一次函数常考题含答案

合集下载

初中一次函数试题及答案

初中一次函数试题及答案

初中一次函数试题及答案一、选择题1. 一次函数y=kx+b的图象不经过第______象限。

A. 第一B. 第二C. 第三D. 第四答案:B2. 函数y=2x-3的图象与y轴的交点坐标是______。

A. (0, -3)B. (0, 2)C. (-3, 0)D. (3, 0)答案:A3. 如果一次函数y=kx+b的斜率k大于0,那么该函数的图象经过第______象限。

A. 第一、三B. 第一、二C. 第二、四D. 第一、二、三答案:D二、填空题4. 已知一次函数y=3x+4,当x=2时,y的值为______。

答案:105. 函数y=-2x+5的图象与x轴的交点坐标是______。

答案:(2.5, 0)三、解答题6. 已知一次函数y=kx+b的图象经过点(1, 2)和(-1, -4),求k和b 的值。

答案:将点(1, 2)代入y=kx+b得到方程2=k+b,将点(-1, -4)代入得到-4=-k+b。

解这个方程组,我们得到k=3,b=-1。

7. 函数y=4x-7与x轴的交点坐标是多少?答案:将y设为0,解方程4x-7=0得到x=1.75。

因此,交点坐标为(1.75, 0)。

四、计算题8. 一个一次函数的图象经过点A(2, 5)和点B(-1, -3),求这个一次函数的解析式。

答案:设一次函数为y=kx+b,根据点A(2, 5)和点B(-1, -3),我们有方程组:\[\begin{cases}2k + b = 5 \\-k + b = -3\end{cases}\]解这个方程组,得到k=2,b=1。

因此,一次函数的解析式为y=2x+1。

9. 已知一次函数y=kx+b的图象经过点(3, 6),且当x=0时,y=2,求k和b的值。

答案:根据题意,我们有方程组:\[\begin{cases}3k + b = 6 \\b = 2\end{cases}\]解这个方程组,得到k=2,b=2。

因此,一次函数的解析式为y=2x+2。

一次函数测试题(附答案)

一次函数测试题(附答案)

一次函数练习一、选择题:1、下列函数中,是正比例函数的是( )A 、y=2π B 、y=2x C 、y=2x D 、y=2π2、在函数y=23x +-,y=22x +,y=x+8中,一次函数有( ) A 、1个 B 、2个 C 、3个 D 、4个3、函数y=(m+1)m x +2是一次函数, m 的值为( )A 、m=±1B 、m=-1C 、m=1D 、m≠-14、已知直线y=2x 与直线y=kx+3互相平行,则k 的值为 ( )A 、k=-2B 、k=2C 、k=±2D 、无法确定k 的值5、一次函数y=kx+b,若k+b=1,则它的图象必经过点 ( )A 、(-1,-1)B 、(-1,1)C 、(1,-1)D 、(1,1)6、下列各组函数中,与y 轴的交点相同的是( )A 、y=5x 与y=2x+3B 、y=-2x+4与y=-2x-4C 、y=2x +3与y=-2x+3 D 、y=4x-1与y=x+1 7、已知函数y=(2m +2)x ,y 随x 增大而( )A 、增大B 、减小C 、与m 有关D 、无法确定8、若一次函数y=(1-2m)x+3的图象经过A (1x ,1y )和B(2x ,2y ),当1x <2x 时,1y <2y ,则m 的取值范围是( )A 、m <0B 、m >0C 、m <12 D 、m >12 9、已知直线y=a c x b b+中,若ab >0,ac <0,那么这条直线不经过( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限10、直线y=-2x+b 与两坐标轴围成的三角形的面积为4,则b 的值为( )A 、4B 、-4C 、±4D 、±2二、填空题:1、一次函数y=2x+6的图象与y 轴相交,则交点坐标为________2、已知一次函数y=kx+b 的图象经过(-1,1)、(2,3)两点,则这个一次函数的关系式为______3、将直线y=3x-1向上平移3个单位,得直线______________4、一次函数的图象经过点P (1,3),且y 随x 的增大而增大,写出一个满足条件的函数关系式______________5、已知点A (1,a )在直线y=-2x+3上,则a=________6、已知点P 在直线y=143x -+上,且点P 到y 轴的距离等于3个单位长度,则点P 的坐标为_________. 7、某个一次函数y=kx+b 的图象位置大致如下图(1)所示,则k 的取值范围为_____,b 的取值范围为________.(图1) (图2)8、如图(2),一次函数y=x+5的图象经过P(a,b)和Q (c,d ),则a(c-d)-b(c-d)的值为_______.9、已知y 是x 的一次函数,下表中列出了部分对应值,则m=_________.10、点A (2,a )在一次函数y=-x+3的图象上,且一次函数的图象与y 轴的交点为B ,则△AOB 的面积为_________.三、解答题:1、直线1y =kx+b 与y 轴的交点和直线2y =2x+3与y 轴的交点相同,直线1y 与x 轴的交点和直线2y 与x 轴的交点关于原点对称,求:直线1y 的关系式.2、已知y=1y +2y ,1y 与x+2成正比,2y 是x+1的2倍,并且当x=0时,y=4,试求函数y 与x 的关系式.3、已知直线y=-x+4与直线y=2x-2相交于点A,且直线y=-x+4与y 轴相交于点B, 直线y=2x-2与x 轴相交于点C ,求四边形ABOC 的面积.4、已知一次函数y=kx+b的自变量x的取值范围是-1≤x≤5,相对应的函数值范围为-6≤y≤0,求此函数的关系式.5、为了鼓励市民节约用水,自来水公司特制定了新的用水收费标准,每月用水量x(吨)与应付水费(元)的函数关系如图所示。

