四边形
四边形的性质

四边形的性质四边形是平面几何中的一种基本图形,具有独特的性质和特征。
本文将探讨四边形的定义、分类以及一些重要的性质。
一、四边形的定义和分类四边形是由四个线段组成的多边形,其中每个顶点都与相邻的两个顶点相连。
四边形的四条边和四个内角共同决定了其性质和特点。
常见的四边形包括矩形、正方形、平行四边形、菱形和梯形等。
这些四边形根据边长和角度的关系可以进一步分类。
1. 矩形:具有四个直角(内角为90度)的四边形。
矩形的对边相等且平行。
2. 正方形:是一种特殊的矩形,具有四个边相等的特点。
正方形的内角也都为90度。
3. 平行四边形:对边分别平行且相等的四边形。
它们的内角和分别互补。
4. 菱形:对边相等的四边形,具有两对对边平行的特点。
菱形的内角相等。
5. 梯形:至少有一对对边平行的四边形。
梯形的底边平行且较长。
以上是常见的四边形分类,根据特定的性质和关系可以进一步理解和研究四边形的性质。
二、1. 内角和性质:四边形的内角和等于360度。
即四个内角的度数之和为360度。
2. 对角线性质:四边形的对角线是连接两个相对顶点的线段。
在一些特殊的四边形中,对角线具有特殊的性质。
- 矩形:对角线相等且互相垂直。
- 正方形:对角线相等且互相垂直,同时也是其对角线的中垂线。
- 平行四边形:对角线互相平分。
- 菱形:对角线互相平分,同时也是其对角线的垂直平分线。
3. 边长性质:四边形的边长可以帮助我们判断其类型,不同类型的四边形具有不同的边长性质。
- 矩形和正方形:四个边相等。
- 平行四边形:相邻边相等。
- 菱形:四个边相等。
- 梯形:没有边相等的特点。
4. 平行性质:平行四边形特有的性质是其对边是平行的。
平行四边形中的内角互补。
三、四边形的重要性质四边形作为平面几何中的基本图形,具有一些重要的性质和特征,这些性质在几何推理和问题解决中有着重要的应用。
1. 周长:四边形的周长是其所有边长的和。
2. 面积:不同类型的四边形面积计算方式不同,在提供边长和角度信息的情况下,可以通过相应的公式计算。
知识必备07 四边形(公式、定理、结论图表)

知识必备07四边形(公式、定理、结论图表)考点一、四边形的相关概念1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.3.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.4.四边形的性质:(1)定理:四边形的内角和是360°;(2)推论:四边形的外角和是360°.典例1:2022•甘肃)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形.如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mm B.2mm C.2mm D.4mm【分析】根据正六边形的性质和题目中的数据,可以求得正六边形ABCDEF的边长.【解答】解:连接BE,CF,BE、CF交于点O,如右图所示,∵六边形ABCDEF是正六边形,AD的长约为8mm,∴∠AOF=60°,OA=OD=OF,OA和OD约为4mm,∴AF约为4mm,故选:D.【点评】本题考查多边形的对角线,解答本题的关键是明确正六边形的特点.典例2:(2022•柳州)如图,四边形ABCD的内角和等于()A.180°B.270°C.360°D.540°【分析】根据四边形的内角和等于360°解答即可.【解答】解:四边形ABCD的内角和为360°.故选:C.【点评】本题考查了四边形的内角和,四边形的内角和等于360°.考点二、特殊的四边形1.平行四边形及特殊的平行四边形的性质2.平行四边形及特殊的平行四边形的判定【要点诠释】面积公式:S 菱形=21ab=ch.(a、b 为菱形的对角线,c 为菱形的边长,h 为c 边上的高)S 平行四边形=ah.a 为平行四边形的边,h 为a 上的高)典例3:(2022•朝阳)将一个三角尺按如图所示的方式放置在一张平行四边形的纸片上,∠EFG =90°,∠EGF =60°,∠AEF =50°,则∠EGC 的度数为()A .100°B .80°C .70°D .60°【分析】由平行四边形的性质可得AB ∥DC ,再根据三角形内角和定理,即可得到∠GEF 的度数,依据平行线的性质,即可得到∠EGC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴AB∥DC,∴∠AEG=∠EGC,∵∠EFG=90°,∠EGF=60°,∴∠GEF=30°,∴∠GEA=80°,∴∠EGC=80°.故选:B.【点评】此题考查的是平行四边形的性质,掌握其性质定理是解决此题的关键.典例4:(2022•鞍山)如图,在四边形ABCD中,AC与BD交于点O,BE⊥AC,DF⊥AC,垂足分别为点E,F,且BE=DF,∠ABD=∠BDC.求证:四边形ABCD是平行四边形.【分析】结合已知条件推知AB∥CD;然后由全等三角形的判定定理AAS证得△ABE≌△CDF,则其对应边相等:AB=CD;最后根据“对边平行且相等是四边形是平行四边形”证得结论.【解答】证明:∵∠ABD=∠BDC,∴AB∥CD.∴∠BAE=∠DCF.在△ABE与△CDF中,.∴△ABE≌△CDF(AAS).∴AB=CD.∴四边形ABCD是平行四边形.【点评】本题主要考查了平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形.典例5:(2022•内江)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得到AB=CD,AB∥CD,根据平行线的性质得到∠ABD=∠CDB,利用SAS定理证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF,∠AEB=∠CFD,根据平行线的判定定理证明AE∥CF,再根据平行四边形的判定定理证明结论.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.【点评】本题考查的是平行四边形的判定和性质、全等三角形的判定和性质,掌握平行四边形的对边平行且相等、一组对边平行且相等的四边形是平行四边形是解题的关键.典例6:(2022•兰州)如图,菱形ABCD的对角线AC与BD相交于点O,E为AD的中点,连接OE,∠ABC =60°,BD=4,则OE=()A.4B.2C.2D.【分析】根据菱形的性质可得,∠ABO=30°,AC⊥BD,则BO=2,再利用含30°角的直角三角形的性质可得答案.【解答】解:∵四边形ABCD是菱形,∠ABC=60°,∴BO=DO,∠ABO=30°,AC⊥BD,AB=AD,∴BO=2,∴AO==2,∴AB=2AO=4,∵E为AD的中点,∠AOD=90°,∴OE=AD=2,故选:C.【点评】本题主要考查了菱形的性质,含30°角的直角三角形的性质等知识,熟练掌握菱形的性质是解题的关键.