高思竞赛数学导引-五年级第十讲-几何计数学生版

合集下载

高思学校竞赛数学导引(四年级)

高思学校竞赛数学导引(四年级)
第!$讲!!平均数问题
$应用题第#*讲% !!!!!!!!!! &)
第!%讲!!复杂竖式
$数字谜问题第(讲%!!!!!!!!! &$
第!&讲!!横式问题
$数字谜问题第%讲%!!!!!!!!! $(
第!’讲!!格点与割补
$几何问题第’讲% !!!!!!!!! #"#
第!(讲!!行程问题二
$应用题第#)讲%!!!!!!!!!! #"&
)!012"’#(3!" ##/""+!##"#.!#!4!"! "!#&#!)$!!!!!!!!!!!!""#!)#&!
!*!012"’ (3!" #/"##.""+##!4!"! "!#( &$!!!""#& ($!!!"$#"* (# ’$!!!"’#* "( ’#!
$%#
!!!"!"!#-"#"-#&&%",#!!#!"#$!!""#$!#!"!.&&#!"(%"!)))%!"!#!
目 录
!目!录
第 ! 讲!!整数计算综合
$计算问题第(讲% !!!!!!!!!! #
第 " 讲!!数阵图初步
$数字谜问题第)讲% !!!!!!!!! %
第 # 讲!!竖式问题
$数字谜问题第’讲%!!!!!!!!! #’
第 $ 讲!!几何图形剪拼
$几何问题第*讲%!!!!!!!!!! !!

小学五年级奥数高斯课本

小学五年级奥数高斯课本

位值原理一、知识引领在十进制中,每个数都是由0~9这十个数字中的若干个组成的,而每个数字在数中都占一个数位,数的大小是由数字和数字所处的数位两方面共同决定的。

比如一个数由1、2、3三个数字组成,我们并不能确定这个数是多少,因为1、2、3能组成很多数,例如213、321、123……但如果说1在百位,2在十位,3在个位这样去组成一个数,就能很清楚地知道这个数应该是123。

从这个例子可以看出,一个数字在不同的数位上表示不同的大小:个位上的数字代表几个1;十位上的数字代表几个10;百位上的数字代表几个100;……那么可以利用这种办法将一个多位数拆开,例如123=1×100+2,这个结论被称为位值原理。

有的时候,为了分析问题方便,我们并不能将多位数逐位展开,而是采用整体展开的办法,如23456=231000+45我们将在后面的例题中看到这些方法的具体应用。

二、精讲精练例题1:一个两位数等于它的数字和的6倍,求这个两位数。

练习一:一个两位数等于它的数字和的7倍,这个两位数可能是多少?例题2:在一个两位数的两个数字中间加一个0,所得的三位数比原数大8倍,求这两个数。

练习2:在一个两位数的两个数字之间加一个0,所得的三位数是原数的6倍,求这个两位数。

例题3:一个三位数,把它的个位和百位调换位置之后,得到一个新的三位数,这个新三位数和原三位数的差的个位数字是7。

试求两个数的差。

练习3:把一个三位数颠倒顺序后得到一个新数,这个数比原数大792,那么原来的三位数最大可以是多少?例题4:若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式“2=5”中,“学习爱”所表示的三位数最小是多少?练习4:若用相同汉字表示相同数字,不同汉字表示不同数字,则在等式“2=5”中,“用微信交作业”所表示的六位数最小是多少?三、奥赛传真1、(1)851=×100+×10+×1;(2)55984=×1000+×10+×1.2、(1)=×100+×10+×1;(2)=×10000×100+×1.3、在一个两位数的两个数字中间加一个0,所得到的三位数是原数的7倍,这个两位数是.4、将一个两位数的个位数字和十位数字交换位置,得到一个新的两位数。

