空气加热器简图-Model
空气的其他加热方法

空气的其他加热方法一、风道式空气电加热器1、风道式加热器主要用于风道中的空气加热,规格分为低温、中温、高温三种形式,在结构上的共同之处是采用钢板支撑电热管以减少电热管的振动,接接线盒中都装有超温控制装置。
另在控制方便除装有超温保护外,还必须在风机与加热器之间加联运装置,以确保电加热器起动必须在风机起动之后,在加热器前后加一差压装置,以防风机故障,通道加热器加热的气体压力一般不应超过0.3Kg/cm2,如超过以上压力规格,请选用循环式电加热器,低温型加热器气体加热最高温度不超过160℃;中温型不超过260℃;高温型不超过500℃。
2、应用领域:空气电加热器主要是用来将所需要的空气流从初始温度加热到所需要的空气温度,最高可达850℃。
已被广泛的应用到航空航天、兵器工业、化工工业和高等院校等许多科研生产试验室。
特别适合于自动控温和大流量高温联合系统和附件试验。
空气电加热器使用的范围宽:可以对任何气体加热,产生的热空气干燥无水份、不导电、不燃烧、不爆炸、无化学腐蚀性、无污染、安全可靠、被加热空间升温快(可控)。
3、技术特点能使空气加热到很高的的温度,可达450℃,壳体温度只有50℃左右。
效率高:可达0.9以上。
升温和降温速率块,可达10℃/S,调节快而稳定。
不会出现所控空气温度超前和滞后现象而使温度控制漂移不定,很适合自动控制。
机械性能好:因为它的发热体为特制合金材料,所以在高压空气流的冲击下,它比任何发热体的机械性能和强度都好,这对于需要长时间连续不断对空气加温的系统和附件试验更具有优越性。
在不违反使用规程时,经久耐用,使用寿命长达几十年。
空气洁净,体积小。
可根据用户的需要,设计多类型的空气电加热器。
二、陶瓷电加热器:1.一种是将合金丝穿绕于小陶瓷方块中,外部包以不锈钢外壳而成。
广泛应用于塑料机械、化纤机械。
2.陶瓷电加热器是一种高效热分部均匀的加热器,热导性极佳的金属合金,确保热面温度均匀,消除了设备的热点及冷点。
空气对流换热实验

教学实验2006空气对流换热实验台指导书目录1. 空气横掠圆管换热实验台实验指导书 (1)2. 翅片管束管外放热和阻力实验指导书 (6)3. 空气横掠平板换热实验台实验指导书 (17)4. 小型气水换热器实验台实验指导书 (19)5. 空气横掠可旋转圆管换热实验台实验指导书 (20)1.空气横掠圆管换热实验台实验指导书一、实验目的1,了解实验装置,熟悉空气流速及管壁温度的测量的方法,掌握测量仪器仪表的使用方法2,测定空气横掠单管平均表面传热系数,并将结果整理成准则关系式.3,掌握强制对流换热实验数据的处理及误差分析方法二、实验原理与实验装置根据对流换热的量纲分析,稳态强制对流换热规律可以用下列准则关系式来表示:经验表明上式可以表示成下列形式:(1)对于空气,当温度变化不大时,普朗特书Pr变化很小,可以作为常数处理.故(1)式可表示为(2)本实验的任务就是确定之值。
因此就需要测定数中所包含的各个物理量。
其中管径d为已知量,物性λ、,按定性温度查表确定.表面传热系数不能直接测出,必须通过测加热量,壁温及流体平均温度,根据(3)式来计算:(3)其中:电加热功率:单管外表面积试验装置结构及工作原理如图一所示:图1实验风洞系统简图1.风机支架2.风机3.风量调节手轮4.过渡管5.测压管6.测速段7. 过渡管8.测压管9.实验管段10. 测压管11.吸入管12.支架13. 加热元件14.控制盘三、实验步骤1.将皮托管与差压传感器连接好、校正零点;连接热电偶,再将加热器、功率表以及调压变压器的线路连接好。
经指导老师检查确认无误后,准备启动风机。
2.在关闭风机出口挡板的条件下启动风机,让风机空载启动,然后根据需要开启出口挡板,调节风量。
3.在调压变压器指针位于零位时,合电闸加热实验管,根据需要调整变压器,使其在某一热负荷下加热,并保持不变,使壁温达到稳定(壁温热电偶的温度在三分钟内保持读数不变,即可认为已达到稳定状态)后,开始记录热电偶温度、电功率、空气进出口温度。
空气加热器的计算.

