0,则a=f(t).在同一平面直角坐标系内作y=a,y=f(t)的图像:①当a≥-1时,y=a与y=f(t)的图像有两个交点,设交点的横坐标为t1,t2(不妨设t2>t1),则t1<-1,t2≥-1.当t1<-1时,t1=f(x)有一解;当t2≥-1时,t2=f(x)有两解,∴此时g(x)=f(f(x))-a有三个不同的零点,满足题意;②当a<-1时,y=a与y=f(t)的图像有一个交点.设交点的横坐标为t 3,令ln (-t -1)=-1得t =-1-1e ,∴-1-1e<t 3<-1,此时t 3=f (x )有一个解,不满足题意;综上所述,当a ≥-1时,函数g (x )=f (f (x ))-a 有三个不同的零点.【方法总结】(1)求解本题抓住分段函数的图象性质,由y =a 与y =f (t )的图象,确定t 1,t 2的取值范围,进而由t =f (x )的图象确定零点的个数.(2)含参数的嵌套函数方程,还应注意让参数的取值“动起来”,抓临界位置,动静结合.【针对训练】已知函数f (x )=2x-1 ,x <12-x ,x ≥1,若关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,则实数b 的取值范围是__________.【答案】-32,-2【解析】作出f (x )的函数图象如下:设f (x )=t ,则当t =1或t <0时,方程f (x )=t 只有1解,当t =0时,方程f (x )=t 有2解,当0<t <1时,方程f (x )=t 有3解,当t >1时,方程f (x )=t 无解.∵关于x 的函数y =2f 2(x )+2bf (x )+1有6个不同的零点,∴关于t 的方程2t 2+2bt +1=0在0,1 上有两解,∴4b 2-8>00<-b 2<12+2b +1>0,解得-32<b <-2.模拟训练1.(2023春·浙江温州·高二温州中学校联考期末)已知函数f x =x e x 2+axex -2a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则2-x 1e x 122-x 2e x22-x 3e x 3=( )A.1B.4C.16D.64【答案】C【解析】令t (x )=x e x ,则t (x )=1-xe x.所以当x <1时,t (x )>0,函数t (x )=x e x 单调递增;当x >1时,t(x )<0,函数t (x )=x e x单调递减.所以t (x )max =t (1)=1e.由题意g t =t 2+at -2a 必有两个根t 1<0,且0<t 2<1e.由根与系数的关系有:t 1+t 2=-a ,t 1t 2=-2a .由图可知,t 1=x e x 有一解x 1<0,即t 1=x 1e x 1.t 2=xex 有两解x 2,x 3且0<x 2<1<x 3,即t 2=x 2e x 2=x3ex 3.所以2-x 1e x 122-x 2e x 22-x3e x 3=2-t 1 22-t 2 2-t 2 =2-t 1 2-t 2 2=4-2t 1+t 2 +t 1t 2 2=4+2a -2a 2=16.故选:C2.(2023秋·江西景德镇·高二景德镇一中校考期中)已知函数F x =ln x x2+(a -1)ln xx+1-a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.1-aB.a -1C.-1D.1【答案】D 【解析】令y =ln x x ,则y ′=1-ln xx 2,故当x ∈(0,e )时,y ′>0,y =ln x x 是增函数,当x ∈(e ,+∞)时,y ′>0,y =ln x x是减函数;且limx →0ln xx =-∞,ln e e =1e ,lim x →+∞ln xx =0;令ln x x =t ,则可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故△=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与t 1≤1e 且t 2≤1e相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合y =ln xx 的性质可得,ln x 1x 1=t 1,ln x 2x 2=t 2,ln x 3x 3=t 2,故1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=(1-t 1)2(1-t 2)(1-t 2)=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3=1;故选D .3.(2023·全国·高三专题练习)已知函数f (x )=(xe x )2+(a -1)(xe x )+1-a 有三个不同的零点x 1,x 2,x 3.其中x 1<x 2<x 3,则(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2的值为( )A.1B.(a -1)2C.