典例7:(2022•聊城)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.(1)求证:AD=CF;(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.【分析】(1)由CF∥AB,得∠ADF=∠CFD,∠DAC=∠FCA,又AE=CE,可证△ADE≌△CFE(AAS),即得AD=CF;(2)由AD=CF,AD∥CF,知四边形ADCF是平行四边形,若AC⊥BC,点D是AB的中点,可得CD =AB=AD,即得四边形ADCF是菱形.【解答】(1)证明:∵CF∥AB,∴∠ADF=∠CFD,∠DAC=∠FCA,∵点E是AC的中点,∴AE=CE,∴△ADE≌△CFE(AAS),∴AD=CF;(2)解:当AC⊥BC时,四边形ADCF是菱形,证明如下:由(1)知,AD=CF,∵AD∥CF,∴四边形ADCF是平行四边形,∵AC⊥BC,∴△ABC是直角三角形,∵点D是AB的中点,∴CD=AB=AD,∴四边形ADCF是菱形.【点评】本题考查全等三角形的判定与性质及菱形的判定,解题的关键是掌握全等三角形判定定理及菱形的判定定理.典例8:(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.(1)求证:四边形AECD为菱形;(2)若∠D=120°,DC=2,求△ABC的面积.【分析】(1)由一组对边平行且相等的四边形是平行四边形,可证四边形AECD是平行四边形,由平行线的性质和角平分线的性质可证AD=CD,可得结论;(2)由菱形的性质可求AE=BE=CE=2,由等边三角形的性质和直角三角形的性质可求BC,AC的长,即可求解.【解答】(1)证明:∵E为AB中点,∴AB=2AE=2BE,∵AB=2CD,∴CD=AE,又∵AE∥CD,∴四边形AECD是平行四边形,∵AC平分∠DAB,∴∠DAC=∠EAC,∵AB∥CD,∴∠DCA=∠CAB,∴∠DCA=∠DAC,∴AD=CD,∴平行四边形AECD是菱形;(2)∵四边形AECD是菱形,∠D=120°,∴AD=CD=CE=AE=2,∠D=120°=∠AEC,∴AE=CE=BE,∠CEB=60°,∴∠CAE=30°=∠ACE,△CEB是等边三角形,∴BE=BC=EC=2,∠B=60°,∴∠ACB=90°,∴AC=BC=2,=×AC×BC=×2×2=2.∴S△ABC【点评】本题考查了菱形的判定和性质,等边三角形的性质,角平分线的性质,灵活运用这些性质解决问题是解题的关键.典例9:(2022•青海)如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB=3,BC=4,则图中阴影部分的面积为6.【分析】首先结合矩形的性质证明△AOE≌△COF,得△AOE、△COF的面积相等,从而将阴影部分的面积转化为△BDC的面积.【解答】解:∵四边形ABCD是矩形,AB=3,∴OA=OC,AB=CD=3,AD∥BC,∴∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE=S△COF,∴S阴影=S△AOE+S△BOF+S△COD=S△COF+S△BOF+S△COD=S△BCD,∵S△BCD=BC•CD==6,∴S阴影=6.故答案为6.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.典例10:(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC至点G,使CG=CE,连接DG、DE、FG.(1)求证:△ABE≌△FCE;(2)若AD=2AB,求证:四边形DEFG是矩形.【分析】(1)由平行四边形的性质推出AB∥CD,根据平行线的性质推出∠EAB=∠CFE,利用AAS即可判定△ABE≌△FCE;(2)先证明四边形DEFG是平行四边形,再证明DF=EG,即可证明四边形DEFG是矩形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠CFE,又∵E为BC的中点,∴EC=EB,在△ABE和△FCE中,,∴△ABE≌△FCE(AAS);(2)∵△ABE≌△FCE,∴AB=CF,∵四边形ABCD是平行四边形,∴AB=DC,∴DC=CF,又∵CE=CG,∴四边形DEFG是平行四边形,∵E为BC的中点,CE=CG,∴BC=EG,又∵AD=BC=EG=2AB,DF=CD+CF=2CD=2AB,∴DF=EG,∴平行四边形DEFG是矩形.【点评】本题考查了矩形的判定,平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定与性质,证明△ABE≌△FCE是解题的关键.典例11:(2022•云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S.【分析】(1)由四边形ABCD是平行四边形,得∠BAE=∠FDE,而点E是AD的中点,可得△BEA≌△FED(ASA),即知EF=EB,从而四边形ABDF是平行四边形,又∠BDF=90°,即得四边形ABDF 是矩形;=DF•(2)由∠AFD=90°,AB=DF=3,AF=BD,得AF===4,S矩形ABDFAF=12,四边形ABCD是平行四边形,得CD=AB=3,从而S△BCD=BD•CD=6,即可得四边形ABCF 的面积S为18.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF===4,=DF•AF=3×4=12,BD=AF=4,∴S矩形ABDF∵四边形ABCD是平行四边形,∴CD=AB=3,=BD•CD=×4×3=6,∴S△BCD+S△BCD=12+6=18,∴四边形ABCF的面积S=S矩形ABDF答:四边形ABCF的面积S为18.【点评】本题考查平行四边形性质及应用,涉及矩形的判定,全等三角形判定与性质,勾股定理及应用等,解题的关键是掌握全等三角形判定定理,证明△BEA≌△FED.典例12:(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为()A.50°B.55°C.65°D.70°【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【解答】解:∵四边形ABCD是正方形,∴∠AOB=∠AOD=90°,OA=OB=OD=OC.∵OE=OF,∴△OEF为等腰直角三角形,∴∠OEF=∠OFE=45°,∵∠AFE=25°,∴∠AFO=∠AFE+∠OFE=70°,∴∠FAO=20°.在△AOF和△BOE中,,∴△AOF≌△BOE(SAS).∴∠FAO=∠EBO=20°,∵OB=OC,∴△OBC是等腰直角三角形,∴∠OBC=∠OCB=45°,∴∠CBE=∠EBO+∠OBC=65°.故选:C.