八上期中实数复习教案
(八年级数学教案)实数复习

实数复习八年级数学教案〖教学目标〗(-)知识目标1用对比的方法复习概念2.熟练实数的运算(二)能力目标1.引导学生梳理和归纳本章内容,把本章的学习内容纳入学生自己的知识体系2.通过典型问题的分析,对重点知识有进一步的认识.(三)情感目标通过介绍我国古代数学家刘徽及祖冲之关于圆周率π的研究成果,对学生进行爱国主义教育.〖教学重点〗1. 无理数、实数概念的理解2. 实数的运算〖教学难点〗无理数的概念的理解〖教学过程〗一、课前布置1.阅读P121~P122回顾与反思,自己尝试着归纳本章的内容. 整理出本章的难点、重点,找出自己的疑点,盲点,出错点.2.查阅"圆周率π"有关资料圆周率π趣闻在日常生活中,人们经常与π打交道。
自行车、汽车的轮胎是圆的,茶杯口是圆的,天上的月亮看起来也是圆的,圆的周长与直径之比是一个常数,这个常数就是π。
当代数学大师、着名的美籍华裔数学家陈省身教授感慨道:"π这个数渗透了整个数学!"有的数学家甚至说:"历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一面旗帜。
"中华民族历史上对圆周率π的研究,有着卓越的成就,曾一度领先于世。
根据历史学家的考证,早在夏代以前原始部落时期,我国就有圆形的建筑物和器皿。
在中国最早的算书《周髀算经》(公元前2世纪)里,已经指出了"圆径一而周三"(即π=3)。
西汉末年、王莽命刘歆(公元前50-23年)制定度量的新标准,根据推算,他所用的圆周率有3.1547,3.1992,3.1498,3.2031等几个值,而没有统一的标准,但已经比径一周三更进一步了。
东汉张衡(公元78-139年)认为π= =3.1623,比印度、阿拉伯数学家算出同样结果约早500年。
三国魏景元四年(公元263年),数学家刘徽在整理《九章算术》一书时,提出了"割圆术"。
实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。
2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。
3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。
二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。
2. 教学难点:实数的运算规则,特别是乘方和开方运算。
四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。
2. 运用案例分析法,分析实数在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作意识。
4. 利用信息技术手段,如PPT、网络资源等,辅助教学。
五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。
3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。
4. 总结课堂内容:回顾本节课所学,强调实数的重要性。
5. 布置作业:设计适量作业,巩固课堂所学。
6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。
六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。
3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。
七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。
2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。
3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。
4. 练习题库:准备各类实数练习题,巩固学生所学知识。
八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。
2. 第3-4课时:讲解实数的运算规则。
八年级数学上学期第二章实数复习课教案