-1D.1-a【答案】A【解析】令t =xe x ,则t ′=(x +1)e x ,故当x ∈(-1,+∞)时,t ′>0,t =xe x 是增函数,当x ∈(-∞,-1)时,t ′<0,t =xe x 是减函数,可得x =-1处t =xe x 取得最小值-1e ,x →-∞,t →0,画出t =xe x 的图象,由f (x )=0可化为t 2+(a -1)t +1-a =0,故结合题意可知,t 2+(a -1)t +1-a =0有两个不同的根,故Δ=(a -1)2-4(1-a )>0,故a <-3或a >1,不妨设方程的两个根分别为t 1,t 2,①若a <-3,t 1+t 2=1-a >4,与-2e<t 1+t 2<0相矛盾,故不成立;②若a >1,则方程的两个根t 1,t 2一正一负;不妨设t 1<0<t 2,结合t =xe x 的性质可得,x 1e x 1=t 1,x 2e x 2=t 1,x 3e x 3=t 2,故(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-t 1)(1-t 1)(1-t 2)2=(1-(t 1+t 2)+t 1t 2)2又∵t 1t 2=1-a ,t 1+t 2=1-a ,∴(1-x 1e x 1)(1-x 2e x 2)(1-x 3e x 3)2=(1-1+a +1-a )2=1.故选:A .4.(2023·全国·高三专题练习)已知函数f (x )=x e x 2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则1-x 1e x 121-x 2e x 21-x3ex 3的值为A.1B.-1C.aD.-a【答案】A 【解析】令x e x =t ,构造g (x )=x e x ,求导得g (x )=1-xex ,当x <1时,g (x )>0;当x >1时,g (x )<0,故g (x )在-∞,1上单调递增,在1,+∞ 上单调递减,且x <0时,g (x )<0,x >0时,g (x )>0,g (x )max =g (1)=1e,可画出函数g (x )的图象(见下图),要使函数f (x )=x e x2+axex -a 有三个不同的零点x 1,x 2,x 3(其中x 1<x 2<x 3),则方程t 2+at -a =0需要有两个不同的根t 1,t 2(其中t 1<t 2),则Δ=a 2+4a >0,解得a >0或a <-4,且t 1+t 2=-at 1⋅t 2=-a ,若a >0,即t 1+t 2=-a <0t 1⋅t 2=-a <0 ,则t 1<0<t 2<1e,则x 1<0<x 2<1<x 3,且g x 2 =g x 3 =t 2,故1-x 1e x121-x 2e x21-x 3ex 3=1-t 1 21-t 2 2=1-t 1+t 2 +t 1t 2 2=1+a -a 2=1,若a <-4,即t 1+t 2=-a >4t 1⋅t 2=-a >4 ,由于g (x )max =g (1)=1e ,故t 1+t 2<2e<4,故a <-4不符合题意,舍去.故选A .5.(2023·全国·高三专题练习)已知函数f x =ax +ln x x -ln x -x 2,有三个不同的零点,(其中x 1<x 2<x 3),则1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 的值为A.a -1B.1-aC.-1D.1【答案】D【解析】令f (x )=0,分离参数得a =x x -ln x -ln x x 令h (x )=x x -ln x -ln xx由h ′(x )=ln x 1-ln x 2x -ln xx 2x -ln x 2=0 得x =1或x =e .当x ∈(0,1)时,h ′(x )<0;当x ∈(1,e )时,h ′(x )>0;当x ∈(e ,+∞)时,h ′(x )<0.即h (x )在(0,1),(e ,+∞)上为减函数,在(1,e )上为增函数.∴0<x 1<1<x 2<e <x 3,a =x x -ln x -ln x x 令μ=ln xx则a =11-μ-μ即μ2+(a -1)μ+1-a =0,μ1+μ2=1-a <0,μ1μ2=1-a <0,对于μ=ln x x ,μ =1-ln xx 2则当0<x <e 时,μ′>0;当x >e 时,μ′<0.而当x >e 时,μ恒大于0.不妨设μ1<μ2,则μ1=ln x 1x 1,μ2=ln x 2x 2,μ3=ln x 3x 3, 1-ln x 1x 1 21-ln x 2x 2 1-ln x 3x 3 =(1-μ1)2(1-μ2)(1-μ3)=[(1-μ1)(1-μ2)]2=[1-(1-a )+(1-a )]2=1.故选D .6.(2023·辽宁·校联考二模)已知函数f x =9ln x 2+a -3 x ln x +33-a x 2有三个不同的零点x 1,x 2,x 3,且x 1<1<x 2<x 3,则3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3的值为( )A.81B.-81C.-9D.9【答案】A【解析】f x =9ln x 2+a -3 x ln x +33-a x 2=0∴a -3 x ln x -3x 2 =-9ln x 2∴a -3=9ln x 23x 2-x ln x =9ln x x 23-ln xx令t =3-ln x x ,t ∈0,+∞ ,则ln xx =3-t ,∴t =-1-ln x x 2=ln x -1x 2令t =0,解得x =e∴t ∈0,e 时,t <0,t 单调递减;t ∈e ,+∞ 时,t >0,t 单调递增;∴t min =3-1e ,t ∈3-1e,+∞ ,∴a -3=9(3-t )2t =9t 2-54t +81t ∴9t 2-51+a t +81=0.设关于t 的一元二次方程有两实根t 1,t 2,∴Δ=51+a 2-4×9×81>0,可得a >3或a <-105.∵a -3=93-t 2t >0,故a >3∴a <-105舍去∴t 1+t 2=51+a 9>51+39=6,t 1t 2=9.