【点评】本题主要考查了正方形的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的内角和定理,熟练掌握正方形的性质是解题的关键.典例13:(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.【分析】先证明四边形AECF是菱形,再证明EF=AC,即可得出结论【解答】证明:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是菱形;∵OE=OA=OF,∴OE=OF=OA=OC,即EF=AC,∴菱形AECF是正方形.【点评】本题主要考查了菱形的性质与判定,正方形的判定,掌握相关定理是解题基础考点三、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等;(2)等腰梯形同一底上的两个底角相等.(3)等腰梯形的对角线相等.5.等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式:S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).【要点诠释】解决四边形问题常用的方法(1)有些四边形问题可以转化为三角形问题来解决.(2)有些梯形的问题可以转化为三角形、平行四边形问题来解决.(3)有时也可以运用平移、轴对称来构造图形,解决四边形问题.典例14:(2021•毕节市)如图,拦水坝的横断面为梯形ABCD,其中AD∥BC,∠ABC=45°,∠DCB=30°,斜坡AB长8m,则斜坡CD的长为()A.6m B.8m C.4m D.8m【分析】过A作AE⊥BC于E,过D作DF⊥BC于F,则AE=DF,在Rt△DCF中,根据等腰直角三角形的性质和勾股定理求出AE,在Rt△ABE中,根据等腰直角三角形的性质和勾股定理求出AE.【解答】解:过A作AE⊥BC于E,过D作DF⊥BC于F,∴AE∥DF,∵AD∥BC,∴AE=DF,在Rt△ABE中,AE=AB sin45°=4,在Rt△DCF中,∵∠DCB=30°,∴DF=CD,∴CD=2DF=2×4=8,故选:B.【点评】本题考查了梯形,解直角三角形的应用,正确作出辅助线,构造出直角三角形是解决问题的关键.考点四、平面图形1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.典例15:(2022•资阳)小张同学家要装修,准备购买两种边长相同的正多边形瓷砖用于铺满地面.现已选定正三角形瓷砖,则选的另一种正多边形瓷砖的边数可以是4答案不唯一.(填一种即可)【分析】分别求出各个多边形的每个内角的度数,结合镶嵌的条件即可求出答案.【解答】解:正三角形的每个内角是60°,正四边形的每个内角是90°,∵3×60°+2×90°=360°,∴正四边形可以,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴正六边形可以,正十二边形的每个内角是150°,∵1×60°+2×150°=360°,∴正十二边形可以,故答案为:4答案不唯一.【点评】本题考查了平面镶嵌问题,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.。
四边形的定义

四边形的定义由不在同一直线上四条线段依次首尾相接围成的封闭的立体图形叫四边形平行四边形的性质和判定1。
定义:两组对边分别平行的四边形叫做平行四边形。
2.性质:(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行线段相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分.(简述为“平行四边形的两条对角线互相平分")(6)平行四边形是中心对称图形,对称中心是两条对角线的交点。
3.判定:(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
(简述为“两组对边分别相等的四边形是平行四边形”)(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(简述为“一组对边平行且相等的四边形是平行四边形")(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。
(简述为“对角线互相平分的四边形是平行四边形")(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。
(简述为“两组对角分别相等的四边形是平行四边形”(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。
(简述为“两组对边分别平行的四边形是平行四边形”)矩形的性质和判定定义:有一个角是直角的平行四边形叫做矩形。
性质①四个角都是直角②矩形的对角线相等.注意:矩形具有平行四边形的一切性质。
判定:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形。
菱形的性质和判定定义:有一组邻边相等的平行四边形叫做菱形.性质:①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角.注意:菱形也具有平行四边形的一切性质。
几何专讲-四边形

四边形一、基本定义1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°.2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°.3.平行四边形的性质:因为ABCD 是平行四边形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.54321)邻角互补()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(4.平行四边形的判定: 是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD 54321⎪⎪⎪⎭⎪⎪⎪⎬⎫. 5.矩形的性质:因为ABCD 是矩形⇒⎪⎩⎪⎨⎧.3;2;1)对角线相等()四个角都是直角(有通性)具有平行四边形的所( 6. 矩形的判定:⎪⎭⎪⎬⎫+边形)对角线相等的平行四()三个角都是直角(一个直角)平行四边形(321⇒四边形ABCD 是矩形. 7.菱形的性质: 因为ABCD 是菱形⇒⎪⎩⎪⎨⎧.321角)对角线垂直且平分对()四个边都相等;(有通性;)具有平行四边形的所(8.菱形的判定:A BCD 1234ABDABDOCA DB CA DBCOCDBAO⎪⎭⎪⎬⎫+边形)对角线垂直的平行四()四个边都相等(一组邻边等)平行四边形(321⇒四边形四边形ABCD 是菱形. 9.