一次函数经典题及答案

一次函数经典题及答案

一次函数经典题一.定义型例1. 已知函数是一次函数,求其解析式。

解:由一次函数定义知,,故一次函数的解析式为y=-6x+3。

注意:利用定义求一次函数y=kx+b解析式时,要保证k≠0。

如本例中应保证m-3≠0。

二. 点斜型例2. 已知一次函数y=kx-3的图像过点(2, -1),求这个函数的解析式。

解:一次函数的图像过点(2, -1),,即k=1。

故这个一次函数的解析式为y=x-3。

变式问法:已知一次函数y=kx-3 ,当x=2时,y=-1,求这个函数的解析式。

三. 两点型例3.已知某个一次函数的图像与x轴、y轴的交点坐标分别是(-2, 0)、(0, 4),则这个函数的解析式为_____。

解:设一次函数解析式为y=kx+b,由题意得,故这个一次函数的解析式为y=2x+4四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为__________。

解:设一次函数解析式为y=kx+b由图可知一次函数的图像过点(1, 0)、(0, 2)有故这个一次函数的解析式为y=-2x+2五. 斜截型例5. 已知直线y=kx+b与直线y=-2x平行,且在y轴上的截距为2,则直线的解析式为___________。

解析:两条直线;。

当k1=k2,b1≠b2时,直线y=kx+b与直线y=-2x平行,。

又直线y=kx+b在y轴上的截距为2,故直线的解析式为y=-2x+2六. 平移型例6. 把直线y=2x+1向下平移2个单位得到的图像解析式为___________。

解析:设函数解析式为y=kx+b,直线y=2x+1向下平移2个单位得到的直线y=kx+b与直线y=2x+1平行直线y=kx+b在y轴上的截距为b=1-2=-1,故图像解析式为七. 实际应用型例7. 某油箱中存油20升,油从管道中匀速流出,流速为0.2升/分钟,则油箱中剩油量Q(升)与流出时间t(分钟)的函数关系式为___________。

解:由题意得Q=20-0.2t ,即Q=-0.2t+20故所求函数的解析式为Q=-0.2t+20()注意:求实际应用型问题的函数关系式要写出自变量的取值范围。

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。

一次函数练习题(附答案)

一次函数练习题(附答案)

一次函数练习题(附答案)篇一:一次函数测试题及其答案一次函数测试题1. 函数y=中,自变量x的取值范围是() x?1A.x≥0 B.x>1 C.x>0且x≠1 D.x≥0且x≠1 2. 已知正比例函数y=-2x,当x=-1时,函数y的值是()A.2 B.-2 C.-0.5 D.0.5 3. 一次函数y=-2x-3的图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 某校八年级同学到距学校6千米的郊外秋游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往,如图,L1L2分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x (分钟)之间的函数关系,则以下判断错误的是() A.骑车的同学比步行的同学晚出发30分钟 B.骑车的同学和步行的同学同时到达目的地C.骑车的同学从出发到追上步行的同学用了20分钟 D.步行的速度是6千米/小时。

5. 已知一次函数y=(m+2)x+(1-m),若y随x的增大而减小,且此函数图像与y轴的交点在x轴上方,则m的取值范围是()A.m>-2 B.m<1 C.<-2 D.-2<m<16. (2021福建福州)已知一次函数y?(a?1)x?b的图象如图所示,那么a的取值范围是()A.a?1 B.a?1C.a?0D.a?07. (2021上海市)如果一次函数y?kx?b的图象经过第一象限,且与y轴负半轴相交,那么() A.k?0,b?0B.k?0,b?0C.k?0,b?0D.k?0,b?08. (2021陕西)如图,一次函数图象经过点A,且与正比例函数图象交于点B,则该一次函数的表达式为() A.y??x?2C.y?x?2B.y?x?2 D.y??x?2)9. (2021浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是(。

