基于改进SURF算子的高低分辨率图像配准方法
改进的SURF算法在图像匹配中的应用

consistency;matching precision
近邻特征点,结合双向唯一性匹配的方法完成图像匹配,然后在视差约束下,利用视差梯度约束对初始特征匹配对进行预处
理,筛选掉一些偏差较大的匹配对,最后采用随机抽样一致(Random Sample Consensus,RANSAC)算法对特征点二次优化和
去噪处理。将其他改进算法和提出的改进算法分别进行图像匹配处理比较,分析算法的性能,得到提出的改进算法匹配成
0引言
近年来,随着科技的进步,双目立体视觉[1]技术被广 泛 应 用 ,例 如 图 像 检 索[2]、三 维 重 建[3]、目 标 识 别[4]、图 像 配准 等 [5] 。其中,特征点检测与匹配作为双目立体视觉 技术中的关键一步,显得尤为重要。常见的适用于特征 匹配的算法中,较为成熟的有 SIFT 算法和 SURF 算法。 SIFT 算法 具 [6] 有尺度不变性和旋转不变性,图像在尺度 变化和旋转变化的情况下匹配效果受影响很小,由于采 用 差 分 高 斯 金 字 塔[7⁃8]进 行 特 征 点[7,9]提 取 ,所 以 算 法 运 行时间相应增加,降低了运行速度。1999 年 David Lowe
功率达 96.3%。实验结果证明提出的改进算法简单快速,匹配精度高。
关键词:图像匹配;特征点提取;双向匹配;视差梯度;随机抽样一致;匹配精度
中图分类号:TN911.73⁃34;TP391.9
文献标识码:A
基于改进的SURF的图像匹配查重算法

基于改进的SURF的图像匹配查重算法作者:丁一来源:《科技创新与应用》2020年第32期摘 ;要:随着新型冠状病毒的蔓延,各大高校都普遍尝试和采用了线上教学的方式进行授课和评价。
目前各高校普遍实行的过程化考核作为课程分数的评价标准之一。
传统的查重工具着重于文字的重复率,忽视了图片这一关键的信息载体,因此急需以图像识别匹配技术作为基础的图像查重算法。
文章将SURF算法应用于学生作业及实验报告等文本评价载体中的图片相似度匹配上,结合平时的实践经验,用RANSAC算法去掉错误的匹配结果,匹配算法对于SURF特征点进行优化,从而实现了对SIFT算法匹配速度以及精确度的改善,最终实现了完善的实验报告图像匹配算法,并且对实验中出现的问题进行讨论和总结,对系统实施的改进和未来的拓展性也进行了充分的论述。
关键词:SURF算法;图像查重;图片匹配度中图分类号:TP391.4 文献标志码:A 文章编号:2095-2945(2020)32-0025-04Abstract: With the popularity of novel coronavirus, colleges and universities have generally tried and adopted online teaching and evaluation. At present, the process assessment, which is widely implemented in colleges and universities, is one of the evaluation criteria of curriculum scores. The traditional duplicate checking tools focus on the repetition rate of the text, ignoring the picture as a key information carrier, so there is an urgent need for an image repetition checking algorithm based on image recognition and matching technology. In this paper, the SURF algorithm is applied to the image similarity matching in the text evaluation carriers such as students' homework and experimental reports, combined with the usual practical experience, the wrong matching results are removed by the RANSAC algorithm, and the matching algorithm is optimized for the SURF feature points, thus the matching speed and accuracy of the SIFT algorithm are improved,and finally a perfect experimental report image matching algorithm is realized. And the problems in the experiment are discussed and summarized, and the improvement of the implementation of the system and the expansion in the future are also fully discussed.Keywords: SURF algorithm; image duplicate checking; picture matching degree前言隨着线上教学的发展和各大远程教学平台的建立,在线教育的模式和形式已经非常完善,目前可以达到根据人们的需要选择直播、录播、不同时间、不同地点、不同设备进行教学的可能。
基于SURF的图像配准改进算法