2023年名校真题精讲共讲第讲计数与组合专题学生版

2023年名校真题精讲共讲第讲计数与组合专题学生版

第6讲 计数和组合专题一、 计数问题1、枚举法枚举法就是把所有也许得状况一一列举出来,然后数一下总共有多种状况.2、加乘原理(1)加法原理——分类假如完毕一件事有几类措施,在每一类措施中又有不同样措施,那么把每类措施数相加就得到所有措施数.(2)乘法原理——分步假如完毕一件事有多种环节,在每一种环节中又有不同样措施,那么把每步措施数相乘就得到所有措施数.3、排列组合(1)排列从m 个不同样元素中取出n 个(n m ≤),并根据一定次序排成一列,其措施数叫做从m 个不同样元素中取出n 个排列数,记作n m A .其计算措施为: ()()11n m A m m m n =⨯-⨯⨯-+即从m 开始递减地连乘n 个数从m个不同样元素中取出n m个不同样元素中取出n其计算措施为:(m n⨯-4、分类法和排除法(1)分类法:分来法处理问题基础思想是通过度类拆解把一种复杂问题转化成多种相对简朴小问题来处理.(2)排除法:当题目中满足规定状况较多,分类法不好处理时,可以尝试用排除法,把不符合规定状况去掉,剩余就是符合.5、容斥原理(1)理解简朴容斥原理(两个之间重叠)和复杂容斥原理(三个之间重叠)(2)用文氏图协助解题6、递推措施(1)上楼梯模型(2)传球法——列表写出每一步中详细措施数(3)几何图形分平面——增量分析用于求解“把m个相似球放到n个不同样盒子中”此类问题(1)注意:球必需是相似,盒子必需是不同样.(2n-1个板插到m-1个空隙中)(3n个球,然后根据每个盒子至少1个去放,最终从每个盒子中拿出1个还回去)(4n个球放到3个盒子中,每个盒子至少1个)(5n个球放到3个盒子中,每个盒子可以为空)8、和旋转、翻转有关计数此类问题要想清晰与否有反复,反复了多少.一般求解时,要先固定部分对象,使其不能旋转或翻转.二、统筹计划1、安排工序问题2、最短路线或最短时间问题3、排队等待问题4、集合问题5、货品调度问题三、游戏对策(1)必胜方略往往是考虑“怎样让对方输”,即必胜方行动时怎样进行一次合适操作,把必输状态留给对方.(2)游戏对策中往往会运用对称性来处理问题,如桌子上放硬币问题(轮番在圆桌上放硬币,到谁放时候放不下了她就输了.先手方把第一种硬币用来占领圆桌中心点即可,后来后手方再怎么放,先手方所有能在桌上找到一种对称空位点可以放置硬币)四、逻辑推理解答推理问题常见措施有:排除法、假设法、反证法.一般可以从如下几方面考虑:1.选准突破口,分析时综合多种条件进行鉴定;2.根据题中条件,在推理过程中,不停排除不也许状况,从而得出规定结论;3.对也许出现状况作出假设,然后再根据条件推理,假如得到结论和条件不矛盾,阐明假设对的;4.碰到比较复杂推理问题,可以借助图表进行分析.常见题型:去伪存真题:有人说真话有人说假话,有人说真话;或每人说一部分对,一部分错.注意合适选择假设等措施协助解题.条件分析题:用列表或作图措施,对条件进行归纳整顿.体育比赛类问题:要注意弄清比赛规则,尤其是积分规则,对阵措施.若是画对阵关系图,注意箭头表胜败,虚线表达平局.例如:若是2分赛制,则获胜队2分,平局各1分,失败不得分,那么总得分为3分赛制时,获胜队得3分,平局各得1分,失败不得分.那么此时总分为“”五、抽屉原理1、最不利原则2、抽屉原理六、最值问题常见结论:(1)两数和一定,差越小,积越大(2)当多种数和一定是,越靠近乘积越大(3)两点之间线段最短(4)在周长一定封闭图形中,圆面积最大;在面积一定封闭图形中,圆周长最小七、构造论证1、构造往往用于阐明“能”,即给出也许状况;论证往往用于阐明“否”,即为何不行2、常见题型:(1)构造或论证:此类题目中一般会以“能否”等词汇发问.解答时,假如是“能”,就要构造出可行状况;假如是答“不能”,要论证为何.(2)构造和论证:常见于求最值问题,以求最大值问题,得出最大值后要先论证不能得更大值了,然后构造最大值对应可行状况,阐明这个最大值可以达到.一、枚举法例1.在所有三位数中,各位数字之和不超过4共有______个.二、加乘原理和排列组合例2.将1、2、3、4、5这五个数字填入下面五个方格中,使得阴影方格中填入数不小于相邻方格中数,共有_____种填法.例3.用0、1、2、3、4这五个数字能构成______个没有反复数字四位偶数.例4.从1~9选出7个数字分别填入图中7个圆圈中,使得每条线段两端点处所填数,上面比下面大,那么符合规定共_______种.三、容斥原理例5.图,数一数,图中共有多少个长方体?四、概率初步例6.某军官参与射击比赛,她射击命中率是80%.那么她连打3枪,恰好有2枪命中概率是________.例7.甲、乙两人玩掷硬币,出现正面甲得1分,背面乙得1分.先得10分者为胜.比赛进行一段时间后,甲得9分,乙得6分,那么甲获胜概率是_______五、递推计数例8.在一种平面上画3个三角形、1个圆、1条直线,最多可以把平面提成______个部分.例9.在世界杯一场小组赛中,巴西队以7:5击败南非队,假如巴西队在比赛中从未落后过,那么这场比赛共有_____种不同样进球次序.六、对应计数例10.