CA、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2) 10. 已知两点M(3,5),N(1,-1),点P是x轴上一动点,若使PM+PN最短,则点P的坐标点是()A.(0,-4)B.(2,0) 3C.(4,0) 3D.(3,0) 2二、填空题 11. 若点A(2,,-4)在正比例函数y=kx的图像上,则k=_____。

《一次函数》专项练习和中考真题(含答案解析及点睛)

《一次函数》专项练习和中考真题(含答案解析及点睛)

《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。

一次函数试题及答案

一次函数试题及答案

一次函数试题及答案一、选择题1. 下列哪个选项不是一次函数的表达式?A. y = 3x + 5B. y = x^2 + 1C. y = 2x - 3D. y = -4x答案:B2. 一次函数y = 2x + 1的斜率是:A. 1B. 2C. 3D. -1答案:B3. 如果一次函数y = kx + b的图象经过点(1, 5)和(2, 9),那么k 的值是:A. 2B. 3C. 4D. 5答案:C二、填空题4. 一次函数y = 4x + 3与x轴的交点坐标是________。

答案:(-3/4, 0)5. 已知一次函数y = -x + 2,当x = 0时,y的值为________。

答案:26. 一次函数y = 3x + 7的图象在y轴上的截距是________。

答案:7三、解答题7. 已知一次函数y = kx + b,其中k ≠ 0,且该函数图象经过点A(-1, 6)和点B(2, -3)。

求k和b的值。

解:将点A(-1, 6)代入y = kx + b得:6 = -k + b ①将点B(2, -3)代入y = kx + b得:-3 = 2k + b ②由①②两式联立解得:k = -3,b = 98. 一次函数y = 5x - 4的图象在x轴上的截距是多少?解:令y = 0,解得:5x - 4 = 0x = 4/5因此,图象在x轴上的截距是4/5。

9. 已知一次函数y = 2x + 1,求当y = 0时,x的值。

解:令y = 0,解得:2x + 1 = 0x = -1/2四、应用题10. 某公司生产一种产品,每件产品的成本为c元,该公司计划以每件产品p元的价格出售。

已知该公司的总成本为C万元,总收入为P万元,且C = 100c,P = 150p。

如果该公司希望获得的利润为20万元,求每件产品的成本c。

解:利润 = 总收入 - 总成本20 = 150p - 100c又因为p = c + 利润/件产品,代入上式得:20 = 150(c + 利润/件产品) - 100c解得c = 40注意:以上试题及答案仅供格式排版参考,具体内容需根据实际教学要求进行调整。

