高考数学公式:平方差公式-word
平方差公式讲解

平方差公式讲解
平方差公式是数学中的一个重要公式,主要用于计算两个数的平方差。
它的公式表示为:(a+b)(a-b)=a^2-b^2。
这个公式的意义在于,它是两个数的和与这两个数差的积,等于这两个数的平方差。
具体来说,如果我们有两个数 a 和b,那么它们的平方差可以表示为(a+b)(a-b),这是一个非常有用的公式,因为它可以用来计算两个数的平方差,而不需要先计算出这两个数的具体值。
使用平方差公式时需要注意以下几点:
1. 公式的左边是个两项式的积,有一项是完全相同的。
2. 右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3. 能否运用平方差公式的判定包括有两数和与两数差的积,有两数和的相反数与两数差的积,有两数的平方差。
此外,还有完全平方公式:(a+b)^2=a^2+2ab+b^2 和(a-b)^2=a^2-2ab+b^2。
这两个公式用于计算两个数的和或差的平方,等于它们的平方和加上或减去它们的积的2倍。
总的来说,平方差公式是数学中非常重要的一个公式,它在计算、证明和解决数学问题中有着广泛的应用。
掌握这个公式的应用对于提高数学能力和解决数学问题有很大的帮助。
平方差公式

平方差公式(a-b)(a+b)=a²-b²两数和与两数的差相乘,等于两个数的平方的差a²-b²=(a-b)(a+b)两个数的平方的差,等于两数和与两数的差相乘在这里,公式的关键:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,(2)右边是城市中两项的平方差(3)a,b既可以是具体数字,还可以是单项式或者多项式。
平方差公式的七种变形:(1)位置变化:(-b+a)(a+b)=a²-b²(2)符号变化:(a-b)(-a-b)=b²-a(3)系数变化:12 +3 )(12 −3 )=(12 )²-(3 )²(4)指数变化:(a²+b²)(a²-b²)=(a²)²-(b²)²(5)增项变化:(a-b-c)(a-b+c)=(a-b)²-(c)²(6)増因式变化:(a+b)(a-b)(-a-b)(-a+b)=(a²-b²)(a²-b²)(7)连用公式变化:(a-b)(a+b)(a²+b²)( 4+ 4)=(a²-b²)(a²+b²)( 4+ 4)=( 4− 4)( 4+ 4)= 8− 8配套练习一、选择题:1、下列各式中不能用平方差公式计算的是()A、(-x+y)(-x-y)B、(a-2b)(2b-a)C、(a-b)(a+b)(a²+b²)D、(a-b+c)(a+b-c)2、下列运算正确的是:()A、(5-m)(5+m)=m²-25B、(1-3m)(1+3m)=1-3m²C、(-4-3n)(-4+3n)=-9n²+16D、(2ab-n)(2ab+n)=4ab²-n²3、利用平方差公式计算(2x-5)(-2x-5)的结果是()A、4x²-25B、4x²-5C、25-4x²D、4x²+25二、填空题:1、已知a+b=-3,a-b=1,则a²-b²的值是。
平方差公式总结

平方差公式总结平方差公式是数学中的一个重要定理,它用于求解平方差的表达式,并在许多数学问题中发挥着重要的作用。
本文将对平方差公式进行总结,并介绍其应用领域和相关例题。
一、平方差公式概述平方差公式是指在一个平方差的表达式中,通过巧妙的展开、化简等运算,得到简化后的形式。
平方差公式的一般形式可以表示为:(a+b)^2 = a^2 + b^2 + 2ab其中,a和b为实数。
平方差公式的重要性不仅在于它的应用广泛,还因为它可以帮助我们简化计算、推导结果,提高数学问题解决的效率。
二、平方差公式的应用领域1. 代数表达式的展开和化简:平方差公式可以用于展开代数表达式,将其化简为更简单的形式。
例如,将(a+b)^2展开为a^2 + b^2 + 2ab,再进一步化简可得到最简形式。
2. 几何问题的求解:平方差公式可以用于求解与几何问题相关的表达式,如直角三角形的斜边长度、矩形的对角线长度等。
