一次函数知识点总结及常考题分类练习.doc
(完整word版)一次函数知识点总结和常见题型归类

一次函数知识点总结与常见题型基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。
在圆的周长公式C =2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题:下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =21-3x (5)y =x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个 P116 1 P87 23、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
例题:下列函数中,自变量x 的取值范围是x ≥2的是( )A.y B .yC .yD .y 函数y =x 的取值范围是___________.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是 ( ) A .2325≤<-y B .2523<<y C .2523<≤y D .2523≤<y5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.例题:P117 56、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
(完整版)一次函数专题复习考点归纳+经典例题+练习

一次函数知识点复习与考点总结考点1:一次函数的概念.相关知识:一次函数是形如y kx b =+(k 、b 为常数,且0k ≠)的函数,特别的当0=b 时函数为)0(≠=k kx y ,叫正比例函数.1、已知一次函数kx k y )1(-=+3,则k = . 2、函数n m xm y n +--=+12)2(,当m= ,n= 时为正比例函数;当m= ,n 时为一次函数.考点2:一次函数图象与系数相关知识:一次函数)0(≠+=k b kx y 的图象是一条直线,图象位置由k 、b 确定,0>k 直线要经过一、三象限,0<k 直线必经过二、四象限,0>b 直线与y 轴的交点在正半轴上,0<b 直线与y 轴的交点在负半轴上.1. 直线y=x -1的图像经过象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 2. 一次函数y=6x+1的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 一次函数y = -3 x + 2的图象不经过第 象限.4. 一次函数2y x =+的图象大致是( )5. 关于x 的一次函数y=kx+k 2+1的图像可能是( )6.已知一次函数y =x +b 的图像经过一、二、三象限,则b 的值可以是( ). A.-2 B.-1 C.0 D.27.若一次函数m x m y 23)12(-+-=的图像经过 一、二、四象限,则m 的取值范围是 .8. 已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >29.已知关于x 的一次函数y mx n =+的图象如图所示,则2||n m m --可化简为__ __.10. 如果一次函数y=4x +b 的图像经过第一、三、四象限,那么b 的取值范围是_ _。
一次函数知识点总结试题及典型

一次函数知识点总结及经典试题(一)函数1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应3、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 5、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
6.函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
(二)一次函数 1、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。
当0b =时,一次函数y kx =,又叫做正比例函数。
⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数.⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k )(3) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过(0,b )和(-kb,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移) (1)解析式:y=kx+b(k 、b 是常数,k ≠0) (2)必过点:(0,b )和(-kb,0) (3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 (4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.(5)倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴. (6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.4、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限经过第一、三象限图象从左到右上升,y随x的增大而增大k<0经过第一、二、四象限经过第二、三、四象限经过第二、四象限图象从左到右下降,y随x的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移)正比例函数一次函数概念一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,是y=kx,所以说正比例函数是一种特殊的一次函数.自变量范围X为全体实数图象一条直线必过点(0,0)、(1,k)(0,b)和(-kb,0)走向k>0时,直线经过一、三象限;k<0时,直线经过二、四象限k>0,b>0,直线经过第一、二、三象限k>0,b<0直线经过第一、三、四象限k<0,b>0直线经过第一、二、四象限k<0,b<0直线经过第二、三、四象限增减性k>0,y随x的增大而增大;(从左向右上升)k<0,y随x的增大而减小。