正方形的性质: 因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四个边都相等,四个(有通性;)具有平行四边形的所( CDAB(1) A BCD O(2)(3)10.正方形的判定:⎪⎭⎪⎬⎫++++一组邻边等矩形)(一个直角)菱形(一个直角一组邻边等)平行四边形(321⇒四边形ABCD 是正方形.(4)∵ABCD 是矩形又∵AD=AB∴四边形ABCD 是正方形 11.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 12.等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒四边形ABCD 是等腰梯形 (4)∵ABCD 是梯形且AD ∥BC ∵AC=BD∴ABCD 四边形是等腰梯形14.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.15.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.E FD ABCE DCBAABCDOA B C D O二 定理:中心对称的有关定理1.关于中心对称的两个图形是全等形.2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式: 1.S 菱形 =ch ab =21(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. (a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =Lh h b a =+)(21.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:1.若n 是多边形的边数,则对角线条数公式是:2)3n (n -. 2.如图:平行四边形、矩形、菱形、正方形的从属关系. 3.梯形中常见的辅助线:一.多边形1.四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如图①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看. 已知:在四边形ABCD 中,O 是对角线BD 上任意一点.(如图①) 求证:S △OBC •S △OAD =S △OAB •S △OCD ;(2)在三角形中(如图②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说平行四边形矩形菱形正方形明理由.考点:多边形;三角形的面积.专题:证明题;探究型.分析:(1)根据三角形的面积公式,则应分别分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F.然后根据三角形的面积公式分别计算要证明的等式的左边和右边即可;(2)根据(1)中的思路,显然可以归纳出:从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.证明思路类似.解答:证明:(1)分别过点A、C,做AE⊥DB,交DB的延长线于E,CF⊥BD于F,则有:S△AOB=12BO•AE,S△COD=12DO•CF,S△AOD=12DO•AE,S△BOC=12BO•CF,∴S△AOB•S△COD=14BO•DO•AE•CF,S△AOD•S△BOC=14BO•DO•CF•AE,∴S△AOB•S△COD=S△AOD•S△BOC.(4分);(2)能.从三角形的一个顶点与对边上任意一点的连线上任取一点,与三角形的另外两个顶点连线,将三角形分成四个小三角形,其中相对的两对三角形的面积之积相等.或S△AOD•S△BOC=S△AOB•S△DOC,(5分)已知:在△ABC中,D为AC上一点,O为BD上一点,求证:S△AOD•S△BOC=S△AOB•S△DOC.证明:分别过点A、C,作AE⊥BD,交BD的延长线于E,作CF⊥BD于F,则有:S△AOD=12DO•AE,S△BOC=12BO•CF,S△OAB=12OB•AE,S△DOC=12OD•CF,∴S△AOD•S△BOC=14OB•OD•AE•CF,S△OAB•S△DOC=14BO•OD•AE•CF,∴S△AOD•S△BOC=S△OAB•S△DOC.点评:恰当地作出三角形的高,根据三角形的面积公式进行证明.2.如图,在五边形A1A2A3A4A5中,B1是A1对边A3A4的中点,连接A1B1,我们称A1B1是这个五边形的一条中对线.如果五边形的每条中对线都将五边形的面积分成相等的两部分.求证:五边形的每条边都有一条对角线和它平行.考点:多边形.专题:证明题.分析:可以再做五边形的一条中对线,根据它们分割成的两部分的面积相等,都是五边形的面积的一半,导出两个等底的三角形的面积相等,从而得到它们的高相等,则得到五边形的每条边都有一条对角线和它平行.解答:证明:取A1A5中点B3,连接A3B3、A1A3、A1A4、A3A5,∵A3B1=B1A4,∴S△A1A3B1=S△A1B1A4,又∵四边形A1A2A3B1与四边形A1B1A4A5的面积相等,∴S△A1A2A3=S△A1A4A5,同理S△A1A2A3=S△A3A4A5,∴S△A1A4A5=S△A3A4A5,∴△A3A4A5与△A1A4A5边A4A5上的高相等,∴A1A3∥A4A5,同理可证A1A2∥A3A5,A2A3∥A1A4,A3A4∥A2A5,A5A1∥A2A4.点评:此题要能够根据面积相等得到两条直线间的距离相等,从而证明两条直线平行二.平行四边形如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C 时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.考点:平行四边形的性质;一元二次方程的应用;直角梯形.专题:动点型.分析:(1)过点A作AM⊥CD于M,根据勾股定理,可以求出DM=6所以DC=16.(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图示,由题可得:BP=10-3t,DQ=2t,所以可以列出方程10-3t=2t,解得t=2,此时,BP=DQ=4,CQ=12,在△CBQ中,根据勾股定理,求出BQ即可.(3)此题要分三种情况进行讨论:即①当点P在线段AB上,②当点P在线段BC上,③当点P在线段CD上,根据三种情况点的位置,可以确定t的值.解答:解:(1)过点A作AM⊥CD于M,根据勾股定理,AD=10,AM=BC=8,∴DM=102-82=6,∴CD=16;(2)当四边形PBQD为平行四边形时,点P在AB上,点Q在DC上,如图,由题知:BP=10-3t,DQ=2t∴10-3t=2t,解得t=2此时,BP=DQ=4,CQ=12∴BQ=82+12213∴四边形PBQD的周长=2(BP+BQ)=8+8 13;(3)①当点P在线段AB上时,即0≤t≤103时,如图S△BPQ=12BP•BC=12(10-3t)×8=20∴t=53.