通过运用平方差公式,可以简化计算步骤,得到准确结果。
3. 物理问题的建模与计算:在物理学中,平方差公式被广泛应用于计算速度、力矩、功率等涉及平方差的物理量。
通过运用平方差公式,可以简化物理问题的分析与计算,提高解决问题的效率。
三、平方差公式的例题分析为了更好地理解和运用平方差公式,以下列举了几个常见的例题进行分析:例题一:已知a = 3,b = 2,求(a-b)^2的值。
解析:根据平方差公式,可以将(a-b)^2展开为a^2 - 2ab + b^2。
代入已知的a和b的值,得到答案:(3-2)^2 = 1。
例题二:求证在任意直角三角形中,直角边的平方和等于斜边的平方。
解析:设直角三角形的两个直角边分别为a和b,斜边为c。
根据勾股定理,有c^2 = a^2 + b^2。
通过这个例题,我们可以使用平方差公式进行证明。
例题三:已知正方形的边长为a,求其对角线的长度。
解析:将正方形的两条对角线分别记为d1和d2,根据平方差公式可得d1^2 = a^2 + a^2,化简后得到d1 = a√2。
公式法之平方差公式

公式法之平方差公式平法差公式是指在代数运算中,存在一种形如(a+b)(a-b)的乘法运算规则,可以将两个相邻的平方差式表示为一个乘法式,从而简化计算。
平方差公式的推导可以通过展开乘法(a+b)(a-b)的过程进行,具体推导如下:首先,我们假设a和b是任意实数。
那么(a+b)可以看作是一个单位,(a-b)可以看作是一个差数。
我们将其展开:(a+b)(a-b)=a(a-b)+b(a-b)接下来,我们将展开式中的乘法运算进行分配:=a*a-a*b+b*a-b*b= a^2 - ab + ba - b^2由于ab和ba表示的是相同的乘法运算,所以我们可以将它们合并:= a^2 - ab + ab - b^2=a^2-b^2可以看到,展开式的结果是a^2和b^2的差。
这个差就是平方差公式的核心内容。
因此,平方差公式可以表示为:(a+b)(a-b)=a^2-b^2这个公式在代数运算中非常常用,并且在很多数学问题的解答中都会用到。
通过使用平方差公式,可以将两个相邻的平方差式简化为一个乘法式,从而可以更方便地进行运算。
举例来说,假设我们需要计算(3+2)(3-2)的值。
根据平方差公式,可以得到:(3+2)(3-2)=3^2-2^2=9-4=5因此,(3+2)(3-2)的值等于5平方差公式在解决二次方程、因式分解、简化分数等问题中都有广泛的应用。
通过运用平方差公式,可以将复杂的运算问题转化为简单的代数运算,从而更加容易进行计算和解答。
总结起来,平方差公式是一种代数运算规则,可以将两个相邻的平方差式表示为一个乘法式。
通过使用平方差公式,可以简化计算过程,提高计算效率。
在数学问题的解答中,平方差公式具有广泛的应用价值。
这就是平方差公式的基本原理和推导过程。
数学平方差公式和完全平方差公式

数学平方差公式和完全平方差公式数学中,平方差公式和完全平方差公式是经常被用到的重要公式。
它们在解决数学问题、推导公式和证明定理时起着重要的作用。
让我们一起来了解一下这两个公式吧。
首先,我们来介绍平方差公式。
平方差公式的表达式是(a+b)(a-b)=a^2-b^2。
它通过两个数的和与差的运算之间的联系,让我们能够更方便地进行计算。
平方差公式在解决因式分解问题时非常有用。
例如,如果我们需要将一个四次方程进行因式分解,平方差公式可以帮助我们找到合适的因子,从而简化问题。
此外,平方差公式还可以用于证明等式和推导其他重要的公式,如勾股定理。
接下来,我们来介绍完全平方差公式。
完全平方差公式的表达式是(a+b)^2 = a^2 + 2ab + b^2。
这个公式通过将两个数的和平方展开,让我们能够更加方便地进行计算。
完全平方差公式在解决数列问题时非常有用。
例如,如果我们需要计算一个数列的前n项和,完全平方差公式可以帮助我们简化计算过程,从而节省时间。
此外,完全平方差公式也可以用于推导其他重要的公式,如二次方程的求根公式。
平方差公式和完全平方差公式不仅在数学中发挥重要作用,在实际生活中也有广泛的应用。