一次函数习题集锦含答案

一次函数习题集锦含答案

一次函数习题集锦含答案一、选择题1·下面图象中,不可能是关于 x的一次函数 y= mx-(m-3)图象的是( )参考答案: C说明:图象反映性质,先确定m的符号,然后看此函数图象在两坐标轴上的截距情况是否矛盾,即用排除法;当 m>0时,-(m-3)有可能大于零、小于零、等于零,所以 A、B有可能是函数 y = mx-(m-3)的图象,由此排除 A与B;当 m<0时,-(m-3)>0 ,故可排除 D,因此选 C.2·已知一次函数 y=kx+b 的图象经过第一、三、四象限,那么 ( )A·k>0,b>0 B · k<0,b>0 C · k>0,b<0 D · k<0,b<0参考答案:C说明:由已知得该一次函数的图象不经过第二象限,而当k<0时,一次函数的图象必过第二象限,所以此时k应大于0:另外,不难得出当k>0,b>0时,函数图象也过第二象限,所以 b 不难大于0,而当 b=0 时,图象只过一、三象限,不过第四象限,只有在 b<0时,图象才经过第一、三、四象限,所以参考答案为 C.3·下列图形中,表示一次函数 y=mx+n 与正比例函数 y=mnx(m ,n是常数,且mn≠0)图象是( )参考答案:A说明:从选项 A的图象中可以看出一次函数与正比例函数的函数值都是随着 x的增大而减小,即m<0,mn<0,而图象中还可以看出 n>0,符合条件,所以 A正确;由选项 B中的图象可得 m<0且 n>0, mn>0,产生矛盾, B错;由选项 C中的图象可得 m>0且 n>0, mn<0,产生矛盾, C错;由选项 D中的图象可得 m>0且n<0,mm>0,也产生矛盾,D错;所以正确参考答案为 A.4·如图,OA、BA分别表示甲、乙两名学生运动的一次函数图象,图中 s和 t分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快 ( )A·2.5 米 B ·2米 C · 1.5 米 D · 1米参考答案: C说明:可设这两个一次函数分别为 y=kx+b(k 、 b为常数, k≠0),y=mx(m ≠0为常数);从图中可以看出对于 y=kx+b 来说当x=0 时y=12 ,即b=12 ;当x=8 时,y=64 ,即64=8k+12 ,解得k=6.5 ,即y=6.5x+12 ;而对于 y=mx来说当 x=8 时y=64 ,可解得 m=8,即 y=8x ;这就是说速度慢的每秒 6.5 米,先跑 12米之后,速度快的才以每秒8米的速度出发,8秒后速度快的追上速度慢的;即快者的速度比慢者的速度每秒快8-6.5 = 1.5 米,答案为 C.5·下列说法正确的是 ( )A·正比例函数是一次函数B·一次函数是正比例函数C·函数 y= kx+2(k 为常数)是一次函数D·函数 y=2 是一次函数参考答案: A说明:由一次函数的定义 y= kx+b(k 、 b为常数, k≠0),不难得到当 b=0 时,该一次函数就是正比例函数,即正比例函数是一种特殊的一次函数,选项A正确;而当b≠0时,一次函数就不是正比例函数,所以选项 B错误;只有在 k为不等于 0 的常数时,函数 y= kx+2 才是一次函数,所以选项 C错误;函数 y=2不符合一次函数的定义,因为它不含变量 x的项,所以选项D错误;参考答案为 A.6·如图,1,反映了某公司的销售收入与销售量的关系,|₂反映了该公司产品的销售成本与销售量的关系,当该公司赢利 (收入大于成本 )时,销售量( )A·小于 3吨 B ·大于 3吨 C ·小于 4吨 D ·大于 4吨参考答案:D说明:从图不难出,当x>4时,的图在 l ₂的图上方,当 x=4时,的图与参考答案:A说明:因点 P 按A→B→C→M的顺在边为正方形边运逝以应谈论随 x 的增大而减小,即 2<x< , >y>0,如下(3),并且 y = SΔAPM= ×底×高,或 y = S8·弹的艘与所挂物体的重的关系为次函数,如图示,由图知不挂物体的弹的腹(为 )A·7cm B·8cm1₂的翻産交点,当 x<4时,的閣在 |₂的閣下方,而若要收入大于成本,即 | ₁的圆应在I ₂的图上方,也就是 x>4(参考答案DJ.7·如图P 按A→B→C→M的顺在抛为的正方形边运动 M 是CD 边的中点:设 P 线的程 x 内数,△APM的面积,则数y 的大致翻 (如下图是( )当P 在 AB 边运动 y 随x 的增大而增大,即 1212,0≤y ≤,如下(图) :当P 在 BC上运动 y 随 x 的增大而减小,|521≤14x ≤2,>y ≥,如下(2) :当 P 在CM 上运动 y12正方形-SABP-Suour-SAMCP,1它均是一次函数关系,故选·C·9cmD· 10cm参考答案:D说明:可读一次函数关系式为= kx+b(k 、b 常数, k≠0),因此,由图可得当 x = 5射= 12.5 ,当 x = 20时= 20,即有 12.5 = 5k+b 且 20= 20k+b,可解出 k= 0.5,b= 10:这棵一次函数关系式就是 y=0.5x+10 ,不挂物体的弹簧,即当 x=0射的值得到 y= 10 ,正确参考答案Dy二、解答题1·直线与直线= 2x+1 的交点的横坐梯2,与直线 = -x+2的交点的坐标1,求直线的解析式·参考答案: y=4x -3;说明:可以直线的解析式y 为= kx+b ,由已知不得到直壁,5)和(1,1)两点,即当 x=2时=5 ;当x=1时=1 ;槎有 2k+b=5 且k+b= 1 ,解得 k= 4 , b= -3,即直线的解析式y=4x -3·2·如图某汽布皱路程 s(km) 与阈min) 的函数关系图窥图所提供的信息,解答下列题(1) 汽在前 9分钟的平均速度是多少? (2) 汽在中途停了多时间(3)当 16≤ t≤30球s 与t 的函数式·(2) 汽在中途停了 16-9=7 分钟 (3)s= 2t -20(16≤t≤30)可读函数解析式约= kt+b(16 ≤ t≤30),由图可知:=kt+b ( 16,12)和点(30,40),即当 t= 16时=12 ,t= 308g=40 ;槎有 16k+b = 12 且30k+b= 40,解得 k=2 ,b= -20,所以当 16≤ t≤30日$与t 的函数式$= 2t -20(16≤t≤30)·3·某地锯拨入网有两种收费式,用再任选一: (A)时制: 0.05 元/分: (B)包月制: 50元/月(限一部个人住宅地网 );此外,每种上网方式都得加收通信02元/分;解答: (1)当 t=9日$= 12 ;∴汽在 9分钟的平均速度(km/min) 或480km/ℎ;(1) 请你分别写出两种收费方式下用户每月应支付的费用y(元)与上网时间 x(小时)之间的函数关系式:(2) 若某用户预计一个月内上网的时间少于20小时,你认为采用哪种方式较为合算?参考答案:(1) 计时制: y= 60 × (0.05+0.02)x= 4.2x ;包月制: y= 50+60 × 0.02x= 50+1.2x(2) 令 y,=y ₂,则4.2x= 50+1.2x ,解得x=1623,N时)=16小时 40分钟:所以当用户一个月上网16 小时40分钟时,选用计时制、包月制均可:当一个月上网时间小于16 小时40分钟时,选用计时制合算:当一个月上网时间大于16小时40分钟时,则选用包月制合算·∴AQ=7-(3-x)=4+x ,∴y=12(BP+AQ)?AB=12(x+4+x)74=4x+8(0<x<3)4·如图,在矩形 ABCD中,AB=4 ,BC=7 ,P是 BC上与B不重合的动点,过点 P的直线交 CD的延长线于 R,交 AD于 Q(Q与 D不重合),且∠RPC= 45o,设 BP=x ,梯形 ABPQ的面积为 y,求y与x之间的函数关系,并求出自变量 x的取值范围·参考答案: ∵∠ C=90 o,∠RPC=45o,∴∠R=45 o,∴∠ R=∠RPC,∴CR=CP,同理 DR=DQ∵BP=x ,BC=7 ,∴PC=CR=7 -x∵CD=AB=4 ,∴RD=3-x,DQ=DR=3 -x,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