(1)中关村一小六年级A班30名同学投票选举优秀少先队员,投票采用不记名措施,每人只能投1票且不能投弃权票(谁所有不选).假如候选人共3人,那么投票共_____种不同样也许.(2)假如这30名学生可以投弃权票,那么投票成果共______种不同样也许七、和翻转、旋转有关计数问题例11.用7种颜色为一种正方体6个面染色,规定每个面只能用1种颜色,且6个面颜色互不相似.那么共有______种不同样染色措施.八、统筹计划例12.北京、上海、杭州三地同步研制成了大型电子计算机若干台,除当地应用外,北京可以支援外地10台,上海可以支援外地4台,杭州可以支援外地6台.目前决定给武汉6台,重庆8台,深圳6台.若每台计算机运费如下表,表中运费单位是“百元”.上海、北京和杭州制造机器完全相似,应当怎样调运,才能使总运费最省?最省运费是________万元.九、游戏对策例13.根火柴,甲、乙轮番取,规定每次只可以取1、3、4根.假如以取完火柴人为胜,甲先取,那么谁有必胜方略?方略是什么?十、逻辑推理例14.老师在3个盒子里各放了一种彩色球,让小明、小亮、小强、小佳四人猜一下各个盒子里放是什么颜色球.小明说:“1号盒里是黄球,2号盒里是黑球,3号盒里是红球”小亮说:“1号盒里是橙球,2号盒里是黑球,3号盒里是绿球”小强说:“1号盒里是紫球,2号盒里是黄球,3号盒里是蓝球”小佳说:“1号盒里是橙球,2号盒里是绿球,3号盒里是紫球”老师说:“你们中有一人恰好猜对了两个,其他三人每人猜对一种.”那么第三个箱子中放是______球.例15.在一列国际列车上,有A、B、C、D四位不同样国籍旅客,她们分别穿蓝、黑、灰、褐色大衣,每边两个人面对面地坐在同一张桌子上.已知:(1)英国人坐B先生左侧;(2)A先生穿褐色大衣;(3)穿黑色大衣坐在德国人右侧;(4)D先生对面坐着美国旅客;(5)俄国旅客穿着灰色大衣.那么A、B、C、D分别是哪国人?分别穿什么颜色衣服?例16.5支球队进行单循环比赛,每两队之间比一场,获胜者得3分,负者0分,平手各得1分.最终5支球队积分各不相似,第三名得了7分,并且和第一名打平.请问:这5支球队得分从高到低依次是多少?十一、抽屉原理例17.有一种不透明魔法口袋,里面装有大小、形状完全相似小球,分为红、黄、蓝、白、黑五种颜色,每种颜色小球所有有足够多种.n个人在口袋里取球,每人随意取3个,不管怎么取,所有一定有5个人取到球种类完全相似,那么n至少是______.十二、最值问题例18.将1、2、3、4、5、6分别填在正方体6个表面上,计算具有公共棱两个面上数乘积,这样乘积共有12个,这12个乘积和最大是_______十三、构造论证例19.把图中圆圈任意涂上红色或蓝色.问:能否使得每一条直线上红圈个数所有是奇数?例20.有3堆小石子,每次许可进行如下操作:从每堆中取走同样数目的小石子,或是将其中某一石子数是偶数堆中二分之一石子移入此外一堆.开始时,第一堆有1989块石子,第二堆有989块石子,第三堆有89块石子.问能否做到:(1)某2堆石子所有取光?(2)3堆中所有石子所有被取走?作业1.在所有三位数中,可以被9整除,并且三个数字恰好能构成等差数列(可以变化次序,如567、756)共有______个作业2.在4000~7000内有______个没有反复数字5倍数.作业3.有甲、乙、丙、丁四人过河,河上有一条小船,每次只能坐两个人,这样每次就必需有一人把船划回来接剩余人.那么四人过河有______措施.作业4.图,图中只含一种☆长方形有______个?作业5.一次吃自助餐,有10道菜,每人有4个盘子可以选菜,规定每个盘子只能装1种菜,不过可以反复选菜(例如某道菜很好吃,我可以把2个盘子所有装这1种菜),那么共有_____种选菜方案.作业6.(第六届高思杯六年级,参与了高思杯不过当时没做出来同学,看看自己目前与否会做了)正方体八个顶点分别标识为A、B、C、D、E、F、G、H.目前用四种颜色给顶点染色,规定有棱相连两个顶点颜色不同样,一共有_______不同样染色措施.(旋转或翻转后相似算不同样染法)作业7.把23表达到若干个互不相似自然数之和,那么这些自然数乘积最大是______.作业8.:一种新建5层楼房一种单元每层有东西两套房;各层房号图所示,现已经有赵、钱、孙、李、周五个人入住.一天她们在小区花园里聊天:赵说:“我家是第3个入住,第1个入住就住我对门.”钱说:“只有我一家住在最高层.”孙说:“我家入住时,我家同侧上一层和下一层所有已经有人入住了.”李说:“我家是五家中最终一种入住,我家楼下那层全空着.”周说:“我家住在106号,104号空着,108号也空着.”她们说就是真话,设第1、2、3、4、5家入住房号个位数字依次为A、B、C、D、E,那么五位数.作业9.六个足球队进行单循环比赛,每两队所有要赛一场.假如踢平,每队各得1分,否则胜队得3分,负队得0分.目前比赛已进行了四轮(每队所有已和4个队比胜过),各队4场得分之和互不相似.已知总得分居第三位队共得7分,并且有4场球赛踢成平局,那么总得分居第五位队最多可得分,至少可得分.作业10.(大数减小数),直到黑板上剩余一种数为止.问黑板上剩余数是奇数还是偶数?为何?。