八年级数学上学期第二章实数复习课教案教学目标1、实数的分类(两种分类方法:按概念分和按大小分);2、无理数的意义;3、平方根、立方根的意义;4、无理数的化简;5、实数的加、减、乘、除、乘方、开方的混合运算;6、在数轴上用作图的方法找出无理数所对应的点教学重难点重点:系统的掌握第二章的知识(掌握实数的意义、分类、混和运算以及比较大小、估算、在数轴上表示无理数)。
难点:1.实数的混和运算;2.在数轴上表示无理数。
教学过程一、出示教学目标1、实数的分类(两种分类方法:按概念分和按大小分);2、无理数的意义;3、平方根、立方根的意义;4、无理数的化简;5、实数的加、减、乘、除、乘方、开方的混合运算;6、在数轴上用作图的方法找出无理数所对应的点二、概述本章内容引导学生系统地回顾本章所学的所有内容:本章我们分别学习了6节内容:第一节,数怎么又不够用了。
在这一节中我们引入了无理数,并学习了无理数的概念(问:无理数的概念世什么?)。
第二节,平方根。
在这一节中我们学习了无理数的表示方法、平方根的意义(问:平方根的意义世什么?怎样求一个正数和0的平方根?负数有平方根吗?)。
第三节,立方根。
在这一节中我们学习了一个任意数的立方根(问:立方根与平方根有什么区别?)。
第四节,公园有多宽。
在这一节中我们学习了平方根和立方根的实际运用(问:怎样对一个无理数进行估值?比较大小的方法?)。
第五节,用计算器开方。
在这一节中我们进一步学习了计算器的用法。
第六节,实数。
在这一节中我们学习了实数的意义和分类,以及实数的混合运算(实数怎样分类?)。
三、分类完成目标(一)问题导学一1、理解无理数的意义;2、会区分无理数和有理数练一练1.在实数0.3 ,,0 ,,0.123456 … 中,其中无理数的个数是()A.2B.3C.4D.52.边长为1的正方形的对角线长是()A. 整数B. 分数C. 有理数D. 不是有理数3、下列说法中正确的是( )A.和数轴上的点一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都是无理数4、下列说法正确的是( )A.两个无理数的和是无理数B.有理数与无理数的差都是有理数C.带分数线的数一定是有理数D.开方开不尽 的数是无理数(二) 问题导学二1、理解平方根和立方根的意义 ;2、会运用平方根和立方根的意义解题。
八年级数学上册实数教案北师大版

八年级数学上册实数教案北师大版一、教学目标:1. 理解实数的定义,掌握实数的分类及性质。
2. 学会实数的运算方法,包括加、减、乘、除、乘方等。
3. 能够运用实数解决实际问题,提高学生的数学应用能力。
二、教学内容:1. 实数的定义与分类:有理数、无理数、实数。
2. 实数的性质:实数的加减法、乘除法、乘方运算。
3. 实数的应用:解决实际问题,如长度、面积、体积等计算。
三、教学重点与难点:1. 重点:实数的定义、性质及运算方法。
2. 难点:实数运算的灵活应用,解决实际问题。
四、教学方法:1. 采用讲授法,讲解实数的定义、性质及运算方法。
2. 运用案例分析法,分析实际问题,引导学生运用实数解决。
3. 开展小组讨论,让学生互动交流,巩固所学知识。
五、教学过程:1. 导入新课:回顾七年级学习的有理数,引出实数的定义。
2. 讲解实数的分类:有理数、无理数、实数。
3. 讲解实数的性质:实数的加减法、乘除法、乘方运算。
4. 运用案例分析,让学生体会实数在实际问题中的应用。
5. 课堂练习:布置有关实数运算的练习题,巩固所学知识。
6. 总结本节课内容,布置课后作业。
六、教学评价:1. 课堂问答:通过提问学生,了解学生对实数定义、性质及运算方法的掌握情况。
2. 课后作业:布置有关实数的练习题,评估学生对知识的应用能力。
3. 阶段测试:进行实数知识的测试,全面了解学生掌握情况。
七、教学拓展:1. 介绍实数在科学研究中的应用,如物理、化学、计算机科学等。
2. 探讨实数与生活中的实际问题,提高学生的数学素养。
八、教学资源:1. 教材:八年级数学上册,北师大版。
2. 教案:实数教案。
3. PPT:实数相关内容。
4. 练习题:实数运算练习题。
九、教学时间安排:1. 第一课时:实数的定义与分类。
2. 第二课时:实数的性质与运算。
3. 第三课时:实数的应用与拓展。
十、课后作业:1. 复习实数的定义、性质及运算方法。
2. 完成练习题,巩固所学知识。