例如,在物理学中,这两个公式可以帮助我们计算力、速度和加速度等物理量,从而解决实际问题。
总结起来,平方差公式和完全平方差公式是数学中常用的两个公式。
它们通过运算法则和数学推导,为我们解决问题和证明定理提供了重要的工具。
无论是在学习数学知识还是解决实际问题时,熟练掌握这两个公式都是非常有意义和必要的。
希望通过本文的介绍,大家能够更深入地理解和运用平方差公式和完全平方差公式。
【高中数学】高中数学公式(平方差公式)_高中数学公式

【高中数学】高中数学公式(平方差公式)_高中数学公式除了课堂上的学习外,平时的积累与练习也是学生提高成绩的重要途径,本文为大家提供了高中数学公式(平方差公式),祝大家阅读愉快。
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23[解方程]x^2-y^2=1991[思路分析]利用平方差公式求解[解题过程]x^2-y^2=1991(x+y)(x-y)=1991因为1991可以分成1×1991,11×181所以如果x+y=1991,x-y=1,解得x=996,y=995如果x+y=181,x-y=11,x=96,y=85同时也可以是负数所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85有时应注意加减的过程。
常见错误平方差公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难以掌握。
三角平方差公式三角函数公式中,有一组公式被称为三角平方差公式:(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B)这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。
注意事项1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
平方差公式_公式总结

平方差公式_公式总结表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式公式运用可用于某些分母含有根号的分式:1/(3-4倍根号2)化简:1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号2)/(9-32)=(3+4倍根号2)/-23[解方程]x^2-y^2=1991[思路分析]利用平方差公式求解[解题过程]x^2-y^2=1991(x+y)(x-y)=1991因为1991可以分成1×1991,11×181所以如果x+y=1991,x-y=1,解得x=996,y=995如果x+y=181,x-y=11,x=96,y=85同时也可以是负数所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85有时应注意加减的过程。
常见错误平方差公式中常见错误有:①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)②混淆公式;③运算结果中符号错误;④变式应用难以掌握。
三角平方差公式三角函数公式中,有一组公式被称为三角平方差公式:(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B)(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A +B)sin(A-B)这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。
注意事项1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b 可以是具体的数,也可以是单项式或多项式。
《平方差公式》word教案 (公开课)2022年北师大版

