典型晶体结构4.ppt

合集下载

晶体的结构和性质课件

晶体的结构和性质课件

晶体的化学性质
晶体在特定条件下可以发 生化学反应,参与催化和 合成等重要化学过程。
晶体的力学性质
晶体的力学性质决定了晶 体的强度和变形特性,在 工程领域有重要应用。
晶体的应用
1
半导体材料
晶体在半导体领域有广泛应用,包
晶体管和集成电路
2
括集成电路和太阳能电池。
晶体管和集成电路的发明使得电子
技术得以飞速发展。
晶体的结构和性质
本课件介绍了晶体的结构和性质。包括晶体的概念和分类,晶体的周期性结 构和晶胞,晶体的点阵和空间群,晶体的物理、化学和力学性质,以及晶体 的应用。
晶体的概念和分类
Hale Waihona Puke 晶体的定义晶体是具有周期性结构的固体材料,由原 子、离子或分子按照一定规律排列而成。
晶体的分类
晶体可以根据化学成分、晶体形态和晶体 结构等特征进行分类。
3
晶体振荡器和滤波器
晶体振荡器和滤波器是电子设备中
医用晶体材料
4
关键的频率控制元件。
晶体材料在医学领域用于制作医疗 设备,如X光片和超声传感器。
结束语
晶体在现代科技中扮演着重要的角色,推动了许多领域的发展。展望未来,晶体的应用前景仍然 广阔。
晶体的结构
晶体的周期性结构
晶体具有高度有序的周期性 结构,使其具有特定的物理 和化学性质。
晶体的晶胞和晶格
晶体的结构是由晶胞和晶格 组成的,晶胞是最小重复单 元。
晶体的点阵和空间群
晶体的点阵和空间群描述了 晶体的几何特征和对称性。
晶体的性质
晶体的物理性质
晶体具有独特的光学、热 学和电学性质,可以应用 于光学器件、导热材料和 电子元件。

晶体结构(共78张PPT)

晶体结构(共78张PPT)
多为无色透明,折 射率较高
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础




萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以

一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。

晶体的界面结构(共45张PPT)

晶体的界面结构(共45张PPT)

2.半共格相界 假设两相邻晶体在相界面处的晶面间距相差较大,那么在相界面上不可能做到完全的一一对
应,于是在界面上将产生一些位错,以降低界面的弹性应变能,这时界面上两相原子局部地保持 匹配,这样的界面称为半共格界面或局部共格界面。
从能量角度而言,以半共格界面代替共格界面更为有利。
3.非共格相界----两相在相界面处的原子排列相差很大。
位相角:θ〔沿坐标系中某一旋转轴的旋转角〕 方向角:φ〔晶界与另一晶粒的位相角〕
2.2 小角晶界
二、晶界自由度 三维晶界------有5个自由度
位相角:θ1 ,θ2, θ 3〔三个相邻晶粒的旋转角〕 方向角:φ1 ,φ2 〔晶界与另一晶粒的位相角〕
2.2 小角晶界
三、小角度晶界的位错模型
倾转晶界〔由刃型位错构成〕 1.对称倾斜晶界
共格晶界: 2种相的原子在界面处完全匹配,形 成完整格界面。
半共格晶界:晶面间距相差较大,在界面上将 产生一些位错,以降低界面的弹性应变能,这
时界面上两相原子局部地保持匹配 。 非共格晶界: 界面上两相原子无任何匹配关系
晶界分类
(1) 按两个晶粒之间夹角的大小来分:
小角度晶界 θ=0°→3~10°
错配度定义为
式中a 和b分别表示相界面两侧的 相和相的点阵常数,且a > a 。
由此可求得位错间距D为 D=α/δ
当δ很小时,可以近似为
D≈|b|/δ 当δ很小时,D很大,α和β相在相界面上趋于共格,即成为共格相 界;
当δ很大时,D很小,α和β相在相界面上完全失配,即成为非共格相 界,
完全共格相界
3. 扭转晶界〔由螺型位错构成〕
以下图表示两个简单立方晶粒的扭转晶界结构,图中〔001〕 平面是共同的平面,可见这种晶界是由两组螺型位错交叉网络所形 成。扭转晶界两侧的原子位置是互相不吻合的,但这种吻合可以集 中到一局部原子的位置上,其余的局部仍吻合,不吻合的局部是螺 型位错。