高思奥数导引小学五年级含详解答案第10讲几何计数

高思奥数导引小学五年级含详解答案第10讲几何计数

高思奥数导引小学五年级含详解答案第10讲几何计数在小学五年级的数学学习中,几何计数作为一个重要的内容,对培养学生的观察能力和逻辑思维有着重要的作用。

本文将带领读者详解高思奥数导引小学五年级第10讲的几何计数内容。

几何计数是指通过计数方法解决与几何图形相关的问题。

它不仅要求学生掌握基本的计数技巧,还要求学生具备观察能力和逻辑思维能力,能够从几何图形中发现规律,运用数学知识解决问题。

本讲的内容主要包括三个方面:图形的计数、方格中的计数和平面图形的计数。

首先,让我们来看一下图形的计数。

在图形的计数中,学生需要利用巧妙的计数方法来确定图形中的元素个数。

常见的计数方法包括分组计数、组合计数和递推计数。

分组计数是将图形划分为若干个部分,然后计算每个部分的元素个数,最后将它们相加;组合计数是通过列举所有可能的组合情况来计算元素个数;递推计数是通过找出图形中元素数量的递推规律来计算。

接下来,我们将关注方格中的计数。

方格中的计数是指在由小方格组成的大方格中计算元素个数。

在这个过程中,学生需要了解方格的排列方式和计数规律。

常见的计数规律有根据方格的边长计算总个数、根据方格的层数计算总个数等。

通过掌握这些计数规律,学生可以更准确地计算方格中的元素个数。

最后,我们来讨论平面图形的计数。

平面图形的计数是指在平面上通过对图形的划分和分组来计算元素的个数。

在这个过程中,学生需要具备一定的观察能力和判断能力,能够将复杂的图形划分为相对简单的部分,然后计算每个部分的元素个数,并将它们相加得出最终答案。

通过学习高思奥数导引小学五年级第10讲的几何计数内容,学生不仅可以提高自己在数学领域的解题能力,还可以培养自己的观察能力和逻辑思维能力。

几何计数不但在解决实际问题中有重要的应用,而且在培养学生的空间想象力和创造力方面也有着重要的作用。

总结起来,高思奥数导引小学五年级含详解答案第10讲的几何计数涉及到图形的计数、方格中的计数和平面图形的计数。

高思课本对应导引目录

高思课本对应导引目录

三年级上(二升三暑假&三年级秋季)第1讲乘除法巧算三年级导引第1讲第2讲枚举法中的字典排列三年级导引第3讲第3讲移多补少与等量代换三年级导引第8讲第4讲寻找隐藏周期三年级导引第7讲第5讲植树问题三年级导引第19讲第6讲复杂间隔问题三年级导引第19讲第7讲和倍与和差三年级导引第5讲第8讲归一问题三年级导引第2讲第9讲假设法解鸡兔同笼三年级导引第8讲第10讲分组法解鸡兔同笼三年级导引第8讲第11讲乘法分配律三年级导引第13讲第12讲差倍三年级导引第5讲第13讲多个对象和差倍三年级导引第5讲第14讲树形图三年级导引第14讲第15讲多重周期问题三年级导引第7讲第16讲复杂周期问题三年级导引第7讲第17讲数字趣题三年级导引第23讲第18讲假设法进阶三年级导引第17讲第19讲分组法进阶三年级导引第17讲第20讲等差数列初步三年级导引第9讲第21讲等差数列求和三年级导引第9讲第22讲等差数列应用三年级导引第9讲第23讲基本盈亏问题三年级导引第11讲三年级下(三年级寒假&三年级春季)第1讲和差倍中的隐藏条件三年级导引第15讲第2讲复杂和差倍三年级导引第15讲第3讲假设分组综合提高三年级导引第17讲第4讲数字计数三年级导引第14讲第5讲巧填算符进阶三年级导引第20讲第6讲算符与数字三年级导引第20讲第7讲数阵图初步四年级导引第2讲第8讲盈亏条件的转化三年级导引第21讲第9讲复杂盈亏问题三年级导引第21讲第10讲四则混合运算三年级导引第13讲第11讲简单乘法竖式三年级导引第16讲第12讲简单除法竖式三年级导引第16讲第13讲简单抽屉原理四年级导引第6讲第14讲还原问题四年级导引第9讲第15讲长度计算三年级导引第22讲第16讲角度计算三年级导引第22讲第17讲找位置四年级导引第10讲第18讲阵列问题三年级导引第19讲第19讲几何图形剪拼四年级导引第4讲第20讲思维游戏四年级导引第23讲第1讲整数计算综合四年级导引第01讲第2讲和差倍中的分组比较四年级导引第08讲第3讲基本直线形面积公式四年级导引第07讲第4讲字母竖式四年级导引第03讲第5讲加法原理与乘法原理四年级导引第11讲第6讲相遇问题四年级导引第05讲第7讲追及问题四年级导引第05讲第8讲数列规律计算四年级导引第10讲第9讲统筹规划四年级导引第12讲第10讲游戏策略四年级导引第12讲第11讲整数数列计算四年级导引第01讲第12讲乘法原理进阶四年级导引第11讲第13讲变倍问题四年级导引第08讲第14讲年龄问题四年级导引第09讲第15讲逻辑推理一四年级导引第24讲第16讲多位数巧算四年级导引第13讲第17讲复杂竖式四年级导引第15讲第18讲火车行程初步四年级导引第18