又∵t 1+t 2=t 1+9t 1≥29=6,当且仅当t 1=t 2=3时等号成立,由于t 1+t 2≠6,∴t 1>3,t 2=9t 1<3(不妨设t 1>t 2).∵x 1<1<x 2<x 3,可得3-ln x 1x 1>3,3-ln x 2x 2<3,3-ln x 3x 3<3.则可知3-ln x 1x 1=t 1,3-ln x 2x 2=3-ln x 3x 3=t 2.∴3-ln x 1x 1 23-ln x 2x 2 3-ln x 3x 3=t 1t 2 2=81.故选:A .7.(2023春·全国·高三专题练习)已知函数f (x )=ae x-x +3e 2x e x -x有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x 121-x 2e x 21-x3ex 3的值为( )A.1B.3C.4D.9【答案】D【解析】由f x =0得a =x e x -3e xe x -x,即a =x e x -31-x e x =-1-x e x -31-x e x+1,记t =1-x e x ,且设g x =1-xex ,一方面由a =-t -3t +1得t 2+a -1 t +3=0(*),当Δ>0时方程(*)有两个不相等的实数根t 1,t 2,且t 1+t 2=1-a ,t 1t 2=3;另一方面,由g x =x -1e x知g x 在-∞,1 上单调递减,在1,+∞ 上单调递增,g 1=1-1e,g 0 =1,当x →-∞时,g x →+∞,当x →+∞时,g x →1-,如图:t1≥1>t 2>1-1e,且1-x 1e x 1=t 1,1-x 2e x 2=1-x3ex 3=t 2,因此1-x 1e x 121-x 2e x 21-x 3e x 3=t 21⋅t 2⋅t 2=t 1t 2 2=9.故选:D8.(2023秋·重庆南岸·高三重庆市第十一中学校校考阶段练习)设定义在R 上的函数f (x )满足f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3, 则3-x 1e x123-x 2e x23-x 3e x 3的值是( )A.81B.-81C.9D.-9【答案】A【解析】由f (x )=9x 2+(a -3)xe x +3(3-a )e 2x 有三个不同的零点知:9x 2+(a -3)xe x +3(3-a )e 2x =0有三个不同的实根,即a -3=9x 23e 2x -xe x =9x ex 23-x ex有三个不同实根,若t =3-xe x ,则a -3=9(3-t )2t ,整理得9t 2-(a +51)t +81=0,若方程的两根为t 1,t 2,∴t 1t 2=9,而t=xe x -e x e 2x=x -1e x,∴当x <1时,t <0即t 在(-∞,1)上单调递减;当x >1时,t >0即t 在(1,+∞)上单调递增;即当x =1时t 有极小值为3-1e ,又x 1<0<x 2<x 3,x =0有t =3,即t 1>3>t 2>3-1e.∵方程最多只有两个不同根,∴x 1<0<x 2<1<x 3,即t 1=3-x 1e x 1,t 2=3-x 2e x 2=3-x 3e x3,∴3-x1e x 123-x 2e x23-x 3ex 3=t 12t 22=81.故选:A9.(2023秋·江西宜春·高三江西省丰城中学校考期中)已知函数f (x )=2(a +2)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<0<x 2<x 3,则2-x1e x 122-x 2e x22-x 3e x 3的值为( )A.3B.6C.9D.36【答案】D【解析】因为f (x )=2(a +2)e 2x -(a +1)xe x +x 2,所以f (x )=e 2x 2(a +2)-(a +1)x e x +x e x 2,因为e 2x>0,所以2(a +2)-(a +1)x e x +x e x 2=0有三个不同的零点x 1,x 2,x 3,令g x =x e x ,则g x =1-x e x,所以当x <1时g x >0,当x >1时g x <0,即g x 在-∞,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =1e ,当x >0时x e x >0,令t =x ex ∈-∞,1e ,则2(a +2)-(a +1)t +t 2=0必有两个根t 1、t 2,不妨令t 1<0、0<t 2<1e ,且t 1+t 2=a +1,t 1t 2=2a +2 ,即t 1=x e x 必有一解x 1<0,t 2=xe x 有两解x 2、x 3,且0<x 2<1<x 3,故2-x 1e x122-x 2e x22-x 3ex 3=2-t 1 22-t 2 2=4-2t 1+t 2 +t 1t 2 2=4-2a +1 +2a +2 2=36故选:D10.(2023·陕西·统考模拟预测)已知函数f (x )=(a +3)e 2x -(a +1)xe x +x 2有三个不同的零点x 1,x 2,x 3,且x 1<x 2<x 3,则1-x 1e x121-x 2e x21-x 3e x 3的值为( )A.3B.4C.9D.16【答案】C【解析】f (x )=(a +3)e 2x -(a +1)xe x +x 2=e 2x x e x 2-a +1 ⋅x ex +a +3 ,e 2x >0,x e x2-a +1 ⋅xex +a +3 =0有三个不同的零点x 1,x 2,x 3.令g x =x e x ,g x =1-xe x,g x 在-∞,1 递增,在1,+∞ 上递减,g x max =g 1 =1e .x >0时,xex >0.