高考数学试题库及参考答案 精品
高三数学考试卷及答案

一、选择题(本大题共10小题,每小题5分,共50分)1. 下列各数中,有理数是:A. √2B. πC. -3D. 无理数2. 函数y=2x-1的图像是:A. 一次函数图像B. 二次函数图像C. 指数函数图像D. 对数函数图像3. 已知等差数列{an}的第一项a1=3,公差d=2,则第10项an的值为:A. 19B. 21C. 23D. 254. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数是:A. 105°B. 120°C. 135°D. 150°5. 若复数z满足|z-1|=2,则复数z在复平面上的几何意义是:A. z到点(1,0)的距离为2B. z到点(0,1)的距离为2C. z到点(1,1)的距离为2D. z到点(0,0)的距离为26. 下列函数中,是奇函数的是:A. y=x^2B. y=x^3C. y=x^4D. y=x^57. 已知函数f(x)=x^2-4x+3,则f(2)的值为:A. 1B. 3C. 5D. 78. 在直角坐标系中,点P(2,3)关于y轴的对称点坐标是:A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,3)9. 若log2(x+1)=3,则x的值为:A. 2B. 3C. 4D. 510. 下列不等式中,正确的是:A. 3x > 2xB. 3x < 2xC. 3x ≤ 2xD. 3x ≥ 2x二、填空题(本大题共5小题,每小题5分,共25分)11. 已知等比数列{an}的第一项a1=1,公比q=2,则第n项an=______。
12. 在△ABC中,若∠A=60°,b=8,c=10,则a=______。
13. 函数y=2^x的图像与y=2^(-x)的图像关于______对称。
14. 若复数z=3+4i,则|z|=______。
15. 已知等差数列{an}的前n项和为Sn,若a1=2,d=3,则S10=______。
高考数学试卷及答案解析

一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = 2x - 1,那么f(3)的值为()A. 5B. 7C. 9D. 11答案:C解析:将x=3代入函数f(x) = 2x - 1,得到f(3) = 23 - 1 = 6 - 1 = 5。
2. 若|a| = 3,|b| = 4,则|a + b|的最大值为()A. 7B. 8C. 11D. 12答案:C解析:由三角不等式可知,|a + b| ≤ |a| + |b|,所以|a + b| ≤ 3 + 4 = 7。
当a和b同号时,|a + b|取最大值,即|a + b| = |a| + |b| = 3 + 4 = 7。
3. 若x^2 - 4x + 3 = 0,则x的值为()A. 1B. 3C. 2D. 5答案:A解析:这是一个一元二次方程,可以通过因式分解或使用求根公式来解。
因式分解得(x - 1)(x - 3) = 0,所以x = 1或x = 3。
故选A。
4. 在等差数列{an}中,若a1 = 3,公差d = 2,则a10的值为()A. 21B. 23C. 25D. 27答案:C解析:等差数列的通项公式为an = a1 + (n - 1)d,代入a1 = 3,d = 2,n = 10,得到a10 = 3 + (10 - 1)2 = 3 + 18 = 21。
5. 若log2(x + 1) = 3,则x的值为()A. 7B. 8C. 9D. 10答案:B解析:由对数定义可知,2^3 = x + 1,即8 = x + 1,解得x = 7。
6. 若复数z满足|z - 1| = 2,则复数z在复平面上的轨迹是()A. 圆B. 线段C. 直线D. 双曲线答案:A解析:复数z可以表示为z = x + yi,其中x和y是实数。
由|z - 1| = 2,即|(x - 1) + yi| = 2,表示复数z到点(1, 0)的距离为2,因此z在复平面上的轨迹是以(1, 0)为圆心,2为半径的圆。
高考数学试卷及解析答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各数中,属于有理数的是()A. √2B. πC. -3/5D. 无理数2. 函数y = 2x - 1的图象是()A. 一次函数的图象,斜率为正,y轴截距为负B. 一次函数的图象,斜率为负,y轴截距为正C. 二次函数的图象,开口向上D. 二次函数的图象,开口向下3. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S6 = 27,则第10项a10的值为()A. 6B. 7C. 8D. 94. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°5. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则ac > bcC. 若a > b,则log2a > log2bD. 若a > b,则a + c > b + c6. 函数f(x) = |x - 1| + |x + 1|的值域为()A. [0, +∞)B. [-2, +∞)C. [-1, +∞)D. [0, 2]7. 已知复数z = a + bi(a, b ∈ R),若|z - 3i| = |z + i|,则实数a的值为()A. 0B. 1C. 2D. 38. 下列各点中,在直线3x - 4y + 5 = 0上的是()A. (1, 1)B. (2, 2)C. (3, 3)D. (4, 4)9. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(-1, 2),则a的值为()A. 1B. 2C. 3D. 410. 已知函数y = log2(x - 1) + log2(x + 1)的定义域为D,则D的值为()A. (-1, 1)B. (-1, +∞)C. (1, +∞)D. (-∞, -1)∪(1, +∞)11. 在等比数列{an}中,若a1 = 2,公比q = 3,则第n项an的值为()A. 2^nB. 3^nC. 6^nD. 9^n12. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为()A. 0B. 1C. -1D. 不存在二、填空题(本大题共6小题,每小题5分,共30分)13. 函数y = 2x - 3的图象与x轴的交点坐标为______。