②当点P在线段BC上时,即103<t≤6时,如图BP=3t-10,CQ=16-2t∴S△BPQ=12BP•CQ=12(3t-10)×(16-2t)=20化简得:3t2-34t+100=0,△=-44<0,所以方程无实数解.③当点P在线段CD上时,若点P在Q的右侧,即6≤t≤345,则有PQ=34-5tS△⊆BPQ=12×8=20,(34-5t)t=295<6,舍去若点P在Q的左侧,即345<t≤8,则有PQ=5t-34,S△BPQ=12(5t-34)×8=20,t=7.8.综合得,满足条件的t存在,其值分别为t1=53,t2=7.8.点评:本题是平行四边形中的动点问题,解决问题时,一定要变动为静,将其转化为常见的几何问题,再进行解答.2. 已知:如图,AD∥BC,AC⊥BD于O,AD+BC=5,AC=3,AE⊥BC于E.则AE=125125.考点:平行四边形的判定与性质;勾股定理.分析:过点A作AF∥DB交CB延长线于F,通过辅助线,将已知条件与未知量联系起来,此时,AE是直角三角形斜边上的高,而已知斜边和一直角边,先由勾股定理求出另一直角边,再由面积法就可以求出斜边上的高AE了.解答:解:过点A作AF∥DB交CB的延长线于点F(1分)∵AD∥BC∴四边形AFBD是平行四边形∴FB=AD∵AD+BC=5∴FC=FB+BC=AD+BC=5(2分)∵AC⊥BD∴FA⊥AC(3分)在△FAC中,∠FAC=90°,AC=3,FC=5∴AF=4(4分)∵AE⊥BC于E∴AF •AC=FC •AE∴AE=125(5分)点评:当直接求解比较困难时,通常要作辅助线,将已知条件与未知量联系起来.三.菱形1.学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长103cm,其一个内角为60度.(1)若d=26,则该纹饰要231个菱形图案,则纹饰的长度L为6010cm;(2)当d=20时,若保持(1)中纹饰长度不变,则需要300个这样的菱形图案.考点:菱形的性质;解直角三角形.专题:规律型.分析:(1)首先根据菱形的性质和锐角三角函数的概念求得菱形的对角线的长,再结合图形发现L=菱形对角线的长+(231-1)d;(2)设需要x个这样的图案,仍然根据L=菱形对角线的长+(x-1)d进行计算.解答:解:(1)菱形图案水平方向对角线长为103×cos30 °×2=30cm按题意,L=30+26×(231-1)=6010cm(2)当d=20cm时,设需x个菱形图案,则有:30+20×(x-1)=6010解得x=300,即需300个这样的菱形图案.点评:此题主要考查根据图形找规律,同时也考查了解直角三角形有关知识.2. 已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连接AF和CE.(1)求证:四边形AFCE是菱形;(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;(3)在线段AC上是否存在一点P,使得2AE2=AC•AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由.考点:菱形的判定;勾股定理;矩形的性质;相似三角形的判定与性质.专题:开放型;存在型.分析:(1)因为是对折所以AO=CO,利用三角形全等证明EO=FO,四边形便是菱形;(2)因为面积是24,也就是AB、BF的积可以求出,所以求周长只要求出AB、BF的和就可以,而结合勾股定理它们和的平方减去乘积二倍就是AF的平方;(3)因为12AC=AO所以可以从与△AOE相似的角度考虑,即过E作EP⊥AD.解答:(1)证明:连接EF交AC于O,当顶点A与C重合时,折痕EF垂直平分AC,∴OA=OC,∠AOE=∠COF=90°(1分)∵在矩形ABCD中,AD∥BC,∴∠EAO=∠FCO,∴△AOE≌△COF(ASA).∴OE=OF(2分)∴四边形AFCE是菱形.(3分)(2)解:四边形AFCE是菱形,∴AF=AE=10.设AB=x,BF=y,∵∠B=90,∴(x+y)2-2xy=100①又∵S△ABF=24,∴12xy=24,则xy=48.②(5分)由①、②得:(x+y)2=196(6分)∴x+y=14,x+y=-14(不合题意舍去)∴△ABF的周长为x+y+AF=14+10=24.(7分)(3)解:过E作EP⊥AD交AC于P,则P就是所求的点.(9分)证明:由作法,∠AEP=90°,由(1)得:∠AOE=90°,又∠EAO=∠EAP,∴△AOE∽△AEP(AA),∴AEAP=AOAE,则AE2=AO•AP(10分)∵四边形AFCE是菱形,∴AO=12AC,AE2=12AC•AP(11分)∴2AE2=AC•AP(12分)即P的位置是:过E作EP⊥AD交AC于P.点评:本题主要考查(1)菱形的判定方法“对角线互相垂直且平分的四边形”,(2)相似三角形的判定和性质.三.矩形正方形已知矩形ABCD和点P,当点P在图1中的位置时,则有结论:S△PBC=S△PAC+S△PCD理由:过点P作EF垂直BC,分别交AD、BC于E、F两点.∵S△PBC+S△PAD=12BC•PF+12AD•PE=12BC(PF+PE)=12BC•EF=12S矩形ABCD,又∵S△PAC+S△PCD+S△PAD=12S矩形ABCD,∴S△PBC+S△PAD=S△PAC+S△PCD+S△PAD,∴S△PBC=S△PAC+S△PCD.请你参考上述信息,当点P分别在图2,图3中的位置时,S△PBC、S△PAC、S△PCD又有怎样的数量关系?请写出你对上述两种情况的猜想,并选择其中一种情况的猜想给予证明.考点:矩形的性质.专题:探究型.分析:分析图2,先过点P作EF垂直AD,分别交AD、BC于E、F两点,利用三角形的面积公式可知,经过化简,等量代换,可以得到S△PBC=S△PAD+12S矩形ABCD,而S△PAC+S△PCD=S△PAD+12S矩形ABCD,故有S△PBC=S△PAC+S△PCD.解答:解:猜想结果:图2结论S△PBC=S△PAC+S△PCD图3结论S△PBC=S△PAC-S△PCD(2分)证明:如图2,过点P作EF垂直AD,分别交AD、BC于E、F两点,∵S△PBC=12BC•PE+12BC•EF (1分)=12AD•PE+12BC•EF=S△PAD+12S矩形ABCD(2分)∵S△PAC+S△PCD=S△PAD+S△ADC=S△PAD+12S矩形ABCD(2分)∴S△PBC=S△PAC+S△PCD(1分)如果证明图3结论可参考上面评分标准给分.点评:本题利用了三角形的面积公式,以及图形面积的整合等知识.2. )图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.