长春理工大学hunUniversity ofScience andTechnology (Natural ScienceEdition)
Vo1.39 No.1 Feb.2016
基 于 SURF的 图像 配准改进算 法
灰 度 和基 于特 征 的两类 ,其 中 ,基于 特征 检测 的方 法
基 于 SURF的 图像 配准 技术 能够 较 为准确 地 匹
研究较 多 ,近年来 取得了飞速的发展 ,具有计算 简 配上两 幅 图像 的相 似部 分 ,但 是 ,由于描述 特征 点 时
单 、精度高等特点。D.G.I owe等人在 1999年 提出 使用的是 特征点周围像素 的信息 ,所以当两幅图像
张 凤 晶 ,王 志强 ,吴迪 ,于光
(空军航空大学 航天航天情报系 ,长春 130022)
摘 要 :为 了更好 地在保 证 图像 配准 的速 度前提 下 ,提 高配准 的精 度 ,本文提 出一种新 的基 于SURF的 图像 配准改进 算
法 改进算 法将 单向 匹配与方 向一致性 约束两者结合起 来,先 对待 配准 图像进行单 向匹配 ,再计算 出各个 匹配 点对之 间的
目前 ,图像配准技术 已经被广泛应用于计算机视觉 、 简 化计 算 ,大大 降低 了检 测特 征点 的计 算量 ,并 且它
遥 感 数 据 分 析 、全 景 图像 拼 接 、医学 诊 断 与辅 助 治 对 图像 的平 移 、旋 转 、缩 放 等 变 化 具 有 良好 的不 变
疗 、虚拟 现 实 等领 域 。 图像 配准 方 法 主要 分 为 基 于 性 ,进一 步提 高 了 SIFT算 法 的性能 。
图像配准是指对初始位置不 同的两幅图像 ,将 分 析 、总 结 多 种 特 征 检 测 方 法 的 基 础 上 ,提 出 了
基于改进SURF的快速图像配准算法

基于改进SURF的快速图像配准算法胡旻涛;彭勇;徐赟【期刊名称】《传感器与微系统》【年(卷),期】2017(036)011【摘要】针对传统加速鲁棒特征(SURF)匹配算法存在实时性不高,误匹配等问题,提出了基于改进SURF特征提取快速的图像配准算法.利用快速黑塞(Hessian)矩阵提取图像特征点,根据图像熵信息对特征点进行筛选,采用改进的快速近邻搜索算法进行特征匹配,到用随机抽样一致(RANSAC)算法剔除误匹配对.实验表明:改进后的算法有效改善了匹配效率,提高了匹配准确度.%Aiming at problem of poor real-time and false matching of images matching algorithm based on speed up robust features (SURF),present an images matching algorithm based on improved SURF. Features point of image is extracted by using the Fast-Hessian matrix. Features point is sifting by image entropy information. RANSAC algorithm is used to exclude mistake matching pair. The experiments show that this algorithm improves matching efficiency,and improve matching accuracy.【总页数】3页(P151-153)【作者】胡旻涛;彭勇;徐赟【作者单位】江南大学物联网工程学院,江苏无锡214122;江南大学物联网工程学院,江苏无锡214122;江南大学物联网工程学院,江苏无锡214122【正文语种】中文【中图分类】TP391.41【相关文献】1.基于改进Harris-SURF算子的遥感图像配准算法 [J], 李天佐;刘丽萍;孙学宏;余增增2.基于改进SURF算法的移动目标实时图像配准方法研究 [J], 巨刚;袁亮;刘小月;岳昊恩3.基于SURF的图像配准改进算法 [J], 潘建平;郝建明;赵继萍4.基于改进的SURF图像配准算法研究 [J], 金斌英5.基于SURF的图像配准改进算法 [J], 袁丽英; 刘佳; 王飞越因版权原因,仅展示原文概要,查看原文内容请购买。
基于SURF的图像配准方法研究

162红外与激光工程第38卷进一步求解得到Hessian矩阵的△表达式116]:A(日)=D。
D咿一(O.9D叫)(2)用类似SIFT的方法构建尺度图像金字塔,在每(a)X方向(b)Y方向(c)xy方向(a)』direction(b)Ydirection(c)xydirection图29x9方框滤波模板Fig.2Boxfilterwith9x9一阶中,选择4层的尺度图像,4阶的构建参数如图3所示。
灰色底的数字表示方框滤波模板的大小,如果图像尺寸远大于模板大小,还可继续增加阶数。
如滤波模板大小为NxN,则对应的尺度s:1.2xN/9;用Hessian矩阵求出极值后,在3x3x3的立体邻域内进行非极大值拟制,只有比上一尺度、下一尺度及本尺度周围的26个邻域值都大或者都小的极值点,才能作为候选特征点,然后在尺度空间和图像空间中进行插值运算[18l,得到稳定的特征点位置及所在的尺度值。
ForeBch证cwoctave.thefiltergizcilaefea,¥e.璺昱《∞2了4Octave图3尺度空间金字塔方框滤波的大小Fig.3Sizeofboxfilterinscalespace1.2主方向确定为保证旋转不变性,首先以特征点为中心,计算半径为6s(s为特征点所在的尺度值)的邻域内的点在工、Y方向的Haar小波(Haar小波边长取缸)响应,并给这些响应值赋高斯权重系数,使得靠近特征点的响应贡献大,而远离特征点的响应贡献小,更符合客观实际;其次将600范围内的响应相加以形成新的矢量,遍历整个圆形区域,选择最长矢量的方向为该特征点的主方向。
这样,通过对1.1节的特征点逐个进行计算,得到每一个特征点的主方向。
1.3描述子形成以特征点为中心,首先将坐标轴旋转到主方向,按照主方向选取边长为20s的正方形区域,将该窗口区域划分成4x4的子区域,在每一个子区域内,计算5sx5s(采样步长取S)范围内的小波响应,相对于主方向的水平、垂直方向的Haar小波响应分别记做d。
基于改进SURF的快速图像配准算法