讲第19讲火车行程进阶四年级导引第18讲第20讲底高的选取与组合四年级导引第07讲第21讲等积变形四年级导引第07讲第22讲数表规律计算四年级导引第10讲第23讲最值问题一四年级导引第23讲第1讲从洛书到幻方四年级导引第20讲第2讲小数巧算四年级导引第13讲第3讲多人多次相遇与追及四年级导引第18讲第4讲格点图形面积计算四年级导引第17讲第5讲割补法巧算面积四年级导引第17讲第6讲横式问题四年级导引第16讲第7讲平均数问题四年级导引第14讲第8讲复杂数阵图四年级导引第20讲第9讲排列组合公式四年级导引第21讲第10讲排列组合应用四年级导引第21讲第11讲分段计算的行程问题四年级导引第19讲第12讲直线形面积计算综合提高五年级导引第14讲第13讲多次往返相遇与追及四年级导引第19讲第14讲有特殊要求的挑选四年级导引第22讲第15讲捆绑法与插空法四年级导引第22讲第16讲奇偶性分析五年级导引第23讲第17讲牛吃草问题五年级导引第18讲第18讲整数裂项五年级导引第13讲第19讲容斥原理五年级导引第04讲第20讲复杂抽屉原理五年级导引第24讲第1讲整除问题初步五年级导引第2讲第2讲整除问题进阶五年级导引第2讲第3讲质数与合数五年级导引第3讲第4讲环形路线五年级导引第5讲第5讲分数基本计算五年级导引第1讲第6讲直线形计算中的倍数关系五年级导引第14讲第7讲解方程与方程组六年级导引第4讲第8讲分数计算与比较大小五年级导引第1讲第9讲流水行船问题五年级导引第5讲第10讲约数与倍数五年级导引第7讲第11讲分数与循环小数五年级导引第8讲第12讲几何计数五年级导引第6讲第13讲逻辑推理二无对应讲次第14讲公约数与公倍数初步五年级导引第7讲第15讲公约数与公倍数进阶五年级导引第7讲第16讲分数应用题五年级导引第11讲第17讲比例应用题五年级导引第12讲第18讲直线形计算中的比例关系五年级导引第19讲第19讲分数裂项六年级导引第1讲第20讲数字谜综合一五年级导引第10讲第21讲余数的性质与计算五年级导引第16讲第22讲物不知数与同余五年级导引第16讲第23讲工程问题五年级导引第17讲第24讲列方程解应用题六年级导引第4讲第25讲燕尾模型六年级导引第10讲第26讲比较与估算五年级导引第9讲第1讲圆与扇形初步五年级导引第15讲第2讲圆与扇形进阶五年级导引第15讲第3讲行程问题综合一无对应讲次第4讲计算综合一五年级导引第13讲第5讲计数综合一无对应讲次第6讲钟表问题五年级导引第18讲第7讲位值原理五年级导引第21讲第8讲水管问题五年级导引第17讲第9讲立体几何六年级导引第9讲第10讲比例计算与列表分析六年级导引第3讲第11讲正反比例的概念与应用六年级导引第3讲第12讲行程问题中的比例关系六年级导引第14讲第13讲沙漏与金字塔五年级导引第19讲六年级导引第10讲第14讲数论相关的计数五年级导引第22讲第15讲数字谜中的计数五年级导引第22讲第16讲不确定性问题五年级导引第12讲第17讲浓度问题六年级导引第5讲第18讲经济问题六年级导引第5讲第19讲变速行程问题一五年级导引第20讲第20讲行程问题中的分段与比较五年级导引第20讲第1讲比赛中的推理六年级导引第6讲第2讲计算综合二六年级导引第2讲第3讲递推计数六年级导引第12讲第4讲对应计数六年级导引第13讲第5讲进位制六年级导引第19讲第6讲取整问题六年级导引第19讲第7讲不定方程六年级导引第8讲第8讲复杂直线形计算六年级导引第10讲第9讲几何综合六年级导引第11讲第10讲复杂应用题串讲六年级导引第17讲第11讲间隔发车问题六年级导引第14讲第12讲复杂行程问题六年级导引第14讲第13讲概率初步六年级导引第23讲第14讲工程问题综合无对应讲次第15讲整除问题综合无对应讲次第16讲约数与倍数综合无对应讲次第17讲整数型计算综合无对应讲次第18讲最值问题二六年级导引第7讲第19讲计数综合二无对应讲次第20讲计数综合三无对应讲次第21讲数字谜综合二六年级导引第16讲第22讲分数、百分数应用题综合无对应讲次第23讲行程问题综合二无对应讲次第24讲构造论证二六年级导引第22讲第25讲直线形计算综合无对应讲次第26讲应用题综合六年级导引第18讲第1讲浓度与经济问题综合无对应讲次第2讲余数问题综合无对应讲次第3讲分数计算综合无对应讲次第4讲曲线形计算综合无对应讲次第5讲抽屉原理综合六年级导引第24讲第6讲变速行程问题二无对应讲次第7讲计算综合练习第8讲几何综合练习第9讲应用题综合练习第10讲数字谜综合练习第11讲数论综合练习第12讲计数综合练习第13讲组合综合练习第14讲小升初综合模拟测试一第15讲小升初综合模拟测试二第16讲小升初综合模拟测试三第17讲小升初综合模拟测试四第18讲小升初综合模拟测试五第19讲小升初综合模拟测试六第20讲小升初综合模拟测试七第21讲小升初综合模拟测试八第22讲小升初综合模拟测试九。