令t =x ex ∈-∞,1e,t 2-a +1 ⋅t +a +3 =0必有两个根t 1,t 2,t 1<0,0<t 2<1e,且t 1+t 2=a +1,t 1⋅t 2=a +3,t 1=x e x 有一解x 1<0,t 2=x ex 有两解x 2,x 3,且0<x 2<1<x 3,故1-x 1e x 121-x 2e x 21-x3e x 31-t 1 21-t 22=1-t 1+t 2 +t 1⋅t 2 2=1-a +1 +a +3 2=9.故选:C11.(2023春·江苏扬州·高三扬州中学校考开学考试)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为( )A.eB.1C.4D.1-m【答案】B【解析】令t =ln xx-1,则t =1-ln xx 2,当x >e 时,t <0,当0<x <e 时,t >0,所以t 在e ,+∞ 上递减,在0,e 上递增,所以当x =e 时,函数取得最大值1e-1,函数t =ln xx-1的图象如图所示:则ln x 1x 1-1=t 1,ln x 2x 2-1=t 2,ln x 3x 3-1=t 3,由图象知:t 2=t 3,因为关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,所以方程t +1t+m +1 =0有两个不等的实数解t 1,t 2,由韦达定理得:t 1⋅t 2=1,所以ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 =t 12⋅t 2⋅t 3=t 12⋅t 22=1,故选:B12.(2023秋·山西太原·高三山西大附中校考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的取值范围为( )A.0,1eB.0,eC.1,eD.0,1【答案】A 【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+m +1 t +m +1=0.令函数g x =e ln x x ,则g x =e ⋅1-ln xx 2,由g x >0,解得0<x <e ,g x <0,解得x >e所以g x 在0,e 上单调递增,在e ,+∞ 上单调递减,且g e =1作出图象如图所示,要使关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+m +1 t +m +1=0一定有两个实根t 1,t 2,且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-m +1 ,t 1t 2=m +1.所以Δ=m +1 2-4m +1 >0,解得m >3或m <-1若t 1=1,则1+m +1 ×1+m +1=0,解得m =-32,则t 2=-12此时e ln x 2x 2=t 2=-12只有1个实数根,此时原方程没有3个不等实数根,故不满足题意.若t 1=0,则m =-1,可得t 2=0,显然此时原方程没有3个不等实数根,故不满足题意.要使原方程有3个不等实数根,则t 1<0<t 2<1所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.所以e ln x 1x 1=t 1,e ln x 2x 2=e ln x 3x 3=t 2故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e t 1+t 2 =-2m +1 e ∈0,1e.故选:A13.(2023·山西阳泉·统考三模)关于x 的方程ln x x +xln x -x+m =0有三个不等的实数解x 1,x 2,x 3,且x 1<1<x 2<x 3,则ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1 的值为A.eB.1C.1+mD.1-m【答案】B 【解析】设f x =ln x x ,则f x =1-ln xx 2,故函数在0,e 上单调递增,在e ,+∞ 上单调递减,f e =1e,画出函数图像,如图所示:设ln x x =t ,ln x x +x ln x -x +m =0,则ln x x +1ln x x -1+m =0,即t +1t -1+m =0,化简整理得到:t 2+m -1 t +1-m =0,故t 1+t 2=1-m ,t 1t 2=1-m ,且t 1<0,0<t 2<1e,ln x 1x 1-1 2ln x 2x 2-1 ln x 3x 3-1=t 1-1 2t 2-1 2=t 1t 2-t 1+t 2 +1 2=1.故选:B .14.(多选题)(2023秋·山东临沂·高三校联考阶段练习)若关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,则ln x 21x 1+ln x 2x 2+ln x 3x 3的值可能为( )A.1B.2e 3C.1e 2D.1e【答案】BC 【解析】由方程e ln x x +x e ln x +x +m =0,可得e ln x x +1e ln x x+1+m =0.令e ln x x =t ,则有t +1t +1+m =0,即t 2+(m +1)t +m +1=0.令函数g (x )=e ln x x ,则g (x )=e ⋅1-ln xx 2,所以g (x )在(0,e )上单调递增,在(e ,+∞)上单调递减.