一次函数知识点、经典例题、练习

一次函数及其性质● 知识点一 一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.(y=-3x+3是一次函数,其中这里k=-3,b=3)⑵当0b =,0k ≠时,y kx =仍是一次函数.(y=3x 是一次函数也是正比例函数,其中k=3,b=0)⑶当0b =,0k =时,它不是一次函数.(y=4这不是一次函数,因为k=0,b=0) ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 练习:若23y x b =+-是正比例函数,则b 的值是( )A.0B.23 C.23- D.32- ● 知识点二 一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点;②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0bk⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+. ● 知识点三 一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小. ● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑴ 一次 函数()0k kx b k =+≠ k ,b符号 0k > 0k <0b > 0b < 0b = 0b > 0b <0b =图象Ox yyx OOx yyx OOx yyxO性质y 随x 的增大而增大y 随x 的增大而减小⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限; 当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限. 反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.知识点五 用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法. ⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式; ②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组; ③解方程(组),得到待定系数的值;④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.类型一:正比例函数与一次函数定义例1、当m 为何值时,函数y=-(m-2)x +(m-4)是一次函数?举一反三: 【变式1】如果函数是正比例函数,那么( ).A .m=2或m=0B .m=2C .m=0D .m=1【变式2】已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.类型二:待定系数法求函数解析式例2、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.举一反三:【变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7.2cm,求这个一次函数的表达式.【变式2】已知直线y=2x+1.(1)求已知直线与y轴交点M的坐标;(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.【变式3】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.类型三:函数图象的应用例3、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,回答下列问题:(1)汽车共行驶了___________ km;(2)汽车在行驶途中停留了___________ h;(3)汽车在整个行驶过程中的平均速度为___________ km/h;(4)汽车自出发后3h至4.5h之间行驶的方向是___________.举一反三:【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s与时间t的函数关系,求它们行进的速度关系。
一次函数的知识点与题型总结.docx

在一个变化过程中只能取同一数值的量。
一次函数的章节的知识整理与题型总结第一节函数一、知识归纳1、变量:在一个变化过程屮可以取不同数值的量。
3、函数的概念:一般地,在某个变化过程中,冇两个变量x 和y,如呆给定 一个x 值,相应地就确定了一个y 值,那么我们称y 是x 的函数,其中x 是 自变量,y 是因变量。
*判断Y 是否为X 的函数,只要看X 取值确定的吋候,Y 是否有唯一确定 的值与之对应4、 定义域:一个函数的自变量允许取值的范围,叫做这个函数的定义域。
5、 要使函数的解析式有意义(即确定函数定义域的方法)。
(1) 函数的解析式是整式时,自变量可取全体实数; (2) 函数的解析式是分式吋,自变量的取值应使分母壬0; (3) 函数的解析式是二次根式时,自变量的取值应使被开方数N0。
(4) 函数的解析式是三次根式时,自变量的取值应是一切实数。
(5) 对于反映实际问题的函数关系,应使实际问题有意义。
6、 函数的表示方法列表法:一口 了然,使用起来方便,但列出的对应值是有限的,不易 看出口变量与函数之间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数Z 间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。