高思学校竞赛数学课本引导

高思学校竞赛数学课本引导

高思学校竞赛数学课本引导
《高思学校竞赛数学导引》为书中的主人公们绘制了人物形象,并赋予了鲜明的性格特征。

在每一讲的开始部分,都绘制了精美的漫画,知识内容在漫画故事的开展中进行讲解,图文并茂,更具亲和力,对于提高学习兴趣会有很大帮助。

在内容上是非常独特的,通过“横向”和“纵向”两个维度构建了小学数学竞赛完备的知识体系。

其中横向分为七大专题:计算、几何、应用题、计数、数论、数字谜以及组合数学,而纵向则按照学生接受能力和校内课程进度,将七大专题分配到小学6个年级中,并绘有知识树,每个年级分为上下册。

这就形成了一套循序渐进的学习计划和教学大纲,能够满足小学阶段全国主要竞赛的训练要求。

每一讲都包含6大模块:开篇漫画、知识树、知识精讲、挑战极限、课堂内外以及作业。

其中“开篇漫画”用一个有趣的小故事引入本讲;“知识树”用于表明本讲在专题中所处的位置;“知识精讲”详细讲解本讲所涉及的知识点,其中每道例题配有对应的练习,采用一例一练的形式;“挑战极限”是与本讲内容有关的2道难题,供学有余力的学生使用,“课堂内外”是一些数学相关的小知识;“作业”用于课后巩固复习。