1.5 平方差公式(二)●教学目标(一)教学知识点1.了解平方差公式的几何背景.2.会用面积法推导平方差公式,并能运用公式进行简单的运算.3.体会符号运算对证明猜想的作用.(二)能力训练要求1.用符号运算证明猜想,提高解决问题的能力.2.培养学生观察、归纳、概括等能力.(三)情感与价值观要求1.在拼图游戏中对平方差公式有一个直观的几何解释,体验学习数学的乐趣.2.体验符号运算对猜想的作用,享受数学符号表示运算规律的简捷美.●教学重点平方差公式的几何解释和广泛的应用.●教学难点准确地运用平方差公式进行简单运算,培养根本的运算技能.●教学方法启发——探究相结合●教具准备一块大正方形纸板,剪刀.投影片四张第一张:想一想,记作(§1.5.2 A)第二张:例3,记作(§1.5.2 B)第三张:例4,记作(§1.5.2 C)第四张:补充练习,记作(§ D)●教学过程Ⅰ.创设问题情景,引入新课[师]同学们,请把自己准备好的正方形纸板拿出来,设它的边长为a.这个正方形的面积是多少?[生]a2.[师]请你用手中的剪刀从这个正方形纸板上,剪下一个边长为b的小正方形(如图1-23).现在我们就有了一个新的图形(如上图阴影局部),你能表示出阴影局部的面积吗?图1-23[生]剪去一个边长为b的小正方形,余以以下列图形的面积,即阴影局部的面积为(a2-b2).[师]你能用阴影局部的图形拼成一个长方形吗?同学们可在小组内交流讨论.(教师可巡视同学们拼图的情况,了解同学们拼图的想法)[生]老师,我们拼出来啦.[师]讲给大伙听一听.[生]我是把剩下的图形(即上图阴影局部)先剪成两个长方形(沿上图虚线剪开),我们可以注意到,上面的大长方形宽是(a-b),长是a;下面的小长方形长是(a-b),宽是b.我们可以将两个长方形拼成一个更大长方形,是由于大长方形的宽和小长方形的长都是(a-b),我们可以将这两个边重合,这样就拼成了一个如图1-24所示的图形(阴影局部),它的长和宽分别为(a+b),(a-b),面积为(a+b)(a-b).图1-24[师]比较上面两个图形中阴影局部的面积,你发现了什么?[生]这两局部面积应该是相等的,即(a+b)(a-b)=a2-b2.[生]这恰好是我们上节课学过的平方差公式.[生]我明白了.上一节课,我们用多项式与多项式相乘的法那么验证了平方差公式.今天,我们又通过拼图游戏给出平方差公式的一个几何解释,太妙了.[生]用拼图来验证平方差公式很直观,一剪一拼,利用面积相等就可推证.[师]由此我们对平方差公式有了更多的认识.这节课我们来继续学习平方差公式,也许你会发现它更“神奇〞的作用.Ⅱ.讲授新课[师]出示投影片(§1.5.2 A)想一想:(1)计算以下各组算式,并观察它们的特点⎩⎨⎧=⨯=⨯8897 ⎩⎨⎧=⨯=⨯12121311 ⎩⎨⎧=⨯=⨯80808179 (2)从以上的过程中,你发现了什么规律?(3)请你用字母表示这一规律,你能说明它的正确性吗?[生](1)中算式算出来的结果如下⎩⎨⎧=⨯=⨯64886397 ⎩⎨⎧=⨯=⨯14412121431311 ⎩⎨⎧=⨯=⨯6400808063998179 [生]从上面的算式可以发现,一个自然数的平方比它相邻两数的积大1.[师]是不是大于1的所有自然数都有这个特点呢?[生]我猜想是.我又找了几个例子如:⎩⎨⎧=⨯=⨯422331 ⎩⎨⎧=⨯=⨯10000100100999910199 ⎩⎨⎧=⨯=⨯62525256242624 [师]你能用字母表示这一规律吗?[生]设这个自然数为a,与它相邻的两个自然数为a -1,a+1,那么有(a+1)(a -1)=a 2-1.[生]这个结论是正确的,用平方差公式即可说明.[生]可是,我有一个疑问,a 必须是一个自然数,还必须大于2吗?(同学们惊讶,然后讨论)[生]a 可以代表任意一个数.[师]很好!同学们能大胆提出问题,又勇于解决问题,值得提倡.[生]老师,我还有个问题,这个结论反映了数字之间的一种关系.在平时有什么用途呢?(陷入沉思)[生]例如:计算29×31很麻烦,我们就可以转化为(30-1)(30+1)=302-1=900-1=899.[师]确实如此.我们在做一些数的运算时,如果能一直有这样“巧夺天工〞的方法,太好了.