图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
7、 函数的图像:一•般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形, 就是这个函数的图象.2、(2)1660 1400(3)3050例2•函数是研究A.常量Z间的对应关系的C.变量与常量之间对应关系的()B.常量与变量Z间的对应关系的D.变量之间的对应关系的8、描点法画函数图形的一般步骤第一步:列表(表中给出一些口变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数二、经典题型题型考点一求简单的函数关系式,识别自变量与因变量,给定自变量的值,相应地会求出函数的值。
一次函数知识点总结以及一些有难度的习题

一次函数知识点总结【基本要点】1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是________,常量是_______。
在圆的周长公式C=2πr 中,变量是________,常量是_________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
注:这是课本对于函数 的定义,在理解与实际运用中我们要注意以下几点:1、函数只能描述两个变量之间的关系,多一个少一个变量都是不对的;如:y=xz 中有三个变量,就不是函数;y=0中只有一个变量,也不是函数;而y=0(x >0)却是函数,因为括号中标明了自变量的取值范围;2、当自变量去每一个确定的值时因变量只能取唯一确定的值相对应,反之,当因变量取每一个确定的值时自变量可以去若干个值相对应;因为这两个变量有先变与后变的问题,让后变的先取一个值,先变的就不一定只取一个值;3、我们只能说函数值是自变量的函数,或用自变量来表示函数值,如:a 是b 的函数就说明a 是函数值,b 是自变量;用y 表示x 就说明y 是自变量,x 是函数值;任何函数都要标明谁是谁的函数,不能随便说一个解析式是不是函数,如: Y=x 2,只能说y 是x 的函数,就不能说x 是y 的函数;4、函数解析式的表示:只有函数值写在等号左边,含有自变量的式子写在等号右边;注意不能写成2y=3x-3或y 2=3x-3的形式;5、任何函数都包含自变量的取值范围,如果没指明说明自变量的取值范围是任意实数。
自变量的取值范围从以下几个方面把握:(1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
一次函数知识点及分类练习题(绝对经典全面)

一次函数知识点及分类练习题一、一次函数的定义1.若函数y=(k+1)x+k2-1是正比例函数,则k的值为()A. 0B. ﹣1C. ±1D. 12.若函数是一次函数,则m的值为( )A. B. -1 C. 1 D. 23.下列函数:①y= x,②y=2x-1,③ ,④y=-x中,是一次函数的有( )A. 4个B. 3个C. 2个D. 1个4.已知函数y=(k-1)x+k2-1,当k________时,它是一次函数,当k________时,它是正比例函数.二、一次函数的性质5.已知一次函数. 若随的增大而增大,则的取值范围是()A. B. C. D.6.已知一次函数的图象经过第二、三、四象限,则的取值范围在数轴上表示为(). A. B.C. D.7.已知(-1,y1),(1.8,y2),(- , y3)是直线y = -3x + m (m 为常数)上的三个点,则y1,y2,y3的大小关系是( )A. y3>y1>y2B. y1>y3>y2C. y1>y2>y3D. y3>y2>y18.下列图象中,哪个是一次函数的大致图象()A. B. C. D.9.在一次函数y=kx+2中,若y随x的增大而增大,则k________0.(填“>”或“<”),它的图象不经过第________象限.10.若点P(-3,),Q(2,)在一次函数的图象上,则与的大小关系是________三、一次函数图像的平移11.直线y=2x+2向下平移4个单位后与x轴的交点坐标是()A. (0,1)B. (0,-1)C. (-1,0)D. (1,0)12、一次函数的图像先向下平移5个单位后再向右平移4个单位,其函数关系式为13、一次函数能过平移后变为y=-5x+6,其平移过程是14.将一次函数y=﹣2x﹣1的图象沿y轴向上平移3个单位后,得到的图象对应的函数关系式为________.四、一次函数的求值15.若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是( )A. 6或-6B. 6C. -6D. 6或316.下列哪一个点在直线y=-2x-5上()A. (2,-1)B. (3,1)C. (-2,1)D. (-1,-3)17.当x=-1时,一次函数y=kx+3的值为5,则k的值为________ .18.一次函数y=﹣2x+6的图象与x轴交点坐标是________,与y轴交点坐标是________.19.在一次函数中,随的增大而________(填“增大”或“减小”),当时,y的最小值为________.20.在函数y=﹣3x+7中,如果自变量x大于2,那么函数值y的取值范围是________.五、一次函数的解析式21.已知一次函数的图象过点(3,5) 与(-4, -9),那么这个函数的解析式是________,则该函数的图象与轴交点的坐标为________.22.已知直线经过点﹙1,2﹚和点﹙3,0﹚,这条直线的解析式.23.已知y是x的一次函数,当x=3时,y=1;当x=﹣2时,y=﹣4,求此一次函数的解析式.六、一次函数与方程及不等式的关系24.如图,直线l1的解析式是y=2x-1,直线l2的解析式是y=x+1,则方程组的解是________.25.如图,直线与直线交于P ,则方程组的解是________.26.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.27.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.24题25题26题28.已知二元一次方程组的解是,直线y=2x与y=﹣3x+b的交点坐标是________.