题目被划分为“兴趣篇”、“拓展篇”和“超越篇”三个部分。

高思竞赛数学导引-五年级第十二讲-余数学生版

高思竞赛数学导引-五年级第十二讲-余数学生版

第12讲余数内容概述掌握余数的概念与基本性质,掌握除以某些特殊数的余数的计算方法.学会利用余数的可加性、可减性和可乘性计算余数;学会运用同期性处理各类余数计算问题;学会求解“物不知数’问题.典型问题兴趣篇1.72除以一个数,余数是7.商可能是多少?2. 100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?3. 20080808除以9的余数是多少?除以8和25的余数分别是多少?除以11的余数是多少?4.4个运动员进行乒乓球比赛,他们的号码分别为101、126、173、193.规定每两人之间比赛的盘数是他们号码的和除以3所得的余数.请问:比赛盘数最多的运动员打了多少盘?5.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?6.(1) 220除以7的余数是多少?(2)1414除以11的余数是多少?(3) 28121除以13的余数是多少?7.810888888个⨯⨯⨯++⨯+除以5的余数是多少?8.一个三位数除以21余17,除以20也余17.这个数最小是多少?9.有一个数,除以3的余数是2,除以4的余数是1.请问:这个数除以12余数是几?10.100多名小朋友站成一列,从第一人开始依次按1,2,3,…,11的顺序循环报数,最后一名同学报的数是9;如果按1,2,3,…,13的顺序循环报数,那么最后一名同学报的数是11.请问:一共有多少名小朋友?拓展篇1.1111除以一个两位数,余数是66. 求这个两位数.2.(1) 42121421421421个除以4和125的余数分别是多少?(2) 80821808808808个除以9和11的余数分别是多少?3.一年有365天,轮船制造厂每天都可以生产零件1234个,年终将这些零件按19个一包的规格打包,最后一包不够19个.请问:最后一包有多少个零件?4.自然数12222267-⨯⨯⨯⨯个的个位数字是多少?5.算式20072007200720072006321++++ 计算结果的个位数是多少?6.一个自然数除以49余23,除以48也余23.这个自然数被14除的余数是多少?7.一个自然数除以19余9,除以23余7.这个自然数最小是多少?8.刘叔叔养了400多只兔子,如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里有4只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?9. 123123123123123个除以99的余数是多少?10.把63个苹果,90个橘子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?11.有一个大于l的整数,用它除300、262、205得到相同的余数,求这个数.12.用61和90分别除以某一个数,除完后发现两次除法都除不尽,而且前一次所得的余数是后一次的2倍,如果这个数大于1,那么这个数是多少?超越篇1.从l 依次写到99,可以组成一个多位数12345…979899.这个多位数除以11的余数是多少?2.算式72008777777个⨯⨯⨯++⨯+计算结果的末两位数字是多少?3.算式20077531⨯⨯⨯⨯⨯ 计算结果的末两位数字是多少?4.有5000多根牙签,按以下6种规格分成小包:如果10根一包,最后还剩9根;如果9根一包,最后还剩8根;如果依次以8、7、6、5根为一包,最后分别剩7、6、5、4根.原来一共有牙签多少根?5.有三个连续的自然数,它们从小到大依次是5、7、9的倍数,这三个连续自然数最小是多少?6.请找出所有的三位数,使它除以7、11、13的余数之和尽可能大.7.已知.0000940909421717!21CD AB 那么四位数ABCD 是多少?8.有一些自然数n ,满足:2n - n 是3的倍数,3n - n是5的倍数,5n - n 是2的倍数,请问:这样的,n 中最小的是多少?。