算法 , 利用扩散距离代替欧 氏距离进行匹配 , 利用随机抽 样
一
图像 配准是图像处理过程 中的关键技术 , 在 目标识别 、 图像拼接 、 变化检测 、 目标 跟踪 、 三维 重建 等领域 得到 了广
致( R A N S A C ) 算 法 从候 选 匹配 中排 除 错误 的 匹 配。文
Ab s t r a c t : Ai mi n g a t p r o b l e m o f p o o r r e a l — t i me a n d f a l s e ma t c h i n g o f i ma g e s ma t c h i n g a l g o r i t h m b a s e d o n s p e e d
中图分 类号 :T P 3 9 1 . 4 1 文献标识码 :A 文章编号 :1 0 0 0 - - 9 7 8 7 ( 2 0 1 7 ) 1 1 01 - 5 1 03 -
Fa s t i ma g e ma t c h i ng a l g o r i t h m b a s e d o n i mp r o v e d S UR F
进行筛 选 , 采用 改进 的快 速近邻搜索算 法进 行特 征匹 配 , 到用 随机抽 样一 致 ( R A N S A C) 算 法剔 除误 匹配
对 。实验表 明 : 改进后 的算 法有效改善了匹配效率 , 提高了匹配准确度 。 关键词 :加速鲁 棒特征 ;图像熵 ; 最近邻搜索 ; 图像配准
HU Mi n— t a o,PENG Yo n g,XU Yu n
( S c h o o l o f l n t e r n e t o f T h i n g s E n g i n e e r i n g , J i a n g n a n U n i v e r s i t y , Wu x i 2 1 4 1 2 2, C h i n a )
基于SURF的图像配准与拼接技术研究共3篇

基于SURF的图像配准与拼接技术研究共3篇基于SURF的图像配准与拼接技术研究1近年来,图像配准与拼接技术已经成为了数字图像处理的重要研究方向之一。
在许多应用领域中,例如遥感影像、医学影像、三维建模等,图像配准与拼接技术已经得到了广泛的应用。
随着计算机视觉技术的不断发展,图像配准与拼接技术也在不断的完善和提高。
其中一种最具有代表性的图像配准与拼接技术就是基于SURF的图像配准与拼接技术。
SURF(Speeded-Up Robust Features)是一种高效的图像特征提取算法,它可以在保证特征点数量和质量的同时,提高提取速度。
利用SURF算法提取的特征点几乎不受图像缩放、旋转、平移等变换的影响,具有较好的鲁棒性和准确性。
基于SURF算法的图像配准与拼接技术,可以较好地解决图像缩放、旋转、平移等问题,为数字图像处理提供了更好的技术保障。
在基于SURF的图像配准与拼接技术中,首先需要选取参考图像和待配准图像。
然后,利用SURF算法对两幅图像提取特征点,并进行特征点匹配。
通过对特征点的匹配,可以找到两幅图像之间的几何变换关系。
接下来,可以利用图像配准技术对待配准图像进行校正对准,从而使其与参考图像达到一致。
最后,可以利用图像拼接技术将校正后的待配准图像与参考图像进行拼接,得到最终的拼接结果。
其中,特征点匹配是图像配准与拼接的关键步骤之一。
SURF算法的特征点匹配策略使用的是一种特殊的描述子匹配算法——KD树。
KD树是一种数据结构,在高维空间中构建KD树,可以实现高效的最近邻搜索。
通过KD树可以快速地找到两幅图像中距离最近的特征点,并将其匹配起来。
通过特征点的匹配,可以计算出两幅图像之间的变换关系,并对待配准图像进行校正对准。
除了特征点匹配外,还有一些其他的关键步骤也需要注意。
例如,在图像配准中,需要对待配准图像进行坐标转换,从而使得其与参考图像的坐标系一致。
在图像拼接中,需要实现拼接过程中的图像去重、光照一致性等问题。
基于SURF和改进的RANSAC算法的医学图像配准