泉州高考数学试题及答案

泉州高考数学试题及答案一、选择题(每题5分,共30分)1. 若函数 \( f(x) = x^3 - 3x \),则 \( f'(x) \) 的值为:A. \( 3x^2 - 3 \)B. \( x^2 - 3 \)C. \( 3x^2 + 3 \)D. \( x^3 - 3 \)答案:A2. 已知 \( a \) 和 \( b \) 是等差数列的前两项,\( c \) 是第三项,若 \( a + b + c = 12 \) 且 \( a + c = 2b \),则 \( b \) 的值为:A. 2B. 3C. 4D. 5答案:C3. 已知 \( \triangle ABC \) 是一个直角三角形,其中 \( \angleC = 90^\circ \),\( AB = 10 \),\( BC = 6 \),则 \( AC \) 的长度为:A. 8B. 6C. 4D. 2答案:A4. 已知 \( \sin \alpha = \frac{3}{5} \),且 \( \alpha \) 在第一象限,则 \( \cos \alpha \) 的值为:A. \( \frac{4}{5} \)B. \( -\frac{4}{5} \)C. \( \frac{3}{5} \)D. \( -\frac{3}{5} \)答案:A5. 已知 \( \log_2 3 = a \),\( \log_2 9 = b \),则 \( a^2 - b \) 的值为:A. 1B. 2C. 3D. 4答案:C6. 已知函数 \( g(x) = x^2 - 4x + 4 \),若 \( g(x) \) 在 \( x = 2 \) 处取得最小值,则 \( g(x) \) 的最小值为:A. 0B. 4C. -4D. 8答案:A二、填空题(每题5分,共20分)1. 若 \( \tan \theta = 2 \),则 \( \sin \theta \) 的值为________。
数学高考考试题及答案

数学高考考试题及答案一、选择题1. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值。
A. 4B. 5C. 6D. 7答案:A2. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},求A∩B。
A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}答案:B3. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的点积。
A. -2B. 5C. 11D. 14答案:C4. 已知等差数列{an}的首项a1 = 2,公差d = 3,求第5项a5。
A. 17B. 18C. 19D. 20答案:A5. 已知圆的方程为(x - 2)^2 + (y - 3)^2 = 9,求圆心到直线x + y - 6 = 0的距离。
A. 0B. 3C. 4D. 5答案:B二、填空题1. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求g(2)的值。
答案:52. 已知复数z = 2 + 3i,求z的共轭复数。
答案:2 - 3i3. 已知直线方程为y = 2x + 1,求该直线与x轴的交点坐标。
答案:(-1/2, 0)4. 已知等比数列{bn}的首项b1 = 4,公比q = 2,求第4项b4。
答案:325. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。
答案:6三、解答题1. 已知函数h(x) = x^2 - 4x + 4,求该函数的最小值。
答案:02. 已知矩阵A = [[1, 2], [3, 4]],求矩阵A的行列式。
答案:-23. 已知函数f(x) = x^2 - 6x + 8,求函数f(x)的对称轴。
答案:x = 34. 已知抛物线方程为y = -2x^2 + 4x + 1,求抛物线的顶点坐标。
答案:(1, 3)5. 已知圆的方程为x^2 + y^2 - 6x + 8y - 24 = 0,求圆的半径。
2024年新课标全国Ⅰ卷数学高考真题及参考答案