晶体结构 PPT课件

晶体结构 PPT课件

结构可以看成是由C-C四面体共顶连接 而成。
金刚石的类型
晶格中N和B常替代C。N含量一般为 0.001% ~0.25%。按照N的含量将经金 刚石划分为不同类型/
Ⅰ型 (含N) Ⅰa型:N为N2、N3 、N n, 98%的天然无色--黄色钻石属于此类。 Ⅰb 型:N为孤N, 多数合成钻石属于此类。 Ⅰ型金刚石的主要用途:刀具、拉丝 模、砂轮、钻头等。
O2-位于立方晶胞晶棱的中点, Ca2+位于 立方晶胞的中心,配位数为12;Ti4+位于 晶胞的角顶,配位数为6;O 周围有4 个 Ca, 2个Ti。[TiO6]八面体共角顶连接。
CaTiO3的立方原始晶胞
Ti4+与八面体角顶的6个O2-配位
Ca2+
Ti4+ O2-
理想钙钛矿的晶胞
一般将等轴晶系钙钛矿结构称为理想 钙钛矿,典型代表是SrTiO3。这种结 构的钙钛矿很少见。只有当离子半径 满足(rA+rX) =1.414(rB+rX)。才能形成 理想的钙钛矿型结构。
方解石(CaCO3)的结构模型
每一个Ca2+与属于不同的CO32-离子团 中的六个氧离子配位,碳的氧离子配 位数为3 。
Ca2+与不同的CO32-离子团中的六个O2-配位,
(2)钙钛矿(CaTiO3)型晶体结构 高温下为等轴晶系,空间群Pm3m,
ao=0.385nm,Z=1。
钙钛矿结构可看成是较大的Ca2+和O2作立方最紧密堆积,Ti4+充填在由六个 氧形成的八面体空隙中。
10.1 元素单质的晶体结构
1.金属单质的晶体结构
典型的金属单质晶体,原子之间以金属键 结合,结构看成是由等大球紧密堆积而 成,原子配位数高。

晶体结构四晶体的结构与性质无机化合物结构课件

晶体结构四晶体的结构与性质无机化合物结构课件
S2-离子的配位数均为4。六方柱晶胞中ZnS的“分子数”为6,平行六 面体晶胞中,晶胞分子数为2。结构由Zn2+和S2-离子各一套六方格子穿 插而成 。
常见纤锌矿结构的晶体有BeO、ZnO、CdS、GaAs等晶体。
图1-18 纤锌矿结构六方柱晶胞
(2)纤锌矿结构与热释电性及声电效应
某些纤锌矿型结构,由于其结构中无对称中心存在,使得晶体具有 热释电性,可产生声电效应。热释电性是指某些象六方ZnS的晶体,由 于加热使整个晶体温度变化,结果在与该晶体c轴平行方向的一端出现 正电荷,在相反的一端出现负电荷的性质。晶体的热释电性与晶体内部 的自发极化有关。实际上,这种晶体在常温常压下就存在自发极化,只 是这种效应被附着于晶体表面的自由表面电荷所掩盖,只有当晶体加热
图1-21 碘化镉型结构
三、A2X3型结构
A2X3型化合物晶体结构比较复杂,其中有代表 性的结构有刚玉(corundum)型结构,稀土A、B、 C型结构等。由于这些结构中多数为离子键性强的化 合物,因此,其结构的类型也有随离子半径比变化的 趋势,如图1-22所示。
Te
B型稀土
Se
氧化物
CN=6
大多数AX型化合物的结构类型符合正负离子半径比 与配位数的定量关系,见表1-4。只有少数化合物在r+/r0.732或r+/r-0.414时仍属于NaCl型结构。如KF,LiF, LiBr,SrO,BaO等。
表1-4 AX型化合物的结构类型与r+/r-的关系
结构类型 CsCl 型 NaCl 型
ZnS 型
1.萤石(CaF2)型结构及反萤石型结构
立方晶系,点群m3m,空间群Fm3m,如图1-19所示。 Ca2+位于立方晶胞的顶点及面心位置,形成面心立方堆积,F-填充 在八个小立方体的体心。