我们不妨再做几个类似的练习.出示投影片(§1.5.2 B)[例3]用平方差公式计算:(1)103×97 (2)118×122[师]我们可以发现,直接运算上面的算式很麻烦.但注意观察就会发现新的微妙.[生]我发现了,103=100+3,97=100-3,因此103×97=(100+3)(100-3)=10000-9=9991.太简便了![生]我观察也发现了第(2)题的“微妙〞.118=120-2,122=120+2118×122=(120-2)(120+2)=1202-4=14400-4=14396.[生]遇到类似这样的题,我们就不用笔算,口算就能得出.[师]我们再来看一个例题(出示投影片§1.5.2 C).[例4]计算:(1)a2(a+b)(a-b)+a2b2;(2)(2x-5)(2x+5)-2x(2x-3).分析:上面两个小题,是整式的混合运算,平方差公式的应用,能使运算简便;还需注意的是运算顺序以及结果一定要化简.解:(1)a2(a+b)(a-b)+a2b2=a2(a2-b2)+a2b2=a4-a2b2+a2b2=a4(2)(2x-5)(2x+5)-2x(2x-3)=(2x)2-52-(4x2-6x)=4x2-25-4x2+6x=6x-25注意:在(2)小题中,2x与2x-3的积算出来后,要放到括号里,因为它们是一个整体.[例5]公式的逆用(1)(x+y)2-(x -y)2 (2)252-242分析:逆用平方差公式可以使运算简便.解:(1)(x+y)2-(x -y)2=[(x+y)+(x -y)][(x+y)-(x -y)]=2x ·2y=4xy(2)252-242=(25+24)(25-24)=49Ⅲ.随堂练习1.(课本P 22)计算(1)704×696(2)(x+2y)(x -2y)+(x+1)(x -1)(3)x(x -1)-(x -31)(x+31)(可让学生先在练习本上完成,教师巡视作业中的错误,或同桌互查互纠)解:(1)704×696=(700+4)(700-4)=490000-16=489984(2)(x+2y)(x -2y)+(x+1)(x -1)=(x 2-4y 2)+(x 2-1)=x 2-4y 2+x 2-1=2x 2-4y 2-1(3)x(x -1)-(x -31)(x+31)=(x 2-x)-[x 2-(31)2]=x 2-x -x 2+91=91-x2.(补充练习)出示投影片(§1.5.2 D)解方程:(2x+1)(2x -1)+3(x+2)(x -2)=(7x+1)(x -1)(先由学生试着完成)解:(2x+1)(2x-1)+3(x+2)(x-2)=(7x+1)(x-1)(2x)2-1+3(x2-4)=7x2-6x-14x2-1+3x2-12=7x2-6x-16x=12 x=2Ⅳ.课时小结[师]同学们这节课一定有不少体会和收获.[生]我能用拼图对平方差公式进行几何解释.也就是说对平方差公式的理解又多了一个层面.[生]平方差公式不仅在计算整式时,可以使运算简便,而且数的运算如果也能恰当地用了平方差公式,也非常神奇.a(a+1)-(a+b)(a-b)一定要先算乘法,同时减号后面的积(a+b)(a-b),算出来一定先放在括号里,然后再去括号.就不容易犯错误了.……Ⅴ.课后作业课本习题1.10.Ⅵ.活动与探究计算:19902-19892+19882-19872+…+22-1.[过程]先做乘方运算,再做减法,那么计算繁琐,观察算式特点,考虑逆用平方差公式.[结果]原式=(19902-19892)+(19882-19872)+…+(22-1)=(1990+1989)(1990-1989)+(1988+1987)(1988-1987)+…+(2+1)(2-1)=1990+1989+1988+1987+…+2+1=2)11990(1990+⨯=1981045●板书设计§1.5.2 平方差公式(二) 一、平方差公式的几何解释:二、想一想特例——归纳——建立猜想——用符号表示——给出证明即(a+1)(a -1)=a 2-1三、例题讲解:例3 例4四、练习●备课资料参考练习(1)在以下多项式的乘法中,不能用平方差公式计算的是( )A.