2024年新课标全国Ⅰ卷数学高考真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知集合{}553<<-=x x A ,{}3,2,0,13--=,B ,则=B A ()A.{}0,1-B.{}32, C.{}0,13--, D.{}2,0,1-2.若i z z+=-11,则=z ()A.i --1B.i +-1C.i -1D.i +13.已知向量()1,0=a,()x b ,2= ,若()a b b 4-⊥,则=x ()A.2- B.1- C.1D.24.已知()m =+βαcos ,2tan tan =βα,则()=-βαcos ()A.m3- B.3m -C.3m D.m35.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为3,则圆锥的体积为()A.π32 B.π33 C.π36 D.π396.已知函数()()⎪⎩⎪⎨⎧≥++<---=0,1ln 0,22x x e x a ax x x f x 在R 上单调递增,则a 的取值范围是()A.(]0,∞-B.[]0,1-C.[]1,1-D.[)∞+,07.当[]π2,0∈x 时,曲线x y sin =与⎪⎭⎫⎝⎛-=63sin 2πx y 的交点个数为()A.3B.4C.6D.88.已知函数()x f 定义域为R ,()()()21-+->x f x f x f ,且当3<x 时,()x x f =,则下列结论中一定正确的是()A.()10010>fB.()100020>fC.()100010<f D.()1000020<f二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,由选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值1.2=x ,样本方差01.02=S ,已知该种植区以往的亩收入X 服从正态分布()21.08.1,N ,假设失去出口后的亩收入Y 服从发正态分布()2,S x N ,则()(若随机变量Z 服从正态分布()2,σμN ,则()8413.0≈+<σμZ P )A.()2.02>>X PB.()5.0<>Z X PC.()5.0>>Z Y P D.()8.0<>Z Y P 10.设函数()()()412--=x x x f ,则()A.3=x 是()x f 的极小值点B.当10<<x 时,()()2xf x f <C.当21<<x 时,()0124<-<-x f D.当01<<-x 时,()()x f x f >-211.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于2-,到点()02,F 的距离与到定直线()0<=a a x 的距离之积为4,则()A .2-=aB .点()022,在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,y x 在C 上时,2400+≤x y三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线()0,012222>>=-b a by a x C :的左右焦点分别为21,F F ,过2F 作平行于y 轴的直线交C 于B A ,两点,若131=A F ,10=AB ,则C 的离心率为.13.若曲线x e y x+=在点()1,0处的切线也是曲线()a x y ++=1ln 的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己特有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分小于2的概率为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)记ABC ∆的内角C B A ,,的对边分别为c b a ,,.已知B C cos 2sin =,ab c b a 2222=-+.(1)求B ;(2)若ABC ∆的面积为33+,求c .16.(15分)已知()30,A 和⎪⎭⎫⎝⎛233,P 为椭圆()012222>>=+b a b y a x C :上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP ∆的面积为9,求l 的方程.17.(15分)如图,四棱锥ABCD P -中,⊥P A 底面ABCD ,2==PC P A ,1=BC ,3=AB .(1)若PB AD ⊥,证明:∥AD 平面PBC ;(2)若DC AD ⊥,且二面角D CP A --的正弦值为742,求AD .18.(17分)已知函数()()312ln-++-=x b ax xx x f .(1)若0=b ,且()0≥'x f ,求a 的最小值;(2)证明:曲线()x f y =是中心对称图形;(3)若()2->x f ,当且仅当21<<x ,求b 的取值范围.19.(17分)设m 为正整数,数列242.1,,,+m a a a 是公差不为0的等差数列,若从中删去两项i a 和()j i <后剩余的m 4项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列242.1,,,+m a a a 是()j i ,一一可分数列.(1)写出所有的()j i ,,61≤<≤j i ,使数列62.1,,,a a a 是()j i ,一一可分数列;(2)当3≥m 时,证明:数列242.1,,,+m a a a 是()13,2一一可分数列;(3)从242,1+m ,, 中一次任取两个数i 和j ()j i <,记数列242.1,,,+m a a a 是()j i ,一一可分数列的概率的概率为m P ,证明:81>m P .参考答案一、单项选择题1.A解析:∵553<<-x ,∴3355<<-x .∵2513<<,∴1523-<-<-.∴{}0,1-=B A .2.C解析:∵i z z +=-11,∴()()i i i z i iz z i z -=+=⇒+=⇒-+=11111.3.D 解析:()4,24-=-x a b ,∵()a b b4-⊥,∴()044=-+x x ,∴2=x .4.A解析:∵()m =+βαcos ,2tan tan =βα,∴()()32121tan tan 1tan tan 1sin sin cos cos sin sin cos cos cos cos -=-+=-+=-+=+-βαβαβαβαβαβαβαβα.