空气加热器的设计计算步骤
初选加热器的型号 假定 ,一般取8kg/(m2.s) → 求出加热器的有效截面面
积→ 初步选定加热器的型号 → 计算出加热器的实际有效截
面面积 → 实际的 。
计算加热器的传热系数 计算需要的加热面积和加热器台数
检查加热器的安全系数(考虑内外表面积垢积灰等原因,
一般取传热面积的安全系数为1.1-1.2)。
空气加热器的计算原则
加热器的供热量 = 加热空气所需要的热量
如果已知被加热空气量为 后的空气温度为
t2 时,则加热空气所需热量为:
G
kg/s,加热前的空气温度为
t1,加热
Q Gcp (t 2 t1 )
空气加热器提供的热量为:
Q KF t m
空气加热器的ቤተ መጻሕፍቲ ባይዱ算原则
空气加热器提供的热量为:
Q KF t m
t m —— 热媒与空气间的对数平均温差。
对于空气加热过程来说,由于冷热流体在进出口端的温差比值常常
小于2,所以可用算术平均温差代替对数平均温差。
热媒为热水时:
t w1 t w2 t1 t 2 t p 2 2
热媒为蒸汽时:
t1 t 2 t p t q 2
空预器火灾600MW图纸

2
C
英寸,位置按锅炉厂要求,具体的接口连接见水、气接口连接图。 3.本系统需要5KVA AC380V(50Hz)电源,具体接线见端子图。
4.本系统的主控柜须布置在电子间,就地操作箱须布置在系统执行机构的操作平台上
空气预热器热点监测系统
标记 更改 签字 日期 备注 设计 标准 工艺 审查 审定 日期
3
4
5
6
A
R+15V
R-15V
:11 +P-XT3 :11
:13
:15
:13
:15
RP15B
:51
:52
:36
:37
+R-XT
:53
:54
:40
:41
+R-XT
:55
:56
:44
:45
空气预热器热点监测系统
标记 更改 签字 日期 备注 设计 标准 工艺 审查 审定 日期
1 2 3 4
图号
Z200303.005
D
热偶变送器接线图
5
共
2
张 第
6
2
张
西安理工大学自动化研究所
1
2
3
4
5
6
A
B
+P电源指示
输出
L变送器4
-RBL4
B
输入
+
-
输入
+
-
-RBL2
输入
+
-
输入
+
-
1
2
+LI1
3
-LI1
+24
LPT1
GND
LGT1
OSRAM SYLVANIA 线圈型空气加热器操作说明说明书

Doc #ZDF 2835460 Rev. 01 - Uncontrolled 09/12/2012OSRAM SYLVANIA • 129 Portsmouth Avenue • Exeter, NH 03833 USAThreaded Inline Air HeatersFOR SAFETY & LONG HEATER LIFE, CAREFULLY READ THIS MANUAL BEFORE USE.SafetySHOCK HAZARD! Only qualified individuals should install this heater and related controls. Follow all applicable electrical codes and use proper wiring.BURN/FIRE/EXPLOSION HAZARD!Do not use in hazardous environments, and/or near explosive or reactive gases, or combustible materials. Avoid contact with the heater or exit accessories during or soon after operation. DO NOT USE NEAR VOLATILE OR COMBUSTIBLE MATERIALS.DescriptionStainless Steel threaded heaters for heating high-pressure air or inert gases to 1400°F (760°C). Sizes include 3/8”, 1/2“, 1-1-4” and 2-1/2” diameter, with wattages from 1.6 to 24 Kilowatts. There are two (2) body styles. Body Style A has power feed thru posts and unit is considered leak-proof to 150PSI. Body Style B has 12” flexible fiberglass sleeved power wires and rated to 150 PSI (10 BAR), but will have slight air leakage through the power wire strands. If operated correctly, the heater will operate continuously for 5000 hours or longer.Limited WarrantyOSRAM SYLVANIA warrants that all products to be delivered hereunder will be free from defects in material and workmanship at the time of delivery. OSRAM SYLVANIA's obligation under this warranty shall be limited to (at its option) repairing, replacing, or granting a credit at the prices invoiced at the time of shipment for any of said products. This warranty shall not apply to any such products which shall have been repaired or altered, except by OSRAM SYLVANIA, or which shall have been subjected. OSRAM SYLVANIA shall be liable under this warranty only if (A) OSRAM SYLVANIA receives notice of the alleged defect within sixty (60) days after the date of shipment; (B) the adjustment procedure hereinafter provided is followed, and (C) such products are, to OSRAM SYLVANIA’s satisfaction, determined to be defective.THE WARRANTY SET FORTH IN THE