(-a -b)(a -b)B.(c 2-d 2)(d 2+c 2)C.(x 3-y 3)(x 3+y 3)D.(m -n)(-m+n)(2)用平方差公式计算(x -1)(x+1)(x 2+1)结果正确的选项是( )A.x 4-1B.x 4+1C.(x -1)4D.(x+1)4 (3)以下各式中,结果是a 2-36b 2的是( )A.(-6b+a)(-6b -a)B.(-6b+a)(6b -a)C.(a+4b)(a -4b)D.(-6b -a)(6b -a)(4)(5x+3y )·( )=25x 2-9y 2xyy 2x 2(6)(-23x -11y)( )=-49x 2+121y 2(7)假设(-7m+A)(4n+B)=16n 2-49m 2,那么A= ,B= .(8)(2x 2+3y)(3y -2x 2).(9)(p -5)(p -2)(p+2)(p+5).(10)(x 2y+4)(x 2y -4)-(x 2y +2)·(x 2y -3).(11)(上海市中考题)x 2-2x=2,将下式先化简,再求值(x -1)2+(x+3)(x -3)+(x -3)(x -1)(12)(北京市中考)观察以下顺序排列的等式:9×0+1=19×1+2=119×2+3=219×3+4=319×4+5=41……猜想:第n个等式(n为正整数)应为 .答案:1.(1)D (2)A (3)D2.(4)(5x-3yxy)3x-11y) (7)A=4n,B=7m(6)(23.(8)9y2-4x4 (9)p4-29p2+100(10)x2y-104.(11)原式=3(x2-2x)-5=3×2-5=15.(12)9×(n-1)+n=(n-1)×10+1(n为正整数).字母表示数【学习目标】课标要求:1.能用字母和代数式表示以前学过的运算律和计算公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学公式:平方差公式
表达式:(a+b)(a-b)=a^2-b^2,两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法的平方差公式
公式运用
可用于某些分母含有根号的分式:
1/(3-4倍根号2)化简:
1×(3+4倍根号2)/(3-4倍根号2)^2;=(3+4倍根号
2)/(9-32)=(3+4倍根号2)/-23
[解方程]
x^2-y^2=1991
[思路分析]
利用平方差公式求解
[解题过程]
x^2-y^2=1991
(x+y)(x-y)=1991
因为1991可以分成1×1991,11×181
所以如果x+y=1991,x-y=1,解得x=996,y=995
如果x+y=181,x-y=11,x=96,y=85同时也可以是负数
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,
有时应注意加减的过程
常见错误
平方差公式中常见错误有:
①学生难于跳出原有的定式思维,如典型错误;(错因:在公式的基础上类推,随意“创造”)
②混淆公式;
③运算结果中符号错误;
④变式应用难以掌握。
三角平方差公式
三角函数公式中,有一组公式被称为三角平方差公式:(sinA)^2-(sinB)^2=(cosB)^2-(cosA)^2=sin(A+B)sin(A-B )
(cosA)^2-(sinB)^2=(cosB)^2-(sinA)^2=cos(A+B)sin(A-B )
这组公式是化积公式的一种,由于酷似平方差公式而得名,主要用于解三角形。
注意事项
1、公式的左边是个两项式的积,有一项是完全相同的。
2、右边的结果是乘式中两项的平方差,相同项的平方减去相反项的平方。
3、公式中的a.b 可以是具体的数,也可以是单项式或多项
例题
一,利用公式计算(1) 103×97
解:(100+3)×(100-3) =(100)^2-(3)^2 =100×100-3×3
=10000-9
=9991
(2) (5+6x)(5-6x) 解:5^2-(6x)^2
=25-36x^2。