变换模型参数估计完成参考图像与浮动图像的
特征点匹配后,就需要根据匹配点对求解图像之间的 空间变换模型参数。投影变换描述了在有限的距离内 从任意视点观察目标时发生的状况,在无成像畸变的 情况下是常用的图像空间变换的一般形式,采用公式
黯蕊雨
其中Ⅳ为SuRF描述子的维数。
(2)
(3)所示8参数的投影变换模型来描述图像间的几何
具有较强的鲁棒性和更快的速度。
通讯作者谭红春
Infbrmation Enginee ring College of’rraditiOna Chinese Chinese
【关键词】医学图像配准;图像处理,计算机辅助;加速鲁棒性特征;随机采样一致 算法 【Abs仃∞t】Tb
improVe the
Medjcine,Anhui University of Medicine.Hefei
1.1
SURF算法Bav等【61提出SuRF算法,主要包括 特征点检测包括3个步骤,首先建立积分图像,
特征点检测、特征点描述和特征点匹配3个部分。 然后用箱式滤波器建立图像的尺度空间,最后在建立 的尺度空间上对特征点进行定位。检测的目标是找到 尺度不变点,SURF采用了公式(1)的快速Hessian 矩阵检测特征点:
23003 1.China
medicaJ image regjstratjon robustness,accufacy and speed, algorithm combining SURF with
this paper proposes Address Correspondence
a
medical image registration
Memcal Image
谷宗运1二GU ZD,幄r2f,7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ab s t r a c t : Du e t o t h e l a r g e r e s o l u t i o n d i f f e r e n c e b e t we e n t h e t h r e e — d i me n s i o n a l l a s e r i ma g i n g s e n s o r a n d v i s i b l e i ma — g i n g s e n s o r , mi s ma t c h i n g f e a t u r e p o i n t s a r e n u me r o u s . I n o r d e r t o s o l v e t h i s p r o b l e m, a r e g i s t r a t i o n me t h o d o f h i g h - l o w r e s o l u t i o n i ma g e s b a s e d o n i mp r o v e d S U RF i s p r o p o s e d . F i r s t l y, l o w— r e s o l u t i o n i ma g e i s p r o c e s s d e t h r o u g h b i l i n e a r i n —
t e r p o l a t i o n . S u b s e q u e n t l y , S URF f e a t u r e S c o a r s e ma t c h i n g i s c o mp l e t e d b y u s i n g t h e n e a r e s t n e i g h b o r v e c t o r b a s 感器 与可 见光传感 器 图像分 辨 率差 异较 大 , 配准 过程 中特 征 点误
匹配情况 严 重 的问题 , 提 出 了一种基 于 改进 S U R F算 子 的高低分 辨率 图像 配 准方 法 。首 先 , 采
用双线性插值算法对低分辨率 图像进行预处理 , 然后在经典 S U R F算子 的基础上, 采用最近邻
Re g i s t r a t i o n me t h o d o f h i g h- l o w r e s o l ut i o n i ma g e s
b a s e d o n i mp r o v e d S URF
Z E N G Z h a o - y a n g , C H E N G X i a n g - z h e n g , C H E N H a n g , S O N G Y i — s h u o , D O U X i a o - j i e , H U A N G C h a o
,图像 与信号处 理 ・
基 于改进 S U R F算子 的高低分辨率 图像 配准方法
曾朝阳 , 程相正 , 陈 杭 , 宋一铄 , 窦晓杰 , 黄 超
( 1 . 装备学院光电装备系 , 北京 1 0 1 4 1 6 ; 2 . 装备学 院研究生 院, 北京 1 0 1 4 1 6 )
第4 4卷 第 2期
2 0 1 4年 2月
激 光 与 红 外
L AS ER & I N F RARE D
V o 1 . 4 4. No . 2 F e b r u a r y, 2 0 1 4
文章编号 : 1 0 0 1 — 5 0 7 8 ( 2 0 1 4 ) 0 2 - 0 2 0 7 - 0 6
约1 1 %, 进 一步提 高 了配 准 的精 度 。 关键词 : 图像处 理 ; 高低 分辨 率 配准 ; S U R F ; 特 征偏 移 一致 性
中 图分 类 号 : T P 3 9 1 . 4 1 文献 标识 码 : A DOI : 1 0 . 3 9 6 9 / j . i s s n . 1 0 0 1 - 5 0 7 8 . 2 0 1 4 . 0 2 . 0
t h e c l a s s i c l a S URF . T h e ma t c h i n g i s f u r t h e r o p t i mi z e d a c c o r d i n g t o f e a t u r e s h i t f c o h e r e n c e r u l e . F i n a l l y, a f i f n e r e l a t i o n —
向量 匹配法 完成 S U R F特 征 的粗 匹配 , 并基 于特 征偏 移 一致性 原则 对 匹配 情况 做进 一 步优 化 ,
最后结合 R A N S A C和最小二乘法求出图像之 间的仿射关系, 利用所求的变换参数插值得到配 准后的图像。实验结果表明, 该配准方法在保持配准速度 的同时, 结构相似性测量指数提高 了