七、一次函数的应用29.一次函数y=x+4与坐标轴所围成的三角形的面积为________30、如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为________.31.一个一次函数的图象与直线y=﹣2x+1平行,且经过点(﹣2,﹣6),则这个一次函数的解析式为________.32.某养猪专业户利用一堵砖墙(长度足够)围成一个长方形猪栏,围猪栏的栅栏一共长40m ,设这个长方形的相邻两边的长分别为x (m)和y(m).(1)求y关于x的函数表达式和自变量的取值范围;(2)若长方形猪栏砖墙部分的长度为5m ,求自变量x 的取值范围.33.如图,直线y=kx+6(k≠0)与x轴,y轴分别交于点E,F,点E的坐标为(-8,0),点A 的坐标为(-6,0),点P(x,y)是线段EF上的一个动点(1)求k的值;(2)求点P在运动过程中△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;(3)当△OPA的面积为9时,求点P的坐标.34.如图,在平面直角坐标系中,直线与轴交于点A,直线与轴交于点B,与直线y=2x+3交于点C(-1,n).(1)求n、k的值;(2)求△ABC的面积.。
一次函数的基本知识点以及习题

一次函数的基本知识点以及习题(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除一次函数的基本知识点1 *判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应8、正比例函数及性质解析式:y=kx (k 是常数,k ≠0)(1) 必过点:(0,0)、(1,k )(2) 走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(3) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小9、一次函数及性质(1)解析式:y=kx+b(k 、b 是常数,k ≠0)(2)必过点:(0,b )和(-kb ,0) (3)走向:(1)⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 如图(1) (2)⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 如图(2)(3)⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 如图(3) (4)⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 如图(4)(4)增减性: k>0,y 随x 的增大而增大;k<0,y 随x增大而减小.(6)图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.12、直线y=k 1x+b 1与y=k 2x+b 2的位置关系(1)两直线平行:k 1=k 2且b 1 ≠b 2(2)两直线相交:k 1≠k 2一次函数一. 选择题1.下列关于x 的函数中,是一次函数的是( )A.222-=x yB.11+=x yC.2x y =D.221+-=x y 2.下列各点在直线13-=x y 上的是( )A.)0,1(-B. )0,1(C. )1,0(-D. )1,0(3. 下列函数中,是正比例函数,且y 随x 增大而减小的是( )A.14+-=x yB. 6)3(2+-=x yC. 6)2(3+-=x yD. 2x y -= 4.已知长方形的周长为25,设它的长为x ,宽为y ,则y 与x 的函数关系为( )A.x y -=25B. x y +=25C. x y -=225D. x y +=225 5.点A ),3(1y 和点B ),2(2y -都在直线32+-=x y 上,则1y 和2y 的大小关系是( )A. 1y >2yB. 1y < 2yC. 1y =2yD.不能确定6.直线63+=x y 与两坐标轴围成的三角形的面积是( ).5 C7.直线111b x k y +=与直线222b x k y +=交y 轴于同一点.则1b 和2b 的关系是( )A. 1b >2bB. 1b <2bC. 1b =2bD.不能确定8.一根蜡烛长20cm 点燃后每小时燃烧5cm ,燃烧时剩下的高度h (cm )与燃烧时间t (小时)的函数关系用图像表示为( )D C B A10.弹簧的长度与所挂物体的质量的关系为一次函数,如图所示,可知不挂物体时弹簧的长度为( )A.7cmB.8cmC.9cmD.10cm二. 填空题11.对于函数63-=x y ,当x =2-时,y =_______,当y =6时,x =_________.12.若y 是x 的一次函数,且当x =2时y =7,当x =3时y =9,则这个一次函数的关系式是_______.13. 一次函数b kx y +=的图象与两坐标轴的交点坐标分别为)0,3(和)2,0(-,则=k ____,=b ____.14.若函数32+=x y 与b x y 23-=的图象交于x 轴于同一点,则b =_____________.15.已知正比例函数x=的函数值y随x增大而增大,则k____________________.1(-y)k216.某公司现在年产值为150万元,计划今后每年增加20万元,年产值y (万元)与年数x 的函数关系式是__________________.17.直线2-=kx y 经过点),4(1y ,且平行于直线12+=x y ,则1y =___________,k =______.18.如图是一次函数b kx y +=的大致图像,由图可知:k _________,b _______(填“>”、“<”或“=”).三. 解答题20.一次函数的图像过点)6,1(),2,3(--N M 两点.(1)求该函数的表达式;21. 石家庄至北京300千米,火车从距石家庄站15千米的正定站出发,以每小时90千米/小时的速度向北京方向行驶,求火车与石家庄站间路程s (千米)和时间t (小时)的函数关系式,并指出自变量的取值范围.( 正定站位于北京与石家庄之间)一次函数基础训练题(作业)1、在函数① y=2x ②y=-3x+1 ③ y= x 2中, x 是自变量, y 是x 的函数, 一次函数有_______ 正比例函数有______,2.某函数具有下列两条性质(1)它的图像是经过原点(0,0)的一条直线;(2)y 的值随x 值的增大而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数知识点总结及常考题分类练习基本概念1、 变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程屮只能取同一数值的量。