八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解实数的定义及分类,掌握有理数和无理数的概念。
(2)掌握实数的性质,如相反数、绝对值、平方等。
(3)学会运用实数解决实际问题。
2. 过程与方法:(1)通过复习实数的定义和性质,提高学生的逻辑思维能力。
(2)运用实例分析,培养学生解决实际问题的能力。
3. 情感态度与价值观:(2)培养学生团队协作精神,提高课堂参与度。
二、教学内容1. 实数的定义及分类(1)有理数:整数和分数的统称。
(2)无理数:不能表示为两个整数比的数。
2. 实数的性质(1)相反数:符号相反、绝对值相等的两个数。
(2)绝对值:数轴上表示一个数的点到原点的距离。
(3)平方:一个数与自身的乘积。
三、教学重点与难点1. 重点:实数的定义及分类,实数的性质。
2. 难点:实数在实际问题中的应用。
四、教学方法1. 采用讲授法,讲解实数的定义、性质及分类。
2. 运用举例法,分析实数在实际问题中的应用。
3. 组织小组讨论,培养学生的团队协作能力。
五、教学过程1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。
2. 讲解实数的性质,如相反数、绝对值、平方等,并通过实例进行分析。
3. 练习巩固:布置练习题,让学生独立完成,检验对实数性质的理解。
4. 课堂小结:总结本节课所学内容,强调实数在实际问题中的应用。
5. 课后作业:布置课后作业,巩固实数的定义、性质及分类。
6. 课后反思:教师对课堂教学进行反思,针对学生的掌握情况,调整教学策略。
六、教学评价1. 评价目标:(1)学生能准确理解实数的定义及分类。
(2)学生能熟练运用实数的性质解决实际问题。
2. 评价方法:(1)课堂问答:检查学生对实数概念的理解。
(2)练习题:评估学生运用实数性质解决问题的能力。
(3)小组讨论:观察学生在团队中的参与程度和协作效果。
七、教学资源1. 教材:八年级数学教材。
2. 课件:实数复习的相关课件。
3. 练习题:针对实数性质的练习题。
八年级实数复习课教案

八年级实数复习课教案一、教学目标1. 知识与技能:(1)理解和掌握实数的概念,能够正确运用实数进行运算。
(2)了解实数在数轴上的表示方法,能够根据实数的大小关系进行排序。
(3)掌握实数的性质,如相反数、倒数等,并能运用性质解决实际问题。
2. 过程与方法:(1)通过复习实数的概念,加深对实数体系的理解。
(2)借助数轴,直观地理解实数的大小关系。
(3)运用实数的性质,解决实际问题,提高解决问题的能力。
3. 情感态度与价值观:(1)培养学生的数学思维能力,提高对实数的认识。
(2)激发学生学习数学的兴趣,培养学生的自主学习能力。
二、教学内容1. 实数的概念及其分类:有理数、无理数、实数。
2. 实数的运算:加法、减法、乘法、除法。
3. 实数在数轴上的表示:数轴的概念、实数与数轴的关系、实数的大小比较。
4. 实数的性质:相反数、倒数、绝对值。
5. 实数与实际问题的结合:运用实数解决实际问题。
三、教学重点与难点1. 教学重点:(1)实数的概念及其分类。
(2)实数的运算规则。
(3)实数在数轴上的表示方法。
(4)实数的性质及其应用。
2. 教学难点:(1)实数的大小比较。
(2)实数的性质的理解与运用。
四、教学过程1. 复习导入:(1)回顾实数的概念,引导学生复习实数的分类:有理数、无理数、实数。
(2)通过实例,让学生回顾实数的运算规则。
2. 课堂讲解:(1)讲解实数在数轴上的表示方法,引导学生理解实数与数轴的关系。
(2)讲解实数的性质,如相反数、倒数、绝对值,并通过实例演示性质的应用。
3. 练习与讨论:(1)布置练习题,让学生巩固实数的运算规则。
(2)分组讨论,让学生合作解决实际问题,培养学生的团队合作能力。
五、课后作业1. 完成练习册上的相关题目。
教学反思:本节课通过复习导入、课堂讲解、练习与讨论等环节,使学生对实数的概念、分类、运算、数轴表示、性质等有了更深入的理解。
在教学过程中,要注意引导学生主动参与,激发学生的学习兴趣,培养学生的自主学习能力。
八年级上实数复习教案

教学目标:通过对实数的复习,让学生掌握实数的基本概念及运算规则,培养学生的实际问题解决能力。