PRECEDING PARAGRAPH IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR OF MERCHANTABILITY.The information contained in this manual is based on data considered to be true and accurate. Reasonable precautions for accuracy has been taken in the preparation of this manual, however OSRAM SYLVANIA assumes no responsibility for any omissions or errors, nor assumes any liability for damages that may result from the use of the product in accordance with the information contained in this manual.Please direct all warranty/repair requests or inquiries to the place of purchase, and provide the following information, in writing:(A) Order number under which products were shipped(B) Model/Serial Number of product(C) Reason for rejectionPRODUCTS CAN NOT BE RETURNED TO OSRAM SYLVANIA WITHOUT AUTHORIZATION.Replacement, repair, or credit for products found to be defective will be made by the place of purchase. All products found to be not defective will be returned to the Buyer; transportation charges collect or stored at Buyers expense.Heater Models and Parts ListPart Number Body Style Diameter Maximum Wattage Maximum Voltage Maximum AmperageMaximum TemperatureF038821 A 3/8” 1600 170 9.4 1400°F / 760°CF038822 B* F038823 A 1/2“ 4000 220 18.2 F038824 B* F038825 A 1-1/4” 6000 220 27.3F038826 B* F063007 B* 2-1/2”18000 240 75 (1PH) / 44 (3PH) F076418 B* 480 21.7 (3PH only) F074439 B*2400024058 (3PH only)* For Body Style B Heaters there will be a slight air leakage through power wire strandsSpecificationsMaximum Inlet Pressure 150 PSI (10 BAR)* Maximum Inlet Air Temperature 900°F (482°C) for Body Style A 200°F (93°C) for Body Style B Maximum Exit Air Temperature 1400°F (760°C) (see page 8 for Performance Curves)* For Body Style B Heaters there will be a slight air leakage through power wire strandsGeneral InformationEnvironmental Conditions: Ambient Temperature 32°F to 104°F (0°C to 40°C) Humidity0% to 95% R.H.Ventilation:Use in a well-ventilated area away from excess dust, dirt, and moisture.Cleaning:With unit OFF and unplugged, exterior surfaces may be wiped clean using a dry, lint-free cloth.Protective Earthing:Each heater comes with a convenient grounding stud and hardware located at the inlet of the heater for protective means of earthing.Dimensions/MountingNOTE: The inlet side of the heater is located where the leads/power feedthrus come out of the housing. Failure to install the heater in its proper orientation can result in heater damage and is not covered under the manufacturer’s warranty.Precautions1. Use filtered air. Avoid grease, oil, or oil vapors, corrosive or reactive gases which will damage heater.Note: When using compressed air a pressure reduction valve and an oil & water separation unit should be installed to avoid contaminating the heater and reduce heater life.2. Operate at safe voltages as shown on the Performance Curves (see page 8). Excess voltage will causepremature failure.3. Always have sufficient airflow through the heater before applying power. Otherwise element will overheatvery quickly, and burn out. Note: A thermocouple cannot detect temperatures if there is no flow – turn on flow before applying power, even when a controller with a thermocouple is being used.4. Use Style ‘A’ threaded inline heaters for absolute leak-proof applications (150 PSI). Style ‘B’ threaded inlineheaters will have some air leakage through the lead wires.5. Use phase angle fired power controllers. On-Off controllers may shorten heater life (or burnout element).6. For closed-loop control, use exposed junction type “K” thermocouple located within one inch of the heater exit.7. For closed-loop control, use a temperature controller with a fast sampling period (<500ms) and minimalovershoot.InstallationCAUTION: DO NOT Operate Heater Without Air Securely mount the heater before wiring.WARNING: THE INLET AIR/GAS SIDE OF THE HEATER IS LOCATED CLOSEST TO WHERE THE POWER FEED-THRU CONNECTIONS ARE MADE. INSTALLING THE HEATER IN THE WRONG ORIENTATION WILL DAMAGE THE HEATER AND CAN CREATE ADDITIONAL HAZARDS AS A RESULT.For 3/8”, 1/2”, & 1-1/4” HEATER ONLY (#038821, 038822, 038823, 038824, 038825 & 038826):1. There are two (2) feed-thrus on the heater. Connect one power lead to one heater electrical feed-thru (or onelead wire) and connect the other power lead to the other electrical feed-thru (or the other lead wire).2. Connect the ground wire to the green grounding nut on the heater body.3. Connect the air source to the heater.4. If a thermocouple is used, ensure that it is located within one inch from the heater exit.For 2-1/2” HEATER ONLY (#F063007): 18 kW - 240 Volt - 1Ø Operation:Note: Running this heater at 240 Volts 1Ø will draw up to 75 Amps1. The heater has two (2) set of power feed-thrus with three (3) wires (marked 1, 2, or 3) coming out of it.2. Connect one side from the power to all three (3) leads that exit one (1) feed-thru (1, 2, and 3 together).3. Connect the other side of the power to all three (3) leads that exit the second feed-thru (1, 2, and 3 together).4. Make sure the heater is properly grounded.5. Connect the filtered air source to the heater.6. If a thermocouple is used, ensure that it is located within one inch from the heater exit.FOR 2½” HEATER ONLY (#063007 & 074439): 18 & 24 kW - 240 Volt – 3Ø Operation:1. The heater has two (2) set of power feed-thrus with three (3) wires (marked 1, 2, or 3) coming out of it.2. Connect the elements in a standard delta configuration. (Connect one (1) power lead to each of the followingpairs: 1-2, 2-3, 3-1).3. Check resistance leg to leg. They should be approximately within 0.1 ohms of each other if wired properly.4. Make sure the heater is properly grounded.5. Connect the filtered air source to the heater.6. If a thermocouple is used, ensure that it is located within one inch from the heater exit.FOR 2½” HEATER ONLY (#076418): 18 kW - 480 Volt – 3Ø Operation:1. The heater has one (1) set of three (3) wire leads (marked 1, 2, or 3) coming out of it.2. Connect the leads directly to the output of the power controller for standard 480V 3Ø operation.3. Check resistance leg to leg. They should be