(1)求1MB+1NB的值;(2)求MB、NB的长;(3)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离.考点:正方形的判定与性质;一元二次方程的应用;相似三角形的判定与性质.专题:代数几何综合题;压轴题;数形结合.分析:(1)本题可通过相似三角形A1B1M和NBM得出的关于NB,A1B1,MB,MB1的比例关系式来求,比例关系式中A1B1,BB1均为正方形的边长,长度都是1,因此可将它们的值代入比例关系式中,将所得的式子经过变形即可得出所求的值;(2)由于直线MN将图(1)的图形分成面积相等的两部分,因此△BMN的面积为52,由此可求出MB•NB的值,根据(1)已经得出的MB+NB=MB•NB可求出MB+NB的值,由此可根据韦达定理列出以MB,NB为根的一元二次方程,经过解方程即可求出MB、NB的值;(3)根据(2)的结果,不难得出B1M=EN,由于折叠后E与B点重合,因此B1M=BN,那么四边形B1MNB 是个矩形,因此MN的长为正方形的边长.解答:解:(1)∵△A1B1M∽△NBM且A1B1=BB1=1,∴NBA1B1=MBMB1,即NB1=MBMB-1整理,得MB+NB=MB•NB,两边同除以MB•NB得1MB+1NB=1;(2)由题意得12MB•NB=52,即MB•NB=5,又由(1)可知MB+NB=MB•NB=5,∴MB、NB分别是方程x2-5x+5=0的两个实数根.解方程,得x1=5+52,x2=5-52;∵MB<NB,∴MB=5-52,NB=5+52;(3)由(2)知B1M=5-52-1=3-52,EN=4-5+52=3-52,∵图(2)中的BN与图(1)中的EN相等,∴BN=B1M;∴四边形BB1MN是矩形,∴MN的长是1.点评:本题主要考查了相似三角形的判定和性质,正方形的性质,一元二次方程的应用等知识点,综合性比较强.四.梯形1. 如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形;(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;(3)在(2)中:①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y取最小值时,判断△PQC的形状,并说明理由.考点:等腰梯形的判定;二次函数的应用;勾股定理的逆定理;平行四边形的判定;相似三角形的判定与性质.专题:综合题;压轴题;动点型.分析:(1)需证△AMB≌△DMC,可得AB=DC,可得梯形ABCD是等腰梯形;(2)可证△BPM∽△CQP,PCBM=CQBP,PC=x,MQ=y,BP=4-x,QC=4-y,x4=4-y4-x,即可得出y=14x2-x+4;(3)应考虑四边形ABPM和四边形MBPD均为平行四边形,四边形MPCD和四边形APCM均为平行四边形时的情况;由(2)中的函数关系,可得当y取最小值时,x=PC=2,P是BC的中点,MP⊥BC,而∠MPQ=60°,∠CPQ=30°,∠PQC=90°.解答:(1)证明:∵△MBC是等边三角形,∴MB=MC,∠MBC=∠MCB=60°.(1分)∵M是AD中点,∴AM=MD.∵AD∥BC,∴∠AMB=∠MBC=60°,∠DMC=∠MCB=60°.∴△AMB≌△DMC.(2分)∴AB=DC.∴梯形ABCD是等腰梯形.(3分)(2)解:在等边△MBC中,MB=MC=BC=4,∠MBC=∠MCB=60°,∠MPQ=60°,∴∠BMP+∠BPM=∠BPM+∠QPC=120°.∴∠BMP=∠QPC.(4分)∴△BPM∽△CQP.∴PCBM=CQBP.(5分)∵PC=x,MQ=y,∴BP=4-x,QC=4-y.(6分)∴x4=4-y4-x.∴y=14x2-x+4.(7分)(3)解:①当BP=1时,则有BP ∥..AM,BP∥..MD,则四边形ABPM为平行四边形,∴MQ=y=14×32-3+4=134.(8分)当BP=3时,则有PC∥..AM,PC∥..MD,则四边形MPCD为平行四边形,∴MQ=y=14×12-1+4=134.(9分)∴当BP=1,MQ=134或BP=3,MQ=134时,以P、M和A、B、C、D中的两个点为顶点的四边形是平行四边形.此时平行四边形有2个.(10分)故符合条件的平行四边形的个数有4个.②△PQC为直角三角形.(11分)∵y=14(x-2)2+3,∴当y取最小值时,x=PC=2.(12分)∴P是BC的中点,MP⊥BC,而∠MPQ=60°,∴∠CPQ=30°,∴∠PQC=90°.∴△PQC是直角三角形.(13分)点评:本题考查平行四边形、直角三角形和等腰梯形的判定以及相似三角形的判定和性质的应用.。
四边形的性质知识点总结

四边形的性质知识点总结四边形是数学中重要的几何图形,具有丰富的性质和特点。
在本文中,将对四边形的性质进行总结和说明,以帮助读者更好地理解和掌握这一概念。
1. 四边形的定义四边形是由四条线段连接而成的闭合图形。
它的特点是具有四条边和四个顶点。
常见的四边形有矩形、正方形、平行四边形、菱形等。
2. 四边形的特征性质2.1 对角线四边形的对角线是连接四边形的两个非相邻顶点的线段。
对角线可以分为两条:一条是连接相邻顶点的线段,另一条是连接非相邻顶点的线段。
对角线有以下性质:- 平行四边形的对角线相等,即两条对角线长度相等。
- 矩形、菱形和正方形的对角线相等。
- 对角线相交于一点的四边形被称为交错四边形,交错四边形的对角线互相平分。
2.2 边与角四边形的边和角也具有一些特征性质:- 矩形和正方形的对边相等,即相对的两边长度相等。
- 平行四边形的对边平行且相等。
- 矩形和平行四边形的内角是180度,即对边的内角和为180度。
- 菱形的内角是120度,即对边的内角和为120度。
2.3 各类四边形的特性不同类型的四边形还有各自独特的特性:- 正方形是一种特殊的矩形,它的四边相等且内角均为90度。
- 矩形的对边相等,内角为90度。
- 平行四边形的对边平行且相等。
- 菱形的对边相等,内角为60度。
- 梯形是具有一对相对平行边的四边形。
梯形中,对边不平行的两个角互补且和为180度。
- 边长相等的四边形被称为等边四边形,如正方形和菱形。
- 具有四个相等内角的四边形被称为等角四边形。
3. 四边形的周长和面积计算在计算四边形的周长和面积时,可以根据不同类型的四边形采用相应的公式。
- 矩形的周长为2倍长加2倍宽,面积为长乘以宽。
- 正方形的周长为4倍边长,面积为边长的平方。
- 平行四边形的周长为2倍长加2倍宽,面积为底边乘以高。
- 菱形的周长为4倍边长,面积为对角线之积的一半。
总结以上,通过对四边形的定义、特征性质以及周长和面积计算公式的总结,我们可以更好地理解四边形的性质和特点。
四边形的判定

四边形的判定四边形是指具有四个边和四个角的图形。
在几何学中,根据四边形的性质和特点,可以进行不同的判定和分类。
本文将介绍四边形的判定方法,帮助读者准确辨识和识别四边形。