章节训练函数一、选择题(共10小题)1.(2015•黄冈模拟)如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y 与x之间的函数关系.下列说法中正确的是()A.B点表示此时快车到达乙地B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h%2.(2015•肥城市三模)已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b (a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图象是()A.B.C.D.3.(2013•滕州市校级模拟)如图,⊙O上有两定点A与B,若动点P点从点B出发在圆上匀速运动一周,那么弦AP的长度d与时间t的关系可能是下列图形中的()A.①或④B.①或③C.②或③D.②或④4.(2014•临邑县二模)如图,在Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P从点A 出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止.设y=PC2,运动时间为t秒,则能反映y与t之间函数关系的大致图象是()【A.B.C.D.5.(2013•黄石)如图,已知某容器都是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图象大致是()A.B.C.D.6.(2014•济宁)函数y=中的自变量x的取值范围是()A.x≥0B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1>7.(2013•西藏模拟)小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家、下面哪一个图象能大致描述他回家过程中离学校的距离S(千米)与所用时间t(分)之间的关系()A.B.C.D.8.(2013•平塘县二模)如图,是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,容器内对应的水高度为h,则h与t的函数图象只可能是()A.B.C.D.9.(2014•河南)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.、10.(2013•北京)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP 的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(共10小题)(除非特别说明,请填准确值)11.(2011•昆山市模拟)若函数,则当函数值y=10时,自变量x的值是.12.(2011•阿坝州)如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣x(0≤x≤5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是.^13.(2013•湘潭)如图,根据所示程序计算,若输入x=,则输出结果为.14.(2013•武汉模拟)如图,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地,在B地停留1小时后,沿原路以另一个速度匀速返回,若干时间后与乙车相遇,乙车的速度为每小时60千米.如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间函数的图象,则甲车返回的速度是每小时千米.15.(2012•荆州)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B 出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,y=t2;④当t=秒时,△ABE∽△QBP;其中正确的结论是(填序号).@16.(2012•苏州)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD 的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).17.(2011•莆田)已知函数f(x)=1+,其中f(a)表示当x=a时对应的函数值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…f(100)=.18.(2012•湖北模拟)小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是分钟.…19.(2013•咸宁)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)20.(2011•朝阳)亮亮骑自行车到距家9千米的体育馆看一场球赛,开始以正常速度匀速行驶,途中自行车出故障,他只好停下来修车.车修好后,他加速继续匀速赶往体育馆,其速度为原正常速度的倍,结果正好按预计时间(如果自行车不出故障,以正常速度匀速行驶到达体育馆的时间)到达.亮亮行驶的路程s(千米)与时间t(分)之间的函数关系如图所示,那么他修车占用的时间为分.;三、解答题(共3小题)(选答题,不自动判卷)21.(2012•永州)在△ABC中,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图甲),而y关于x的函数图象如图乙所示.Q(1,)是函数图象上的最低点.请仔细观察甲、乙两图,解答下列问题.(1)请直接写出AB边的长和BC边上的高AH的长;(2)求∠B的度数;(3)若△ABP为钝角三角形,求x的取值范围.22.(2012•吉林)在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:·情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.23.(2012•徐州)如图1,A、B、C、D为矩形的四个顶点,AD=4cm,AB=dcm.动点E、F 分别从点D、B出发,点E以1cm/s的速度沿边DA向点A移动,点F以1cm/s的速度沿边BC向点C移动,点F移动到点C时,两点同时停止移动.以EF为边作正方形EFGH,点F出发xs时,正方形EFGH的面积为ycm2.已知y与x的函数图象是抛物线的一部分,如图2所示.请根据图中信息,解答下列问题:(1)自变量x的取值范围是;(2)d=,m=,n=;(3)F出发多少秒时,正方形EFGH的面积为16cm2)【章节训练】函数-1参考答案与试题解析一、选择题(共10小题)1.(2015•黄冈模拟)如图所示,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.下列说法中正确的是()A.B点表示此时快车到达乙地\B.B﹣C﹣D段表示慢车先加速后减速最后到达甲地C.快车的速度为km/hD.慢车的速度为125km/h【考点】函数的图象.【专题】压轴题;数形结合.【分析】A、根据B点的纵坐标的意义回答问题;B、B﹣C﹣D段表示两车的车距与时间的关系;C、快车的速度=﹣;D、慢车的速度=.【解答】解:A、B点表示快车与慢车出发4小时两车相遇;故本选项错误;。