晶体结构4

晶体结构4

见黄昆书图4-24 (p194)
Kittel (p28) 黄昆书图4-12(p179)
见黄昆书图4-12 (p179)
体心立方的Wigner-Seitz原胞及第一布里渊区
面心立方的Wigner-Seitz原胞及第一布里渊区
Kittel (p29),黄昆书图4-13(p179)
见黄昆书图4-13 (p179)
一. 定义:假设 a1, a2, a3 是一个晶体点阵的基矢,该点阵的
格矢为:Rn n1a1 n1a2 n1a3 原胞体积是: a1 (a2 a3 )
现在定义 3个新的基矢 b1, b2,b3 构成一个新点阵: ( h,k,l 是整数。)
b1 b2 b3
2 2 2
a1 a1 a1
倒格子基矢是从点阵基矢引出的,它们之间的联系需要我
们通过具体实例来理解:根据右面定义,
显然
:b1
a2
and a3,
b2
a3
and a1,
b3 a1 and a2
b1 b2 b3
2 2 2
a1 a1 a1
a2a2
a3
a3
a3a2
a1
a3
a1a2
a2 a3
b2
a2
a1
b1
对一种晶体来说,它的所有布里渊区都有同
样大小的体积,利用平移对称性可以找出第一布 里渊区和所有较高的布里渊区之间的全等性。
Body-centered cubic Corner point joining four edges Center of a face Corner point joining three edges
Hexagonal Center of a hexagonal face Corner point Middle of an edge joining two rectangular faces Middle of an edge joining a hexagonal and a rectangular face Center of a rectangular face

常见九种典型的晶体结构_图文

常见九种典型的晶体结构_图文
具有反CaI2结构的物质有: Ag2F,B2O, Ni2C
4 萤石结构
空间群:Fm3m,立方面心结构。 Ca分布于晶胞的角顶及面心;F分布在晶胞8等分 之后每个小立方体的中心。
萤石结构可以理 解为:Ca2+ 做立 方最紧密堆积,F充填在其中全部的 四面体孔隙中。N 个球最紧密堆积有 2N个四面体空隙 ,所以Ca:F= 1:2 ,故得其分子式为 CaF2。
α-铁(Iron-alpha) ---(奥氏体) --立方体心 γ-铁(Iron-gama) --(马氏体)--立方面心 ε-铁(Iron- Epsilon) --六方结构
2 氯化铯(CsCl)结构
空间群:Pm3m,立方原始格子。
阴离子分布在晶胞的8个角顶,阳离子充填 在其所形成的立方体空隙中。立方体共面连 接。
如果金刚石晶胞沿一个L3立起来,金刚石似乎显示出层状结 构特征,虽然不是很特征,但金刚石的确平行{111}存在中等 解理。
由于C-C键的键能大(347 kJ/mo),价电子都参与了共价 键的形成,使得晶体中没有自由电子,所以金刚石是自然界中 最坚硬的固体,熔点高达3550 ℃。
金刚石及其等结构物质比较
具有该结构的物质主要有:KCl, NaCl, TiCl, RbF, CsN, NbN, NbO, AgI, TiTh等物质。
3 CaI2结构
空间群:P-3m,三方原始格子。
在单位晶胞中,阳离子分布在8个角顶,阴离子分 布中由上下各3个阳离子构成的正三方柱中,并间 隔地在上半部的中心和下半部的中心。
闪锌矿的晶体结构:球键图(左)、配位多面体连接图(右)
结构中,S2- 和Zn2+配位数都是4,配位多面体都 是四面体。四面体共角顶相联。

常见的晶体结构-PPT

常见的晶体结构-PPT
Octahedral sites:
6
×
×
晶体结构中得空隙位(3): hcp
Tetrahedral sites
×
×
7c 8
1c
××
8
2 6 2 1 2 3 12 3
5c 8
3c 8
棱与中心线得1/4与3/4处
3、点阵常数与原子半径
R 2R
R RR
a0
a0 2R
a0
a0
2 2R 3
R 2R
图2-48 NaCL晶胞
图2-49 CsCL晶胞
Zn
0 75
(0, 0, 0), (1 , 1 , 0), (1 , 0, 1), (0, 1 , 1) 22 2 2 22
50 25
0
(1 , 1 , 1), ( 3 , 3 , 1), (1 , 3 , 3), ( 3 , 1 , 3) 444 444 444 444
(2
R
fcc
)
Center of tetrahedron, o,
oD = (3/4)DE
A D
B
rin
oD
R fcc
3 4
DE
R fcc
2Rfcc
rin
3 2
2 3
R
fcc
R fcc
(
3 2
1)R
fcc
o
C
A
E
B
rin 3 1 0.225
R fcc
2
晶体结构中得空隙位(2): bcc
Octahedral sites: Face and edge center sites
6 1 12 1 6
2
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档