一、四边形的基本定义四边形是由四条线段连接起来构成的图形,它有四个顶点、四条边和四个内角。
四边形的边可以是直线段或曲线,而四边形的角可能是锐角、直角、钝角或其他类型的角。
二、四边形的常见类型1. 矩形矩形是指具有四个内角都是直角(90度)的四边形。
判定一个图形是否为矩形,可以通过检查它的四个内角是否都为90度。
2. 正方形正方形是指具有四个内角都是直角,且四条边长度相等的四边形。
判定一个图形是否为正方形,可以通过检查它的四个内角是否都为90度,以及四条边是否长度相等。
3. 平行四边形平行四边形是指具有两对相对边平行的四边形。
判定一个图形是否为平行四边形,可以通过检查它的两对相对边是否平行。
4. 长方形长方形是指具有四个内角都是直角,且相对边长度相等的四边形。
判定一个图形是否为长方形,可以通过检查它的四个内角是否都为90度,以及相对边是否长度相等。
5. 菱形菱形是指具有四个边长度相等,但不一定有直角的四边形。
判定一个图形是否为菱形,可以通过检查它的四条边是否长度相等。
6. 梯形梯形是指具有两边是平行的四边形。
判定一个图形是否为梯形,可以通过检查它的两边是否平行。
三、四边形的判定方法1. 角度判定法通过测量四边形的内角,判断是否满足特定的角度条件,可以判定四边形的类型。
比如,如果四个内角都是直角,那么就是矩形或正方形;如果有两组相等的内角,那么就是平行四边形等。
2. 边长判定法通过测量四边形的边长,判断是否满足特定的长度条件,可以判定四边形的类型。
比如,如果四条边的长度都相等,那么就是正方形或菱形;如果有一对边是平行且长度相等,另一对边也是平行的,那么就是梯形等。
3. 平行关系判定法通过判断四边形的边和角是否满足平行关系,可以判定四边形的类型。
《四边形》复习课件

特殊四边形的面积与周长计算
菱形面积计算公式:对角线 乘积的一半
总结词:理解特殊四边形的 特点,掌握其面积与周长的
计算方法
01
02
03
正方形面积计算公式:边长 的平方
等腰梯形面积计算公式:上 底加下底后乘高再除以2
04
05
等边三角形面积计算公式: 边长乘高再除以2
04
四边形的应用
四边形在几何证明中的应用
04 菱形的判定定理包括四边相等
的平行四边形、对角线垂直的 平行四边形等。
总结词
掌握面积和周长的计算
05
详细描述
06 掌握菱形的面积和周长的计算
公式,并能灵活运用。
正方形题型解析
总结词
理解特有性质
详细描述
正方形的性质包括四边相等、四 个角都是直角等。
总结词
掌握判定定理
详细描述
掌握正方形的面积和周长的计算 公式,并能灵活运用。
总结词
熟练运用判定定理
详细描述
掌握平行四边形的判定定理,如两组 对边分别平行、两组对边分别相等、 一组对边平行且相等等。
总结词
掌握面积和周长的计算
详细描述
掌握平行四边形的面积和周长的计 算公式,并能灵活运用。
矩形题型解析
总结词
理解特有性质
详细描述
矩形的性质包括四个角都是直角、对角线相等 且互相平分等。
平行四边形的性质和判定
利用平行四边形的性质和判定定理, 可以证明两条直线是否平行或一个四 边形是否为平行四边形。
矩形的性质和判定
矩形的性质和判定定理在证明直角三 角形和等腰三角形等问题中有着广泛 应用。
菱形的性质和判定
菱形的性质和判定定理在证明等腰三 角形和等边三角形等问题中有着广泛 应用。
四边形的性质与特点

四边形的性质与特点四边形是几何学中的一个重要概念,它与我们日常生活息息相关。
在这篇文章中,我们将深入探讨四边形的性质与特点,以帮助读者更好地理解和应用这一概念。
一、基本概念四边形是指由四条线段所构成的闭合图形。
这四条线段被称为四边形的边,而围成四边形的四个角被称为四边形的内角。
四边形的对边是指不在同一条直线上的两条边。
二、分类与特性根据四边形的对边是否平行以及边长是否相等,我们可以将四边形分为以下几类:1. 平行四边形平行四边形是指具有两对平行边的四边形。
其中,相邻边相等,相邻角补角,对角互补,且对边平行。
2. 矩形矩形是一类特殊的平行四边形,其具有四个直角的性质。
矩形的对角线相等,且对边互相平行。
3. 正方形正方形是一种特殊的矩形,其四条边和四个角都相等。
正方形的对角线相等且垂直平分。
4. 菱形菱形是一种具有两对相等边、对边平行的四边形。
菱形的对角线相互垂直,且对角线的交点恰好是该菱形的对边中点。
5. 梯形梯形是指具有一对平行边的四边形。
梯形的对角线不相交,且两底角和两腰角是补角。
6. 平行四边形的特殊情况当平行四边形的两对边相等时,它就变成了矩形;当平行四边形的两对角相等时,它就变成了菱形。
三、性质与规律除了分类与特性外,四边形还表现出一些不同的性质和规律:1. 内角和定理对于任意一个四边形而言,其内角和等于360度。
根据这个性质,我们可以通过已知角度求解未知角度。
2. 对角线性质四边形的对角线相互交于一点,该点被称为对角线的交点。
对角线的交点将四边形分割成两个三角形,其面积之和等于整个四边形的面积。
3. 面积计算根据四边形的不同类型,我们可以使用不同的公式来计算其面积。
例如,正方形的面积计算公式为边长的平方,矩形的面积计算公式为长乘以宽。
四、应用举例四边形的性质与特点在日常生活和学习中有很多应用。
以下是几个例子:1. 建筑设计建筑师在设计建筑物时往往需要考虑到平行四边形的性质,以确保结构的稳定性和美观性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形第一部分:中心对称与中心对称图形一、知识点:1、中心对称;中心对称的性质。
2、中心对称图形:3、中心对称与中心对称图形之间的关系: 区别:(1)中心对称是指两个图形的关系,中心对称图形是指具有某种性质的图形。
(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。
联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称;若把中心对称的两个图形看成一个整体,则成为中心对称图形 .4、对比轴对称图形与中心对称图形:轴对称图形 中心对称图形 有一条对称轴——直线有一个对称中心——点 沿对称轴对折 绕对称中心旋转180O 对折后与原图形重合旋转后与原图形重合二、举例:例1:如图,将点阵中的图形绕点O 按逆时针方向旋转900,画出旋转后的图形.例2:画出将ΔABC 绕点O 按顺时针方向旋转180°后的对应三角形。
·OCBA O·例3:如图,已知ΔABC 是直角三角形,BC 为斜边。
若AP=3,将ΔABP 绕点A 逆时针旋转后,能与ΔACP ′重合,求PP ′的长。
例4:已知:如图,在△ABC 中,∠BAC=1200,以BC 为边向形外作等边三角形△BCD ,把△ABD 绕着点D 按顺时针方向旋转600后得到△ECD ,A 、C 、E 共线,若AB=3,AC=2,求∠BAD 的度数与AD 的长.例5:如图,直线l 1⊥l 2,垂足为O ,点A 1与点A 关于直线l 1对称,点A 2与点A 关于直线l 2对称。