B、B﹣C﹣D段表示快、慢车相遇后行驶一段时间快车到达乙地,慢车继续行驶,慢车共用了12小时到达甲地故本选项错误;C、快车的速度=﹣=(km/h);故本选项正确;D、慢车的速度==(km/h);故本选项错误;故选C.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.2.(2015•肥城市三模)已知如图,等腰三角形ABC的直角边长为a,正方形MNPQ的边为b (a<b),C、M、A、N在同一条直线上,开始时点A与点M重合,让△ABC向右移动,最后点C与点N重合.设三角形与正方形的重合面积为y,点A移动的距离为x,则y关于x的大致图象是()A.B.C.D.【考点】动点问题的函数图象.;【专题】压轴题;图表型.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:设三角形与正方形的重合面积为y,点A移动的距离为x,∴y关于x的函数关系式为:y=x2,①当x<a时,重合部分的面积的y随x的增大而增大,②当a<x<b时,重合部分的面积等于直角三角形的面积,且保持不变,③第三部分函数关系式为y=﹣+当x>b时,重合部分的面积随x的增大而减小.故选B.【点评】本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.、3.(2013•滕州市校级模拟)如图,⊙O上有两定点A与B,若动点P点从点B出发在圆上匀速运动一周,那么弦AP的长度d与时间t的关系可能是下列图形中的()A.①或④B.①或③C.②或③D.②或④【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据实际情况来分情况判断函数图象.【解答】解:点P顺时针旋转时,AP长度慢慢增大;当A,O,P在一条直线上时,AP为圆O的直径,此时最大;继续旋转,当P,0,B在一条直线上时,AP和一开始的位置相同;当和点A重合时,距离为0;继续旋转,回到点B,AP长也回到原来的长度.①对;同理,逆时针旋转时,有3次AP 长是相等的,最后回到原来的位置,③对.¥故选B.【点评】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4.(2014•临邑县二模)如图,在Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P从点A 出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止.设y=PC2,运动时间为t秒,则能反映y与t之间函数关系的大致图象是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;图表型.【分析】连接PC,作PD⊥BC于D,构造直角三角形后利用相似三角形用t表示出PD、CD 的长,利用勾股定理表示出y,即可确定其图象.【解答】解:①连接PC,作PD⊥BC于D,、∵∠ACB=90°,∴△BPD∽△BAC,∴,∵AP=t,AB=5cm,BC=3cm,∴BP=5﹣t,AC=4cm,∴,解得:PD=4﹣,BD=3﹣,∴DC=,∵y=PC2=PD2+DC2=(4﹣)2+()2=t2﹣+16(t<5),②当5≤t≤8时,】PC2=(8﹣t)2=t2﹣16t+64.故选:A.【点评】本题考查了动点问题的函数图象,解决本题的关键是正确的构造直角三角形并利用相似三角形的知识表示出PC的平方.5.(2013•黄石)如图,已知某容器都是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成,若往此容器中注水,设注入水的体积为y,高度为x,则y关于x的函数图象大致是()A.B.C.D.【考点】函数的图象.【专题】压轴题.¥【分析】分三个阶段,根据圆锥和圆柱的特点分析出上升的高度与水量的增长的关系,从而得解.【解答】解:如图,①水在下边的圆锥体内时,水面的半径为xtanα,水的体积y=π(xtanα)2•x=πtan2α•x3,所以,y与x成立方关系变化,即小于直线增长;②水面在圆柱体内时,y是x的一次函数;③水在上边的圆锥体时,水的高度增长的速度与①中相反,即直线变缓了,纵观各选项,只有A选项符合.故选A.【点评】本题考查了函数图象,主要利用了圆锥、圆柱的体积,分析出水在三个阶段的高度与水的体积的关系是解题的关键,需要有一定的空间想象能力..<6.(2014•济宁)函数y=中的自变量x的取值范围是()A.x≥0B.x≠﹣1 C.x>0 D.x≥0且x≠﹣1【考点】函数自变量的取值范围.【专题】计算题.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A.【点评】本题考查了自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.!7.(2013•西藏模拟)小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家、下面哪一个图象能大致描述他回家过程中离学校的距离S(千米)与所用时间t(分)之间的关系()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】根据题意分析可得:他回家过程中离学校的距离S(千米)与所用时间t(分)之间的关系有3个阶段;(1)、行使了5分钟,位移增加;(2)、因故停留10分钟,位移不变;(3)、继续骑了5分钟到家,位移增加;【解答】解:因为小明家所在学校离家距离为2千米,某天他放学后骑自行车回家,行使了5分钟后,因故停留10分钟,继续骑了5分钟到家,所以图象应分为三段,根据最后离学校的距离.