例题:在匀速运动公式s = vt^,v 表示速度,(表示时间“表示在时间f 内所走的路程,则变量是 ____________ ,常量是______ o 在圆的周长公式C=2TIT 中,变量是__________ ,常量是 _________ .2、 函数:一般的,在一个变化过程中,如果有两个变量x 和y,并且对于x 的每一个确定的值,尹都有唯一确定的值与其 对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 例题:下列函数(1)尸TTX (2)y=2x —1 (3"三⑷尸*一3兀(5)y=x 2一1中,是一次函数的有()(A ) 4 个(B ) 3 个 (0 2 个 (D ) 1 个3、 定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、 确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题屮,函数定义域还要和实际情况相符合,使之有意义。
例题:下列函数中,自变量x 的取值范围是;c22的是()函数y 二77^5中自变量X 的取值范闱是 已知函数尹=一*兀+ 2,当一 lvxS 1时,p 的取值范围是()5 ,3 A.——< y < —2 25、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点 组成的图形,就是这个函数的图象.6、 函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
7、 描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点); 第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
8、 函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数Z 间的对应规律。
解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题川的函数关 系,不能用解析式表示。
C. y= J4 — x?D. y=Jx + 2 • Jx_22 2 2 2 2 ~ 2A. y=\j2 — x1图象法:形象直观,但只能近似地表达两个变量之间的函数关系。
9、正比例函数及性质一般地,形如歹二也伙是常数,絆0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式y=kx(k不为零)①幺不为零②兀指数为1③b取零当Q0时,直线尸也经过三、一象限,从左向右上升,即随x的增大y也增大;当X0时,直线尸尬经过二、四象限,从左向右下降,即随兀增大y反而减小.(1)解析式:y=kx (k是常数,絆0)⑵必过点:(0, 0)、(1, k)(3) 走向:Q0时,图像经过一、三彖限;X0时,图像经过二、四象限⑷ 增减性:Q0,尹随x的增大而增大;k<0, y随x增大而减小(5)倾斜度:岡越大,越接近尹轴;岡越小,越接近兀轴例题:(1).正比例函数y = (3/H +5)x ,当加____________ 时,y随x的增大而增大.(2)若y = x + 2-3h是正比例函数,则b的值是 ( )2 2 3A.OB._C. --D. --3 3 2.(3)函数y=(/c—l)x f y随x增大而减小,则&的范围是()A.k<QB.k>\C.k<\D.k<\(4) 东方超市鲜鸡蛋每个0.4元,那么所付款尹元与买鲜鸡蛋个数x (个)Z间的函数关系式是___________________ .(5) 平行四边形相邻的两边长为兀、力周长是30,则尹与x的函数关系式是____________ .10、一次函数及性质—般地,形如y=kx+b(k,b是常数,絆O),那么y叫做x的一次函数.当b=0吋,y=kx+b即尸也,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式伙不为零) ①力不为零②兀指数为1③b取任意实数一次函数y=kx+h的图象是经过(0, b)和(一£, 0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线尸也平移|切个单位长度得到•(当Q0时,向上平移;当X0时,向下平移)(1)解析式:尸kx+b(k、b是常数,心0 (2)必过点:(0, b)和(-匕,0)k(3)走向:Q0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图彖经过第一、二象限;b<0,图彖经过第三、四彖限(k>0 [k>0< O直线经过第一、二、三象限彳O直线经过第一、三.四象限\b>0 \b<0\k<0 k<0o直线经过第一、二、四象限o直线经过第二、三、四象限[b>0 [b<0(4)增减性:k>0f y随x的增大而增大;k<0, y随x增大而减小.(5)倾斜度:岡越大,图象越接近于y轴;岡越小,图象越接近于x轴.(6)图像的平移:当Q0时,将直线后的图象向上平移b个单位;(上加下减,左加右减) 当b<0时,将直线的图象向下平移b个单位.例题:若关于x的函数y = (n + l)x w~l是一次函数,则〃尸______ , n ________ ..函数y=ax^h与尸bx+a的图象在同一坐标系内的大致位置正确的是( )将直线y=3x向下平移5个单位,得到直线_____________ ;将直线卩=一兀一5向上平移5个单位,得到直线___________ 若直线y = -x-\-a和直线y = x^-h的交点坐标为(m,8),则a + b = ____________ .