approximately within 0.1 ohms of each other if wired properly.4. Make sure the heater is properly grounded.5. Connect the filtered air source to the heater.6. If a thermocouple is used, ensure that it is located within one inch from the heater exit.Typical Wiring for 1Ø Heater with Closed Loop ControlTypical Wiring for 3Ø Heater with Closed Loop ControlOperation (with Heater)START-UP1. Reference the Performance Curves section (see page 8) for operational parameters before attempting tooperate heater(s).2. Turn on air and set pressure or flow to desired operating level.3. If using a closed loop system, turn on power to the temperature and power controller, then set the desiredtemperature on the temperature controller. If using an open loop system, increase power to the heater through the power controller until the desired temperature is attained.SHUT-DOWN1. Turn off Main Power circuit breaker, or disconnect MAIN POWER line.2. Allow air to continue to flow for a minimum of 1 minute or until exit air temperature is 300°F (150°C) or lessfor safety. Continue airflow longer as necessary to prevent burn hazard to personnel.3. Turn off air to the system.Performance CurvesThe attached performance curves show exit air temperatures at different airflows and voltages. Pressure readings (longer dashed lines) are measured at the inlet to the heater with no entrance or exit restrictions. Solid lines indicate safe, normal-life operating conditions. The shorter dash lines indicate marginal, shorter-life operating conditions leading to premature burnout. With a known flow (or pressure) at the heater entrance, follow the flow (or pressure) line across until it meets the desired temperature curve. Drop a line straight down to intersect the x-axis. This point, along the “Heater volts – true RMS” axis, represents the voltage required to generate the desired exit air temperature at the chosen flow rate (inlet pressure).Troubleshooting and Replacing Heaters1. Note that “TYPICAL” Element Life is APPROXIMATELY 5000 hours. This is based on heater elementoperating at or below temperatures shown on PERFORMANCE CURVE. In addition to normal end of life, elements can fail due to mechanical damage, or problems with the control system.2. If an element has failed prematurely, it should be inspected to determine the cause of the element failure.3. When replacing or troubleshooting heaters, turn off power to the system and be sure to follow lock-out/tag-outprocedures.Heatera. ForTroubleshootingi.) Use multi-meter to check continuity between:1. Power terminals H1-H2 (for 1Ø) or H1 to H2, H2 to H3 and H1 to H3 (for 3Ø)2. Thermocouples positive (+ yellow) to negative (- red)ii.) If there is continuity on all above tests, check system wiring:1. Crossed thermocouple wires.2. Reversed thermocouple wire polarity – note RED is NEGATIVE.3. Verify inlet air temp is below set point on INLET TEMP controller.iii.) If there is no continuity on any test, then contact your local SYLVANIA representative for assistance.4. Remove entire heater assembly from system. Internal