高思竞赛数学导引-五年级第十讲-几何计数学生版

高思竞赛数学导引-五年级第十讲-几何计数学生版

第10讲几何计数内容概述合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.典型问题兴趣篇1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?ﻩ(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?4.如图104和10-5,数一数,两个图形中分别有多少个三角形?5.如图10-6,在一个4x4的方格表中,共有多少个正方形?6.如图10-7,数一数图中一共有多少条线段?多少个矩形?7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?8.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、,、G为顶点且面积为1的三角形共有多少个?拓展篇1.如图10-12,数一数,图中有多少个三角形?2.如图10-13,数一数下面的三个图形中分别有多少个三角形.3.如图10-14,数一数,图中有多少个三角形?4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?7.如图10-18,数一数,图中共有多少个长方形?8.如图10-19,数一数,图中共有多少个平行四边形?9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?10.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?超越篇1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?2.如图10-25,数一数,图中共有多少个三角形?3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:(1)以格点为顶点共可以连出多少个面积为4的三角形?(2)以格点为顶点共可以连出多少个面积为3的三角形?(3)以格点为顶点共可以连出多少个面积为1.5的三角形?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第10讲几何计数
内容概述
合理使用各种已学的计数方法来解决几何计数问题;学会利用图形的位置和形状进行恰当的分类;掌握方格表中长方形个数的计算方法;注意利用图形的对称性来简化计算.
典型问题
兴趣篇
1.如图10-1,线段AB、BC、CD、DE的长度都是3厘米.请问:图中一共有多少条线段?这些线段的长度之和是多少厘米?
2.小明把巧克力棒摆成了如图10-2所示的形状,其中每一条小短边代表一个巧克力棒.请问:
(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?
(3)嘴馋的小明吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?
3.如图10-3,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形,图中包含“冰”的各种大小的正三角形一共有多少个?
4.如图104和10-5,数一数,两个图形中分别有多少个三角形?
5.如图10-6,在一个4x4的方格表中,共有多少个正方形?
6.如图10-7,数一数图中一共有多少条线段?多少个矩形?
7.如图10-8,AB、CD、EF、MN互相平行,则图中梯形个数与三角形个数的差是多少?
8.如图10-9,125个黑色与白色小立方体相间排列拼成了一个大立方体,其中露在表面上的黑色小立方体有多少个?
9.如图10-10,木板上钉着12枚钉子,排成三行四列的长方阵.用橡皮筋一共可以套出多少个不同的三角形?
10.如图10-11,在2x3的长方形中,每个小正方形的面积都是1.请问:以A、B、C、D、E、,、G为顶点且面积为1的三角形共有多少个?
拓展篇
1.如图10-12,数一数,图中有多少个三角形?
2.如图10-13,数一数下面的三个图形中分别有多少个三角形.
3.如图10-14,数一数,图中有多少个三角形?
4.如图10-15,数一数.,图中共有多少个长方形?(正方形是一种特殊的长方形)
5.如图10-16,四条边长度都相等的四边形称为菱形,用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?
6.如图10-17,这是一个长为9,宽为4的网格,每一个小格都是一个正方形.请问:(1)从中可以数出多少个长方形?(2)从中可以数出包含黑点的长方形有多少个?
7.如图10-18,数一数,图中共有多少个长方形?
8.如图10-19,数一数,图中共有多少个平行四边形?
9.如图10-20,18个大小相同的小正三角形拼成了一个平行四边形,数一数,图中共有多少个梯形?
10.如图10-21,方格纸上放了20枚棋子,以这些棋子为顶点,可以连出多少个正方形?
11.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形.在图10-22中,共有多少个不同的曲边形?
12.如图10-23,一个2×3的网格中,每个小正方形的面积都是1.以这些格点为顶点,可以连成多少个面积为l的三角形?
超越篇
1.图10-24是一个等边三角形的点阵.以这些点为顶点,可以画出多少个等腰三角形(包括等边三角形)?
2.如图10-25,数一数,图中共有多少个三角形?
3.如图10-26,这是一个4x8的矩形网格,每一个小格都是一个正方形.请问:
(1)包含有两个“★”的矩形共有多少个?(2)至少包含一个“★”的矩形有多少个?
4.如图10-27,在图中的3×3正方形格子中,格线的交点称为格点.例如:A,B,C这3个点都是格点,那么,以格点为顶点,且完全覆盖了阴影部分小方格的三角形共有多少个?
5.如图10-28,用12个点将圆周12等分,以这些点为顶点的梯形共有多少个?
6.一个平面封闭图形,只要组成它的边中有一条边不是直线段,就将这个图形称为曲边形,例如圆、半圆、扇形等都是曲边形,在图10-29中,共有多少个不同的曲边形?
7.如图10-30,木板上钉着16枚钉子,排成四行四列的方阵.用橡皮筋一共可以套出多少个不同的等腰三角形?
8.如图10-31,在3×3的方格表内,每个小正方形的面积均为1.请问:
(1)以格点为顶点共可以连出多少个面积为4的三角形?
(2)以格点为顶点共可以连出多少个面积为3的三角形?
(3)以格点为顶点共可以连出多少个面积为1.5的三角形?。

相关文档
最新文档