作出图象如图所示,要使关于x 的方程e ln x x +xe ln x +x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<x 2<x 3,结合图象可得关于t 的方程t 2+(m +1)t +m +1=0一定有两个实根t 1,t 2(t 1<0<t 2<1),且e ln x 1x 1=t 1,e ln x 2x 2=t 2,t 1+t 2=-(m +1),t 1t 2=m +1.所以m +1<0,1+m +1+m +1>0,解得-32<m <-1.故ln x 21x 1+ln x 2x 2+ln x 3x 3=2e (t 1+t 2)=-2(m +1)e ∈0,1e.因为2e 3∈0,1e ,1e 2∈0,1e,所以BC 都符合题意,故选:BC15.(2023秋·河南信阳·高三信阳高中校考开学考试)已知函数f (x )=x x -e x +e 2x +me x x -e x 有三个零点x 1,x 2,x 3,且x 1<0<x 2<x 3,其中m ∈R ,e =2.718为自然对数的底数,则m -x 1e x 1-1 2x 2e x 2-1 x 3e x 3-1 的范围为______.【答案】0,1e 2-e【解析】由f x =0,两边同时除以e xx -e x变形为x e x +e xx -e x+m =0,有x ex +1x e x-1+m =0设x ex =t 即t +1t -1+m =0,所以t 2+(m -1)t +1-m =0令g (x )=x e x ,则g (x )=1-xe x,所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减,且g 0 =0,g 1 =1e,当x >0时,g (x )>0其大致图像如下.要使关于x 的方程x e x +e xx -e x+m =0有三个不相等的实数解x 1,x 2,x 3,且x 1<0<x 2<x 3.结合图像可得关于t 的方程g (t )=t 2+(m -1)t +1-m =0一定有两个不等的实数根t 1,t 2且t 1<0<t 2<1e ,从而1<m <1+1e 2-e.t 1+t 2=1-m ,t 1⋅t 2=1-m ,则x 1e x 1=t 1,x 2e x 2=x3ex 3=t 2.所以x 1e x 1-1 2x 2e x 2-1 x3e x 3-1 =t 1-1 2t 2-1 2=t 1-1 t 2-1 2=t 1t 2-t 1+t 2 +1 2=[1-m -(1-m )+1]2=1m -x 1e x1-12x 2e x 2-1 x 3e x 3-1 =m -1∈0,1e 2-e .故答案为:0,1e 2-e。
中考数学复习《函数压轴题》经典题型及测试题(含答案)

中考数学复习《函数压轴题》经典题型及测试题(含答案)阅读与理解函数压轴题主要分为两大类:一是动点函数图象问题;二是与动点、存在点、相似等有关的二次函数综合题.解答动点函数图象问题,要把问题拆分,分清动点在不同位置运动或不同时间段运动时对应的函数关系式,进而确定函数图象;解答二次函数综合题,要把大题拆分,做到大题小做,逐步分析求解,最后汇总成最终答案.类型一 动点函数图象问题此类问题一般是通过分析动点在几何图形边上的运动情况,确定出有关动点函数图象的变化情况.分析此类问题,首先要明确动点在哪条边上运动,在运动过程中引起了哪个量的变化,然后求出在运动过程中对应的函数关系式,最后根据函数关系式判断图象的变化.例1 (2016·济南) 如图,在四边形ABCD 中,AB ∥CD ,∠B =90°,AB =AD =5,BC =4,M 、N 、E 分别是A B 、AD 、CB 上的点,AM =CE =1,AN =3,点P 从点M 出发,以每秒1个单位长度的速度沿折线MB -BE 向点E 运动,同时点Q 从点N ,以相同的速度沿折线ND -DC -CE 向点E 运动,设△APQ 的面积为S ,运动的时间为t 秒,则S 与t 函数关系的大致图象为( )【分析】 由点Q 从点N 出发,沿折线NDDCCE 向点E 运动,确定出点Q 分别在ND ,DC ,CE 运动时对应的t 的取值范围,再根据t 所在的取值范围分别求出其对应的函数关系式,最后根据函数关系式确定对应的函数图象.【自主解答】过点D 作DF ⊥AB 于点F (如图1),则DF =BC =4.第15题图 A BCDM N Q∵AD =5,DF =4,∴AF =3.∴sin ∠A=DF AD =45,MF =3-1=2,BF =AB -AF =5-3=2,DC =BF =2.∵AD =5,AN =3,∴ND =5-3=2.(1)当0≤t ≤2时,点P 在MF 上,点Q 在ND 上(如图2),此时AP =AM +MP =1+t ,AQ =AN +NQ =3+t .∴S =12AP •AQ •sin ∠A =12(1+t )(3+t )×45=25(t +2)2―25.当0≤t ≤2时,S随t 的增大而增大,且当t =2时,S =6.由此可知A 、B 选项都不对.(2)当t =5时,点P 在MF 上,点Q 在ND 上(如图3),此时BP =1,PE =BC -BP -CE =4-1-1=2.∴S =12AB •PE =12×5×2=5.∵6>5,∴选项D 正确.变式训练1.如图,△ABC 是等腰直角三角形,∠C =90°,AC =BC ,AB =4,D 为AB 上的动点,DP ⊥AB 交折线A -C -B 于点P.设AD =x ,△ADP 的面积为y ,则y 与x 的函数图象正确的是( )2.(2016·烟台)如图,⊙O 的半径为1,AD ,BC 是⊙O 的两条相互垂直的直径,图1 DC B A E M N QP F 图2 A B C D E M N Q P F 图3 A B C D E (Q )M N F P点P从点O出发(P点与O点不重合),沿OCD的路线运动.