一、知识要点:1.实数的定义及分类2.实数的运算规则3.实数的性质及应用二、教学过程:1.导入新知,复习实数的定义及分类(10分钟)2.复习实数的运算规则(20分钟)(1)基本运算法则教师以例题的形式讲解实数的加减乘除运算,引导学生回忆实数的运算规则。
学生可以根据需要,借助白板或课本进行演算,完整记录计算过程。
(2)混合运算教师布置一些综合运算的习题,要求学生独立完成,同时要求学生在解题过程中,标注并运用实数的运算规则。
学生可以自主选择解题方法,也可以创新解题方法,拓展解题思路。
3.复习实数的性质及应用(20分钟)(1)稀疏性、比较关系和无穷性教师以例题的形式复习实数的稀疏性、比较关系和无穷性,并引导学生深入思考这些性质在实际问题中的应用。
(2)表示和运用实数教师提供一些实际问题,要求学生通过画图、列式等方式表示和运用实数,并给出解决问题的详细步骤和答案。
同时,教师可以让学生互相交换问题并尝试解答,以增加答题的多样性。
4.深化学习,拓展应用(30分钟)教师设计一些探究性问题或案例分析,要求学生通过调查、研究等方式深化学习,并拓展实数在不同学科中的应用。
学生可以选择合适的方法和工具,进行数据收集、分析和总结,最终呈现研究结果。
5.温故知新,评价反思(10分钟)教师设计一些简单的选择题或应用题,要求学生回答并解释自己的答案。
同时,教师还可以就本节课的教学过程和内容,引导学生分享自己的学习感悟和体会。
教师可以根据学生的表现和回答情况,进行针对性的评价和建议。
三、教学反思及延伸本节课通过复习实数的定义、分类、运算规则、性质及应用,让学生巩固和拓展对实数的理解和应用能力。
教师通过灵活运用多种教学手段和方法,引导学生主动思考和解决问题,提高学生的实践能力和创新意识。
同时,教师鼓励学生积极参与学习,加强合作交流,提高学生的团队协作和沟通能力。
实数(单元复习)标准教案

实数(单元复习)标准教案第一章:实数的概念与分类1.1 实数的定义与性质理解实数的定义:实数是包括有理数和无理数的所有数。
掌握实数的性质:实数具有加法、减法、乘法、除法等运算性质,以及相反数、绝对值等概念。
1.2 实数的分类掌握有理数:整数和分数的统称,包括正整数、负整数、正分数、负分数。
理解无理数:不能表示为两个整数比的数,如π和√2等。
第二章:实数的运算2.1 实数的加减法掌握加减法的运算规则:同号相加减去绝对值,异号相加减去绝对值较大的数。
能够熟练进行实数的加减法运算。
2.2 实数的乘除法掌握乘除法的运算规则:同号相乘除为正,异号相乘除为负。
能够熟练进行实数的乘除法运算。
第三章:实数的倒数与绝对值3.1 实数的倒数理解倒数的概念:一个数的倒数是1除以该数。
能够求出一个实数的倒数。
3.2 实数的绝对值理解绝对值的概念:一个数的绝对值是该数到原点的距离。
能够求出一个实数的绝对值。
第四章:实数的大小比较4.1 实数的大小比较法则掌握实数的大小比较法则:正实数大于负实数,负实数大于正实数,两个正实数比较大小按数值大小比较。
能够判断两个实数的大小关系。
4.2 实数的排序理解实数排序的方法:按数值大小进行排序。
能够对给定的实数进行排序。
第五章:实数的应用5.1 实数在几何中的应用理解实数在几何中的应用:坐标系中点的坐标表示。
能够利用实数表示几何图形中的点、线、面等。
5.2 实数在生活中的应用理解实数在生活中中的应用:长度、面积、体积等量的表示。
能够运用实数解决实际问题。
第六章:实数的乘方与开方6.1 实数的乘方理解乘方的概念:一个数的乘方是该数自乘的结果。
能够计算实数的乘方。
6.2 实数的开方理解开方的概念:一个数的开方是该数的平方根。
能够计算实数的开方。
第七章:实数与代数式的运算7.1 实数与代数式的加减法掌握实数与代数式加减法的运算规则:同类项相加减,不同类项不能直接相加减。
能够熟练进行实数与代数式的加减法运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数复习教案
一、主要知识点:
1.1.2平方根、算术平方根:
如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方根),即如果a x =2,那么x 就叫做a 的平方根.一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的平方根,记作:a ±.