故选C.【点评】本题要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.:8.(2013•平塘县二模)如图,是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t,容器内对应的水高度为h,则h与t的函数图象只可能是()A.B.C.D.【考点】函数的图象.【专题】计算题;压轴题.【分析】本题需先根据容器下底小而上口大的特点得出容器内对应的水高度h随时间t的增加而增加,但增加的速度越来越慢即可得出正确答案.【解答】解:∵容器下底小而上口大,∴将水以恒速注入,则容器内对应的水高度h随时间t的增加而增加,但增加的速度越来越慢∴h与t的函数图象只可能是D…故选D【点评】本题主要考查了函数的图象问题,在解题时要结合题意找出正确的函数图象是本题的关键.9.(2014•河南)如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;—③点P在边AB上时,利用线段间的和差关系求得y与x的函数关系式,由关系式选择图象.【解答】解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.【点评】本题考查了动点问题的函数图象.此题涉及到了函数y=的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.10.(2013•北京)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP 的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()-A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】作OC⊥AP,根据垂径定理得AC=AP=x,再根据勾股定理可计算出OC=,然后根据三角形面积公式得到y=x•(0≤x≤2),再根据解析式对四个图形进行判断.【解答】解:作OC⊥AP,如图,则AC=AP=x,在Rt△AOC中,OA=1,OC===,所以y=OC•AP=x•(0≤x≤2),所以y与x的函数关系的图象为A选项.故选:A.!排除法:很显然,并非二次函数,排除B选项;采用特殊位置法;当P点与A点重合时,此时AP=x=0,S△PAO=0;当P点与B点重合时,此时AP=x=2,S△PAO=0;当AP=x=1时,此时△APO为等边三角形,S△PAO=;排除B、C、D选项,故选:A.【点评】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.?二、填空题(共10小题)(除非特别说明,请填准确值)11.(2011•昆山市模拟)若函数,则当函数值y=10时,自变量x的值是﹣2或5.【考点】函数值.【专题】压轴题;分类讨论.【分析】因为不确定x的范围,所以解答本题只需将y值代入两个方程即可.【解答】解:①当x≤1时,x2+6=10,解得:x=﹣2;②当x>1时,2x=10,解得:x=5.(故答案为:﹣2或5.【点评】本题考查函数值的知识,比较简单,解答本题的关键是讨论x的范围,避免漏解.12.(2011•阿坝州)如图,已知点F的坐标为(3,0),点A,B分别是某函数图象与x轴、y轴的交点,点P是此图象上的一动点.设点P的横坐标为x,PF的长为d,且d与x之间满足关系:d=5﹣x(0≤x≤5),给出以下四个结论:①AF=2;②BF=5;③OA=5;④OB=3.其中正确结论的序号是①②③.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】一次函数与正比例函数动点函数图象的问题.【解答】解:此题由解析式求点的坐标,再求线段长,是数形结合的典范.当x=5时,d=2=AF,故①正确;当x=0时,d=5=BF,故②正确;&OA=OF+FA=5,故③正确.当x=0时,BF=5,OF=3,OB=4,故④错误.故答案为:①②③.【点评】本题是今年出现的一种新题型,以多选题的形式出现,从考生所填的项中,能看出学生思维层次上的差异,弥补了填空题的不足.答题时,不少学生选择④,有的考生甚至填入⑤,说明学生对这类新题型的缺乏答题策略,对没有把握的结论宁可少选,也不可乱选;即宁缺勿滥.13.(2013•湘潭)如图,根据所示程序计算,若输入x=,则输出结果为2.【考点】函数值;估算无理数的大小.【专题】压轴题;图表型.【分析】根据>1选择左边的函数关系式进行计算即可得解.》【解答】解:∵x=>1,∴y=2﹣1=3﹣1=2.故答案为:2.【点评】本题考查了函数值的计算,比较简单,准确选择函数关系式是解题的关键.14.(2013•武汉模拟)如图,甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地,在B地停留1小时后,沿原路以另一个速度匀速返回,若干时间后与乙车相遇,乙车的速度为每小时60千米.如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间函数的图象,则甲车返回的速度是每小时90千米.【考点】函数的图象;一次函数的应用.【专题】压轴题;数形结合.·【分析】根据返回相遇时两车走的路程和为120,甲车走了小时,乙车走了小时可得甲车返回时的速度.【解答】解:甲车返回时的路程为120﹣×60=36千米,∴甲车返回时的速度为36÷=90千米/时.故答案为90.【点评】考查根据函数图象得到相关信息;判断出甲车返回时走的路程是解决本题的难点,判断出甲车返回时用的时间是解决本题的易错点.15.