设AP=x,sin∠APB =y,那么y与x之间的关系图象大致是()类型二二次函数的实际问题解答此类问题时,首先要构建合理的坐标系,并写出对应的函数解析式,并利用二次函数的性质求解后续的问题.一般来说,选择的坐标系不同,得出的解析式必然不同,因此解答此类问题时,选择最恰当的坐标系往往显得尤为重要.例2 (2017·金华) 甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.【分析】(1)①将点P(0,1)代入y=﹣(x﹣4)2+h即可求得h;②求出x=5时,y的值,与1.55比较即可得出判断;(2)将(0,1)、(7,)代入y=a(x﹣4)2+h代入即可求得a、h.【自主解答】解:(1)①当a=﹣时,y=﹣(x﹣4)2+h,将点P(0,1)代入,得:﹣×16+h=1,解得:h=;②把x=5代入y=﹣(x﹣4)2+,得:y=﹣×(5﹣4)2+=1.625,∵1.625>1.55,∴此球能过网;(2)把(0,1)、(7,)代入y=a(x﹣4)2+h,得:,解得:,∴a=﹣.变式训练3.(2017·沈阳)某商场购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可销售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,当销售单价是_____元时,才能在半月内获得最大利润.4、(2017•青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨.下表是去年该酒店豪华间某两天的相关记录:淡季旺季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元?(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?【分析】(1)根据题意可以列出相应的方程组,进而求得该酒店豪华间的间数和旺季每间的价格;(2)根据题意可以求得总收入和上涨价格之间的函数解析式,然后化为顶点式即可解答本题.【自主解答】解:(1)设淡季每间的价格为x元,酒店豪华间有y间,,解得,,∴x+x=600+=800,答:该酒店豪华间有50间,旺季每间价格为800元;(2)设该酒店豪华间的价格上涨x元,日总收入为y元,y=(800+x)(50﹣)=42025,∴当x=225时,y取得最大值,此时y=42025,答:该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42025元.类型三二次函数的综合题二次函数作为整套试卷的压轴题,往往会命制三个小问题,其中第一问求解二次函数的解析式,此问题往往利用待定系数法便可解决;第二、三问往往涉及动点问题及存在点问题,此问题需要利用全等三角形、相似三角形、平行四边形、圆等知识综合解答,计算量很大,且题目较为综合.例3 (2017·泰安) )如图,是将抛物线y=﹣x2平移后得到的抛物线,其对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),另一个交点为B,与y轴的交点为C.(1)求抛物线的函数表达式;(2)若点N为抛物线上一点,且BC⊥NC,求点N的坐标;(3)点P是抛物线上一点,点Q是一次函数y=x+的图象上一点,若四边形OAPQ为平行四边形,这样的点P、Q是否存在?若存在,分别求出点P,Q的坐标;若不存在,说明理由.【分析】(1)已知抛物线的对称轴,因而可以设出顶点式,利用待定系数法求函数解析式;(2)首先求得B和C的坐标,易证△OBC是等腰直角三角形,过点N作NH⊥y 轴,垂足是H,设点N纵坐标是(a,﹣a2+2a+3),根据CH=NH即可列方程求解;(3)四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,即可求解.【自主解答】解:(1)设抛物线的解析式是y=﹣(x﹣1)2+k.把(﹣1,0)代入得0=﹣(﹣1﹣1)2+k,解得k=4,则抛物线的解析式是y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;(2)在y=﹣x2+2x+3中令x=0,则y=3,即C的坐标是(0,3),OC=3.∵B的坐标是(3,0),∴OB=3,∴OC=OB,则△OBC是等腰直角三角形.∴∠OCB=45°,过点N作NH⊥y轴,垂足是H.∵∠NCB=90°,∴∠NCH=45°,∴NH=CH,∴HO=OC+CH=3+CH=3+NH,设点N纵坐标是(a,﹣a2+2a+3).∴a+3=﹣a2+2a+3,解得a=0(舍去)或a=1,∴N的坐标是(1,4);(3)∵四边形OAPQ是平行四边形,则PQ=OA=1,且PQ∥OA,设P(t,﹣t2+2t+3),代入y=x+,则﹣t2+2t+3=(t+1)+,整理,得2t2﹣t=0,解得t=0或.∴﹣t2+2t+3的值为3或.∴P、Q的坐标是(0,3),(1,3)或(,)、(,).变式训练5.(2016·襄阳) 如图,已知点A的坐标为(﹣2,0),直线y=﹣x+3与x轴、y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A、B、C三点.