正数a 的正的平方根叫做a 的算术平方根.记作:a .
正数和零的算术平方根都只有一个.零的算术平方根是零.
1.1.3立方根:
如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或叫做a 的三次方根),即如果a x =3,那么x 就叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.
思考:1、a a =2对吗?a a =2)(呢?
2、a a =)(33对吗? a a =33)(呢?
二、经典练习选讲:
(一)、有理数无理数的判别:
1.下列实数317
,π-,3.14159 21中无理数有( ) A.2个 B.3个 C.4个 D.5个
2.数
3.14, 2 ,π,0.323232…,17
,9 中,无理数的个数为( ) A.2个 B .3个 C .4个 D .5个
(二)、算术平方根、平方根、立方根的概念:
1、36的平方根是 ;16的算术平方根是 ;
2、8的立方根是 ;327-= ;
3、绝对值等于3的数是
4、2的相反数是 ,的绝对值是 。
5.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是
(三)判断说法正误类型的题:
1.下列说法中,错误的是( )。
A 、4的算术平方根是2
B 、81的平方根是±3
C 、8的立方根是±2 D、立方根等于-1的实数是-1
2.下列命题中,正确的是( )。
A 、无理数包括正无理数、0和负无理数
B 、无理数不是实数
C 、无理数是带根号的数
D 、无理数是无限不循环小数
3.下列命题错误的是( )
A 、3是无理数
B 、π+1是无理数
C 、2
3是分数 D 、2是无限不循环小数 (四)、算术平方根的非负性
1.若10m ++=,求20004m
n -的值
2.已知b a ,是实数,且有0)2(132=+
++-b a ,求b a ,的值.
(五)、无理数的大小,比较,计算
1
.比较大小:
___ _; 32 23
2.如果102=x ,则x 是一个 数,x 的整数部分是 .
3.如果a
b
a b -=________
4.设
x 、y ,试求x 、y 的值与x -1的算术平方根.
(六)、解方程求解
1.求x 值:(1) x 2=16 (2)(x-1)2=9
2、求x 值:(1) x 3=8 (2) (x-1)3=64
(七):画一条线段长为无理数
1、在数轴上画出表示5的点
2、数轴上的点与 数一一对应。
3、如图,在的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形。
(1)计算图(1)中三角形各边长,并判断三角形ABC 的形状。
(2)在图(2)中画一个三角形边长分别是22,5,17,并求出面积。
B
图(1) 图(2)
练习:1、下列说法错误的是 ( )
A B 、无限不循环小数都是无理数
C 、正数、负数统称有理数
D 、实数与数轴上的点一一对应
2、在下列各数:......51525354.0、10049、
2.0、π1、7、11
131、327、中,无理数的个数是 ( ) A 、2 B 、3 C 、4 D 、5
3、下列式子中,正确的是( ) A.55-=- B.-6.3=-0.6 C.2)13(-=13 D.36=±6
4. 在实数范围内,下列判断正确的是( ) A 、若b a b a ==则, B 、若()b a b a ==则,2
C 、若22,b a b a 〉〉则
D 、若b a b a ==则,33
5.下列说法错误的是( )
A. 限小数是无理数 D.数轴上的点和实数一一对应
6.下列命题中,正确的是( )。
A 、两个无理数的和是无理数
B 、两个无理数的积是实数
C 、无理数是开方开不尽的数
D 、两个有理数的商有可能是无理数 7.平方根是 ;125的立方根是 。
8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是
9.满足53<<-x 的整数x 是____。
10.已知0)8(652=++++
-z y x ,求13+-+z y x 的值.
11、比较下列实数的大小(在 填上 > 、< 或 =)
①
2;②21
5-
21;③53。
12、已知5+11的小数部分为a ,5-11的小数部分为b ,求:
(1)a+b 的值;(2)a -b 的值.
13、求x :(1) 2542=x (2) 2(x-1)2=50 (3)64)1(3=+x。