(2012•荆州)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B 出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②cos∠ABE=;③当0<t≤5时,y=t2;④当t=秒时,△ABE∽△QBP;其中正确的结论是①③④(填序号).【考点】动点问题的函数图象.【专题】压轴题;动点型.、【分析】根据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;\过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PBsin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,<又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故答案为:①③④.【点评】本题考查了动点问题的函数图象,根据图(2)判断出点P到达点E时点Q到达点C是解题的关键,也是本题的突破口.16.(2012•苏州)如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/s的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD 的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了(4+2)秒(结果保留根号).·【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】根据图②判断出AB、BC的长度,过点B作BE⊥AD于点E,然后求出梯形ABCD 的高BE,再根据t=2时△PAD的面积求出AD的长度,过点C作CF⊥AD于点F,然后求出DF的长度,利用勾股定理列式求出CD的长度,然后求出AB、BC、CD的和,再根据时间=路程÷速度计算即可得解.【解答】解:由图②可知,t在2到4秒时,△PAD的面积不发生变化,∴在AB上运动的时间是2秒,在BC上运动的时间是4﹣2=2秒,∵动点P的运动速度是1cm/s,∴AB=2cm,BC=2cm,过点B作BE⊥AD于点E,过点C作CF⊥AD于点F,则四边形BCFE是矩形,∴BE=CF,BC=EF=2cm,【∵∠A=60°,∴BE=ABsin60°=2×=,AE=ABcos60°=2×=1,∴×AD×BE=3,即×AD×=3,解得AD=6cm,∴DF=AD﹣AE﹣EF=6﹣1﹣2=3,在Rt△CDF中,CD===2,所以,动点P运动的总路程为AB+BC+CD=2+2+2=4+2,∵动点P的运动速度是1cm/s,—∴点P从开始移动到停止移动一共用了(4+2)÷1=4+2(秒).故答案为:(4+2).【点评】本题考查了动点问题的函数图象,根据图②的三角形的面积的变化情况判断出AB、BC的长度是解题的关键,根据梯形的问题中,经常作过梯形的上底边的两个顶点的高线作出辅助线也很关键.17.(2011•莆田)已知函数f(x)=1+,其中f(a)表示当x=a时对应的函数值,如f(1)=1+,f(2)=1+,f(a)=1+,则f(1)•f(2)•f(3)…f(100)=5151.【考点】函数值.【专题】压轴题;规律型.【分析】根据函数得,f(1)=,f(2)=,f(3)=…f(99)=,f(100)=;容易得出答案.【解答】解:f(1)•f(2)•f(3)…f(100)、=×××…×××==5151.故答案为5151.【点评】本题考查了函数知识,能够根据所给的函数式正确表示出对应的函数值,找到题目的规律是解答的关键.18.(2012•湖北模拟)小明早晨从家骑车到学校,先上坡后下坡,行程情况如图,若返回时上、下坡的速度保持不变,那么小明从学校骑车回家用的时间是分钟.【考点】函数的图象.【专题】行程问题;压轴题.…【分析】根据图表可计算出上坡的速度以及下坡的速度.又已知返回途中的上、下坡的路程正好相反,故可计算出共用的时间.【解答】解:由图中可以看出:上坡速度为:=2百米/分,下坡速度为:=5百米/分,返回途中,上下坡的路程正好相反,所用时间为:+=+30=分.故答案为:.【点评】本题考查利用函数的图象解决实际问题,应先求出上坡速度和下坡速度,注意往返路程上下坡路程的转化.19.(2013•咸宁)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;}④兔子在途中750米处追上乌龟.其中正确的说法是①③④.(把你认为正确说法的序号都填上)【考点】函数的图象.【专题】压轴题.【分析】结合函数图象及选项说法进行判断即可.【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;;y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.【点评】本题考查了函数的图象,读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,有一定难度.20.(2011•朝阳)亮亮骑自行车到距家9千米的体育馆看一场球赛,开始以正常速度匀速行驶,途中自行车出故障,他只好停下来修车.车修好后,他加速继续匀速赶往体育馆,其速度为原正常速度的倍,结果正好按预计时间(如果自行车不出故障,以正常速度匀速行驶到达体育馆的时间)到达.亮亮行驶的路程s(千米)与时间t(分)之间的函数关系如图所示,那么他修车占用的时间为5分.。

相关文档
最新文档