(1)请直接写出B、C两点的坐标,抛物线的解析式及顶点D的坐标;(2)设抛物线的对称轴DE交线段BC于点E,P是第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F,若四边形DEFP 为平行四边形,求点P的坐标;(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC 于点N,点Q从点B出发,以每秒1个单位长度的速度沿线段BA 向点A运动,运动时间为t(秒),当t(秒)为何值时,存在△QMN 为等腰直角三角形?解:(1)令x=0代入y=﹣x+3∴y=3,∴C(0,3),令y=0代入y=﹣x+3∴x=4,∴B(4,0),设抛物线的解析式为:y=a(x+2)(x﹣4),把C(0,3)代入y=a(x+2)(x﹣4),∴a=﹣,∴抛物线的解析式为:y=(x+2)(x﹣4)=﹣x2+x+3,∴顶点D的坐标为(1,);(2)当DP∥BC时,此时四边形DEFP是平行四边形,设直线DP的解析式为y=mx+n,∵直线BC的解析式为:y=﹣x+3,∴m=﹣,∴y=﹣x+n,把D(1,)代入y=﹣x+n,∴n=,∴直线DP的解析式为y=﹣x+,∴联立,解得:x=3或x=1(舍去),∴把x=3代入y=﹣x+,y=,∴P的坐标为(3,);(3)由题意可知:0≤t≤6,设直线AC的解析式为:y=m1x+n1,把A(﹣2,0)和C(0,3)代入y=m1x+n1,得:,∴解得,∴直线AC的解析式为:y=x+3,由题意知:QB=t,如图1,当∠NMQ=90°,∴OQ=4﹣t,令x=4﹣t代入y=﹣x+3,∴y=t,∴M(4﹣t,t),∵MN∥x轴,∴N的纵坐标为t,把y=t代入y=x+3,∴x=t﹣2,∴N(t﹣2,t),∴MN=(4﹣t)﹣(﹣2)=6﹣t,∵MQ∥OC,∴△BQM∽△BOC,∴,∴MQ=t,当MN=MQ时,∴6﹣t=t,∴t=,此时QB=,符合题意,如图2,当∠QNM=90°时,∵QB=t,∴点Q的坐标为(4﹣t,0)∴令x=4﹣t代入y=x+3,∴y=9﹣t,∴N(4﹣t,9﹣t),∵MN∥x轴,∴点M的纵坐标为9﹣t,∴令y=9﹣t代入y=﹣x+3,∴x=2t﹣8,∴M(2t﹣8,9﹣t),∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,∵NQ∥OC,∴△AQN∽△AOC,∴=,∴NQ=9﹣t,当NQ=MN时,∴9﹣t=3t﹣12,∴t=,∴此时QB=,符合题意如图3,当∠NQM=90°,过点Q作QE⊥MN于点E,过点M作MF⊥x轴于点F,设QE=a,令y=a代入y=﹣x+3,∴x=4﹣,∴M(4﹣a,a),令y=a代入y=x+3,∴x=﹣2,∴N(﹣2,0),∴MN=(4﹣a)﹣(a﹣2)=6﹣2a,当MN=2QE时,∴6﹣2a=2a,∴a=,∴MF=QE=,∵MF∥OC,∴△BMF∽△BCO,∴=,∴BF=2,∴QB=QF+BF=+2=,∴t=,此情况符合题意,综上所述,当△QMN为等腰直角三角形时,此时t=或或6.(2017·潍坊) 如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(﹣1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F.点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(﹣1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=﹣x+,联立直线l和抛物线解析式可得,解得或,∴F(﹣,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,﹣t2+2t+3),M(t,﹣t+),∴PM=﹣t2+2t+3﹣(﹣t+)=﹣t2+t+,∴S△PEF =S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(﹣t2+t+)(3+)=﹣(t﹣)+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=﹣t2+2t+3﹣3,即﹣t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=﹣t2+2t+3,AQ=t,KE=3﹣t,PQ=﹣t2+2t+3﹣3=﹣t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2﹣t﹣1=0,解得t=或t=<﹣(舍去),综上可知存在满足条件的点P,t的值为1或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二轮专题复习---函数型问题
1.(•赣州市)年春节前夕,南方地区遭遇罕见的低温雨雪冰冻天气,赣南脐橙受灾滞销.为了减少果农的损失,政府部门出台了相关补贴政策:采取每千兊补贴0.2元的办法补偿果农.
下图是“绿荫”果园受灾期间政府补助前、后脐橙销售总收入y(万元)与销售量x(吨)的关系图.请结合图象回答以下问题:
(1)在出台该项优惠政策前,脐橙的售价为每千兊多少元?
(2)出台该项优惠政策后,“绿荫”果园将剩余脐橙按原售价打九折赶紧全部销完,加上政府补贴共收入11.7万元,求果园共销售了多少吨脐橙?
(3)①求出台该项优惠政策后y与x的函数关系式;②去年“绿荫”果园销售30吨,总收入为10.25万元;若按今年的销售方式,则至少要销售多少吨脐橙?总收入能达到去年水平.
2.(•莆田市)枇杷是莆田名果之一,某果园有100棵枇杷树。
每棵平均产量为40千兊,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千兊,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千兊?