点A 1与点A 2有怎样的对称关系?你能说明理由吗?例6、如图是一个平行四边形土地ABCD ,后来在其边缘挖了一个小平行四边形水塘EFGH ,现准备将其分成两块,并使其满足:两块地的面积相等,分割线恰好做成水渠,便于灌溉,请你在图中画出分界线(保留作图痕迹),简要说明理由. P ′PCBACB DAEHA BDCGEF第二部分 平行四边形一、知识点:1、平行四边形的定义:2组对边分别平行的四边形叫做平行四边形。
记作:□ABCD ,读作平行四边形ABCD.平行四边形是中心对称图形,对角线的交点是它的对称中心。
2、平行四边形的性质:①平行四边形的对边平行; ②平行四边形的对边相等; ③平行四边形的对角相等;④平行四边形的对角线互相平分。
3、平行四边形的判定:①2组对边分别平行的四边形是平行四边形; ②2组对边分别相等的四边形是平行四边形; ③2组对角分别相等的四边形是平行四边形; ④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形。
二、举例:例1:如图,□ABCD 中,E 、F 分别是BC 和AD 边上的点,且BE=DF ,请说明AE 与CF 的关系,并说明理由。
例2:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线与AD 、BC 分别相交于点E 、F 。
试探求OE 与OF 是否相等,并且说明理由。
例3:如图,在□ABCD 中,AE ⊥BD ,CF ⊥BD ,垂足分别是E 、F ,四边形AECF 是平行四边形吗?为什么?例4:如图,在□ABCD 中,点E 、F 在AC 上,且AF=CE ,点G 、H 分别在AB 、CD 上,且AG=CH ,AC 与GH 相交于点O , 试说明:(1)EG ∥FH ,(2)GH 、EF 互相平分。
F E D C B A OHGFAD CBE FA DCB E例5:如图,在平行四边形ABCD 中,点E 在AC 上,AE=2EC ,点F 在AB 上,BF=2AF ,如果△BEF 的面积为2cm 2,求平行四边形ABCD 的面积。
例6:在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC=6cm ,P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 出发向B 运动,几秒后四边形ABQP 是平行四边形?例7:已知:如图,分别以△ABC 的三边为其中一边,在BC 的同侧作三个等边三角形:△ABD 、△BCE 、△ACF 。
求证:AE 、DF 互相平分。
第三部分 矩形、菱形、正方形一、知识点:1、矩形的定义:2、矩形的性质:3、矩形的判定:4、菱形的定义:5、菱形的性质:6、菱形的判定:7、菱形的面积:8、正方形的定义:9、正方形的性质:10、正方形的判定:二、举例:例1:如图,矩形ABCD 的对角线相交于点O ,AB =4cm ,∠AOB =60°。
(1)求对角线AC 的长;(2)求矩形ABCD 的周长例2:如图,在矩形ABCD 中,点E 在AD 上,EC 平分∠BED 。
若AB=1,∠ABE=45°,求BC 的长FA DCBEQ PDC B A ODCBAEDAA BCDEF 例3:如图,平行四边形ABCD 中,4个内角平分线围成的四边形PQRS 是矩形吗?说说你的理由。
例4:已知:如图,菱形ABCD 的周长为8cm ,∠ABC :∠BAD=2:1,对角线AC 、BD 相交于点O ,求AC 的长及菱形的面积。
例5:如图,在四边形ABCD 中,AD ∥BC ,对角线AC 的垂直平分线与边AD 、BC 分别相交于点E 、F 。
四边形AFCE 是菱形吗?为什么?例6:如图,在⊿ABC 中,∠C=90°,∠BAC 、∠ABC 的角平分线交于点D ,DE ⊥BC 于E ,DF ⊥AC 于F 。
问四边形CFDE 是正方形吗?请说明理由。
例7:如图,C 是线段AB 上一点,分别以AC 、BC 为边在线段AB 同侧作正方形ACDE 和BCF G,连接AF 、BD .⑴AF与BD 是否相等?为什么?⑵如果点C 在线段AB 的延长线上,⑴中的结论是否成立?请作图,并说明理由.F GDEABC三、练习1、如图,矩形ABCD 中,AE 平分∠BAD ,交BC 于E ,对角线AC 、BD 交于O ,若∠OAE =15°。
(1)试说明:OB =BE ;(2)求∠BOE 的度数.2、如图,将矩形ABCD 沿着直线BD 折叠使点C 落在点 C '处,BC '交AD 于E ,AD=8,AB=4,求△BED的面积。
3、已知:如图,△ABC 中,∠ACB=90°,CD 是高,AE 是角平分线,交CD 于点F ,EG ⊥AB ,G 为垂足。
试说明四边形CEGF 是菱形。
第四部分:三角形、梯形的中位线一、知识点:1、三角形的中位线:三角形中位线的性质2、梯形的中位线:⑵梯形中位线的性质二、举例:例1:如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、、DA 的中点。
四边形EFGH 是平行四边形吗?为什么?例2:如图,矩形ABCD 的对角线相交于点O ,点E 、F 、G 、H 分别是OA 、OB 、OC 、DO 的中点,四边形EFGH 是矩形吗?为什么?O DC B AE C′ E D CB A HG FE oDA例3:已知:如图,AD 是△ABC 的中线,E 、G 分别是AB 、AC 的中点,GF ∥AD 交ED 的延长线于点F 。
⑴猜想:EF 与AC 有怎样的关系? ⑵试证明你的猜想。
例4:等腰梯形ABCD 中,AD ∥BC ,EF 为中位线,EF=18,AC ⊥AB ,∠B=60°,求梯形ABCD 的周长及面积。
例5:如图,在梯形ABCD 中,AD ∥BC ,M 、N 分别是两条对角线BD 、AC 的中点,试说明:MN ∥BC 且MN =21(BC -AD)。
例7:已知:如图,四边形ABCD 为等腰梯形,AD ∥BC ,AC 、BD 相交于点O ,点P 、Q 、R 分别为AO 、BO 、CD 的中点,且∠AOD =60°。
试判断ΔPQR 的形状,并说明理由?F EAD B C MD CBA NCA O BD QPR三、练习1、已知:如图,在△ABC 中,D 是AB 的中点,DE ∥BC 交AC 于点E 。
试说明:DE=21BC 。
2、已知:如图,在△ABC 中,中线BD 、CE 相交于点O ,F 、G 分别是OB 、OC 的中点。
试说明:四边形DEFG 是平行四边形。
3、已知:如图矩形ABCD 的对角线相交于点O ,E 、F 分别是OA 、OD 的中点。
试说明:四边形CBEF 是等腰梯形。
4、已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 、F 、M 、N 分别是AD 、BC 、BD 、AC 的中点。
试说明:EF 与MN 互相垂直平分。
F E OD C BA。