components are typically not replaceable.5. Reconnect thermocouples, power and ground wires for new/replacement heater.6. Attach any covers and operate heater as normal.Element Life Curve(This is published by the element wire manufacturer. It is considered typically and not a guaranteed life)The life of a SYLVANIA heater is directly based on the temperature of the filament wire. The curve below shows that 5000 hours of life can be obtained by maintaining a filament temperature below 1900°F. Also note that the element does not fail until it reaches more than 2200°F!OSRAM SYLVANIA • 129 Portsmouth Avenue • Exeter, NH 03833 USA。
直接燃烧空气加热器Design 74-Introduction_CN

产 品 介 绍REZNOR Design 74是一种采用直接燃烧加热方式的大型工业用风道加热器,它们与空气处理设备(现有或全新的)组合在一起使用。
为了满足环境对风量,温升和风压的要求,选用正确的Design 74 加热器是非常重要的,而且每台加热器和与其配套的空气处理设备仅在连锁状态下运行。
Design 74加热器是自成一体、工厂组装、预先电气布线和测试检验合格的产品,它们的主要特点如下:Design 74 直接燃烧空气加热器Design 74 技术参数 型号115,118 215 218 224 230 233 236 240 242 最小 6,800 13,600 20,400 42,500 51,000 68,000 85,000 96,900 119,000风量m 3/h 最大 17,850 23,800 51,000 76,500 102,000127,500144,500 170.000212,500最小 10 146 293 586 733 879 1,758 1,905 2,344加热量 KW 最大 293 733 879 1,172 1,758 2,344 2,637 3,8094,688接气管径, 英寸 1.0 1.0 1.25 1.5 2.0 2.5 3.0 3.0 3.0最大燃气使用 压力,Kgf/cm 20.07 0.07 0.35 0.35 0.35 0.35 0.35 0.35 0.35Design 74 工业用风道加热器经常应用的场合当没有详细项目资料而不能得到应用某个产品的推荐时,不妨参考以下所列出的 Design 74 加热器最常使用的场合。
具有适当风量和送风静压力的空气处理设备必须已经具备,或是另外单独提供,Design 74 通常采用抽吸式的空气流动形式使用在系统中,以此满足较广范围的新风补偿和生产用空气加热的要求,同时也用在一些为室内采暖的场合,加热后热空气可以通过室内风道系统完成合理分布。
空气预热器PPT

总结: 600MW机组漏风系数每降低1%,则减少供电煤耗0.18 g/kwh 300MW机组漏风系数每降低1%,则减少供电煤耗0.14 g/kwh
空预器漏风所影响的机组经济效益
相对来说,改造锅炉和汽轮机的主要部件费用比较高,而锅炉辅机, 如空气预热器的改造 却比较经济。空气预热器的严重漏风和低可 靠性是 中国电站的普遍问题。很多电站的漏风率达15%以上甚至更高。另外,很 多电站空预器还有堵灰,维护费用高等问题。 根据数据对比,进行空预器改造后,通常可使锅炉效率提高1%左右, 30万千瓦以上机组,节煤和电的费用为200万以上,如果再加上出力增加而 提高的发电收益,改造一台机组的空预器,每年可增加500万以上的收益。 截至2009年,我国火电总装机容量达到6亿千瓦,相当于1000台60万千瓦机 组,每台机组配有2台回转式空预器,相当于全国有2000台以上的空预器( 60万千瓦机组)在运行。这其中只有三分之一左右的进行了技术改造。平 均每台机组的改造价格为400-1000万左右(含换热元件费用)。基本每 隔4-5年空预器就需要进行一次大修或更换元件。这是一个巨大的市场。
现有空预器密封机理及可调性
根据转子各部份受热变形的特点,恰当地调节各个部份 固定式密封板,使转子和外部壳体之间的轴向漏风间隙 为最小。
而转子上部可调扇形密封板由间隙自动控制系统自动调
节,可以自动根据转子上部的热变形情况来做出动态调 节,配合恰当调节的转子下部固定扇形密封板,可以使
各个仓室间的径向漏风间隙为最小。
空预器密封结构及分类
为了降低空预器的内部漏风量,在各个仓室之间、转子上下面对应的位置安装 有控制漏风间隙的扇形密封板,上部扇形密封是动态可调的,下部是固定的。 同时还在转子的上下表面、转子的圆周曲面以及转子与壳体的上下圆周结合处, 分别安装有相互对应的等分角度的固定式的径向密封板、轴向密封板和周向密 封板,如图4所示。
回转式空气预热器结构及特点2讲课文档

现在二十七页,总共五十七页。
轴向密封
假如运行时这些密封片和轴向密封板接触, 密封就开始磨损,当密封磨损到不够径向 调整时,密封片就需要更换。 除密封装置的正确设计制造外,抑制空气 预热器漏风在很大程度上,决定于密封间 隙的调整,一般制造商也提供了有关间隙 的推荐值,但由于转子是呈蘑菇状变形的, 在不同的位置上具有不同的推荐间隙值。
现在三十九页,总共五十七页。
影响低温腐蚀的因素
硫酸蒸汽的凝结量: 1)凝结量越大,腐蚀越严重。 2)凝结液中硫酸的浓度: 烟气中的水蒸汽与硫酸蒸汽遇到低温受热 面开始凝结时,硫酸的浓度很大。随烟气 的流动,硫酸蒸汽会继续凝结,但这时凝 结液中硫酸的浓度却逐渐降低。开始凝结 时产生的硫酸对受热面的腐蚀作用很小, 而当浓度为56%时,腐蚀速度最大。随着 浓度继续增大,腐蚀速度也逐渐降低。
现在二十九页,总共五十七页。
现在三十页,总共五十七页。
密封磨损的原因及防止措施
空气预热器的密封装置和密封表面是这样 布置的,在BMCR负荷下的设计温度能提供 最佳的漏风控制。当温度升高到设计温度 以上时,当前的密封和密封表面之间的设 计间隙不够弥补过量的热变形,从而导致 密封和密封表面接触而磨损。下面的运行 情况将产生严重的密封磨损。
回转式空气预热器结构及特点
现在一页,总共五十七页。
空气预热器
在电厂中常用的传热式空预热器是管式 空预热器,蓄热式空气预热器是回转式 空气预热器。随着电厂锅炉蒸汽参数和 机组容量的加大,管式空气预热器由于 受热面的加大而使体积和高度增加,给 锅炉布置带来影响。因此现在大机组都 采用结构紧凑、重量轻的回转空气预热 器。
现在二页,总共五十七页。
现在三页,总共五十七页。