注:抛物线2
y ax bx c
=++的顶点坐标是
2
4 (,) 24
b a
c b
a a
-
-
3.(·贵阳市)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.
设每个房间每天的定价增加x 元.求:
(1)房间每天的入住量y (间)关于x (元)的函数关系式.
(2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式.
(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?
4.(•杭州市)在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b )。
平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B ,C 两点(∣OB ∣<∣OC ∣),连结A ,B 。
(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,幵说明理由;
(2)如果AQ ∥BC ,且tan ∠ABO=
2
3,求抛物线F 对应的二次函数的解析式。
参考答案
1.【解析】从函数图象容易看出前面一段是出台该项优惠政策前的情况,后面一段是出台该项优惠政策后的情况,前面一段所有的量已经知道,容易求出该果园共销售脐橙的重量,为后面一段的求值奠定了基础.
【答案】解:(1)政策出台前的脐橙售价为
43310 3 1010⨯=⨯元元/千克千克
; (2)设剩余脐橙为x 吨,则
103×(3×9+0.2)x=11.7×104
∴43(11.73)1010(30.90.2)
x -⨯=⨯⨯⨯+=310吨; 该果园共销售了10 +30 = 40吨脐橙 ;
(3)①设这个一次函数的解析式为 (1040)y mx n x =+≤≤,
代入两点(10,3)、(40,11.7)
得: 310, 11.740;m n m n =+⎧⎨=+⎩
=0.29,=0.1;
m n ⎧⎨⎩解得 函数关系式为0.290.1 (1040)y x x =+≤≤, ②令 10.25(10.250.290.1 y x ≥≤+万元),则,
35 (x ≥解得吨)
答:(1)原售价是3元/千兊;(2)果园共销售40吨脐橙;(3)①函数关系式为
0.290.1 (1040)y x x =+≤≤;
②今年至少要销售35吨,总收入才达到去年水平.
2.【解析】先建立函数关系式,把它转化为二次函数的一般形式,然后根据二次函数的顶点坐标公式进行求极值.
【答案】解:设增种x 棵树,果园的总产量为y 千兊,依题意得:y=(100 + x )(40 – 0.25x ) =4000 – 25x + 40 x – 0,25x 2 = - 0.25 x 2 + 15x + 4000
因为a= - 0.25<0,所以当1530220.25
b x a =-=-=-⨯,
y 有最大值
2244(0.25)400015422544(0.25)
ac b y a -⨯-⨯-===⨯-最大值 答:增种30棵枇杷树,投产后可以使果园枇杷的总产量最多,最多总产量是4225千兊.
3.【解析】解决在产品的营销过程中如何获得最大利润的“每每型”试题成为近年中考的热点问题。
每每型”试题的特点就是每下降,就每减少,或每增长,就每减少。
解决这类问题的关键就是找到单价降低后,该商场每天的销售量。
“每每型”试题都可以转化为二次函数最值问题,利用二次函数的图像和性质加以解决.
【答案】(1)6010
x y =-
(2)21(200)6040120001010
x z x x x ⎛⎫=+-=-++ ⎪⎝⎭ (3)(200)6020601010x x w x ⎛
⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝
⎭ 22114210800(210)152101010
x x x =-++=--+
当x=210时,w 有最大值.
此时,x+200=410,就是说,当每个房间的定价为每天410元时,w 有最大值,且最大值是15210元.
4.【解析】我们可以先假设存在这样的抛物线,如果能够求出对应的值,则存在,如果求不出,则不存在.
【答案】(1)∵ 平移2tx y -=的图象得到的抛物线F 的顶点为Q,
∴ 抛物线F 对应的解析式为:b t x t y +--=2)(.
∵ 抛物线与x 轴有两个交点,∴0>b t .
令0=y , 得-=t OB t
b ,+=t OC t b , ∴22))((|||||OA t t b t t b t OC OB ==+-=⋅ 即22t
t t b
±=-, 所以当32t b =时, 存在抛物线F 使得||||||2OC OB OA ⋅=. (2) ∵BC AQ //,∴ b t =,得F: t t x t y +--=2)(,解得1,121+=-=t x t x
在AOB Rt ∆中,1) 当0>t 时,由 ||||OC OB <, 得)0,1(-t B ,
当01>-t 时, 由=
∠ABO tan 23=||||OB OA =1-t t , 解得3=t , 此时, 二次函数解析式为241832-+-=x x y ;
当01<-t 时, 由=∠ABO tan 23=||||OB OA =1
+-t t , 解得=t 53, 此时,二次函数解析式为
-=y 532x +2518x +12548. 2) 当0<t 时, 由 ||||OC OB <, 将t -代t , 可得=t 5
3-, 3-=t ,
(也可由x -代x ,y -
代y 得到) 所以二次函数解析式为
=y 532x +2518x –12548或241832++=x x y .。