已知函数y=3x+l,当自变虽增加〃?时,相应的函数值增加()A . 3ni+1 B. 3ni C. tn D. 3fn~ 111、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可•一般情况下:是先选取它与两坐标轴的交点:与,轴的交点(0,方),与x轴的交点(-?,0).即横坐标或纵坐标为0的点.kb>0b<0b=0k>0经过第一、二、三象限经过第一、三、四彖限经过第一、三象限"丿/k/1/、/ ()尸X X图象从左到右上升,y随X的增大而增大/«0经过第一、二、四象限经过第二、三、四象限经过第二、四象限☆k、b的符号对直线位置的影响☆图像过一、二、三象限图像过一、三、四象限图像过一、二、舛象限图像过二.三、四象限思考:若/n<0,/7>0,则一次函数y-mx^n的图彖不经过()4第一象限 B.第二象限 C.第三象限。
第四象限12、正比例函数与一次函数图象之间的关系一次函数y=kx+h的图象是一条直线,它可以看作是由直线尸后平移|方|个单位长度而得到(当b>0时,向上平移; 当b<0时,向下平移).13、直线y=kix+b{与y=k2x+b2的位置关系(1)两直线平行:局=比2且饷工加(2)两直线相交:k\ k2(3)两直线重合:仏枠2且b】=b2(4)两直线垂直:心局=-114、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将X、尹的儿对值或图象上的儿个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代冋所求的函数关系式中得出所求函数的解析式.15、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=O(67, b为常数,Q却)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线尸败+b确定它与x轴的交点的横坐标的值.16、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为么计方>0或血+bv)(a, b为常数,a/0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0吋,求自变量的取值范围.17、一次函数与二元一次方程组(1)以二元一次方程a兀二c的解为坐标的点组成的图象与一次函数y=--x + -的图彖相同.h h(2)二元一次方程组的解可以看作是两个一次函数尸-鱼兀+宜和尸一乞兀+鱼的图象交点.a2x-^b2y = c2b、 b{b2 b218、一次函数的图像与两坐标轴所围成三角形的面积(大大不过四)(大小不过二)(小大不过三)(小小不过一)W W Wa^WW W w W ・1一次函数y=kx+h的图象与两条坐标轴的交点:与y轴的交点(0, b),与x轴的交点(一一,0)•k常见题型强化练习一、 考察一次函数定义1、 若函数y =+3是,关于*的一次函数,则加的值为 ______________ ;解析式为 ________n — 12、 要使y=(m —2)x +〃是关于x 的一次函数屮,加应满足 ____________ , ____________ .二、 考査图像性质1、 己知一次函数尸G —2)X +〃7 — 3的图像经过第一,第三,第四象限,则加的取值范围是 ___________2、 若一次函数尹=(2—〃2) h 加的图像经过第一、二、四象限,则加的取值范围是 ___________3、 已知加是整数,且一次函数y = (m4-4)x + m + 2的图象不过第二象限,则加为 ___________ .4、直线y = kx + b 经过一、二、四象限,则直线y = bx-k 的图象只能是图4屮的()与两坐标轴圉成的三角形面积为5=| xx0|b 2丽5、 6、直线px ++ r = 0 (pqHO )如图5,则下列条件正确的是A.p = q,r = \B.p = qj = 0 D.p = -q,r = 0如果ab>0, -<0,CA.第一象限 则直线-不通过( )b bB.第二象限C.第三象限D.第四象限 )如图6,两直线y}=kx + b和力二加+力在同一坐标系内图象的位置可能是()D.8、 如果ab>0, -<0,则直线y = --x + £不通过( )cb bA.第一象限B.第二象限C.第三象限D.第四象限9、 为 _______ 时,直线y = 2x-\-h 与直线y = 3x-4的交点在x 轴上. 3 3 10、 要得到y=--x-4的图像,可把直线y=~~x ()・(A )向左平移4个单位(3)向右平移4个单位 (C )向上平移4个单位(D )向下平移4个单位11、 已知一次函数y=—处+5,如果点Pl (X1,y\) , Pl (X2,尹2)都在函数的图像上,且当兀1<兀2吋,有71<力成立,那么系数k 的取值范围是 _______ .12、已知点(一4,刃),(2,力)都在直线y=— *x+2上,则刃、力大小关系是( )(A ) y\ >y 2(B )尹 1=力(C ) yi <y 2(D )不能比较三、交点问题1、 若直线尸3x — 1与y=x~k 的交点在第四象限,则比的取值范围是()・(A ) k<-(B ) -<KI (C ) k>\(r>) k>\ 或怎丄3332、 若直线y = -x +a 和直线y = x + b 的交点坐标为(加,8),贝.3、 一次函数y = kx + b 的图象过点(加,1)和(1,加)两点,且加>1,则比二 ___ , b 的取值范围是 ___________ .4、 直线 y = kx + b 经过点 /(一1,加),5(m,l ) (m > 1),则必有( )A. k > 0,b > 0B.k > 0,b < 0C.k < 0,b > 0D.k < 0,b < 05、如图所示, 已知正比例函数v = 一丄x 和一次函数y = x + b^ 2 它们的图像都经过点P (a, 1)且一次函数图像与y轴交于Q点。