∴()m 3cos -=-βα.5.B解析:由32⋅==r rl S ππ侧可得32=l ,∴3=r .∴ππ33393131=⋅⋅==Sh V .6.B由()()0,1ln ≥++=x x e x f x为增函数,故此分段函数在R 上递增,只需满足:⎪⎩⎪⎨⎧≤-≥-=--1022a a a,解得01≤≤-a .7.C解析:∴32π=T .8.B解析:()()()123f f f +>,()22=f ,()11=f .()()()()()122234f f f f f +>+>,()()()()()1223345f f f f f +>+>,……()()()8912123410>+>f f f ,……,()()()9871233237715>+>f f f ,()()()15971377261016>+>f f f .∴()100020>f .二、多项选择题9.BC 解析:已知()21.08.1~,N X ,由题目所给条件:若随机变量Z 服从正态分布,()8413.0≈+<σμZ P ,则()8413.09.1≈<X P ,易得()1587.08413.012≈-<>X P .故A 错误,B 正确;对于C:()21.01.2~,N Y ,∴()5.01.2=>Y P ,即()()5.01.22=>>>Y P Y P ,故C正确;对于D:同上易得()8413.02.2≈<Y P .由正态密度曲线的对称性可知()()8.08412.02.22>≈<=>Y P Y P .故D 错误.10.ACD解析:对于A:()()()()()()31314122--=-+--='x x x x x x f .令()0='x f ,解得11=x ,32=x .x 变化时,()x f '与()x f 变化如下表:故A 正确;对于B:当10<<x 时,102<<<x x ,又()x f 在()1,0上单调递增,所以()()x f xf <2,故B 错误;对于C :令()2112<<-=x x t ,则31<<x .()x f 在()3,1上单调递减,()()()13f t f f <<,()43-=f ,()11=f ,即()0121<-<-x f .故C 正确;对于D:()()()412--=x x x f ,()()()()()21421222---=---=-x x x x x f .∴()()()()()32122212-=--=--x x x x f x f .当01<<-x 时,()013<-x ,∴()()x f x f -<2成立.故D 正确.11.ABD解析:对于A:O 点在曲线C 上,O 到F 的距离和到a x =的距离之积为4,即42=⨯a ,解得2±=a .又∵0<a ,∴2-=a ,故A 正确;对于B:由图象可知曲线C 与x 轴正半轴相交于一点,不妨设B 点.设()0,m B ,其中2>m ,由定义可得()()422=+-m m ,解得22±=m .又∵2>m ,∴22=m ,故B 正确;对于C:设C 上一点()y x P ,,()()42222=++-x y x ,其中2->x .化简得曲线C 的轨迹方程为()()2222216--+=x x y ,其中2->x .已知2=x 时,12=y ,对x 求导()()2223232--+-=x x y .2122-==x y ,则在2=x 是下降趋势,即存在2<x 时,1>y 成立,故C 错误;对于D:()()2222216--+=x x y ,∵()022≥-x ,∴()22216+≤x y .∴240+≤x y .又∵20->x ,2400+≤x y ,则24000+≤≤x y y ,故D 正确.三、填空题12.23解析:作图易得131=A F ,52=AF ,且212F F AF ⊥,12222121=-=AF A F F F .由双曲线定义可得:8221=-=AF A F a ,6221==F F c ,则23==a c e .13.2ln 解析:1+='xe y ,20='==x y k ,切线l 的方程:12+=x y .设l 与曲线()a x y ++=1ln 的切点横坐标为0x ,110+='x y ,则2110=+=x k ,解得210-=x .代入12+=x y 可得切点为⎪⎭⎫⎝⎛-021,,再代入()a x y ++=1ln ,a +=21ln 0,即2ln =a .14.21解析:不妨确定甲的出牌顺序为7,5,3,1.乙随机出牌有2444=A 种基本事件.甲的数字1最小,乙的数字8最大.若数字1和数字8轮次不一致,乙最少得2分,甲最多2分.站在甲的视角下,分四种情况:①8对1,则7必得分(1)若得3分:3,5都得分,3对2,5对4(1种情况)(2)若得2分:3,5只有一个得分(ⅰ):5得分,3不得分:5对2,3对4或6(2种情况);5对4,3对6(1种情况);(ⅱ):3得分,5不得分:3对2,5对6(1种情况);②8对3,7必得分5得分:5对2,4,7对应2种情况,共有422=⨯种情况;③8对5,7必得分3得分:3对2,7对应2中情况,共有221=⨯种情况;④8对7,最多得2分3得分,5得分:3对2,5对4(1种情况).共有12种情况,甲总得分不小于2的概率为212412=.四、解答题15.解:(1)∵ab c b a 2222=-+,∴22222cos 222==-+=ab ab ab c b a C .∴22cos 1sin 2=-=C C .又∵B C cos 2sin =,∴22cos 2=B ,∴21cos =B ,∴3π=B .(2)∵33sin 21+==∆Bac S ABC ,∴333sin 21+=ac π.即434+=ac ……①由(1)易知4π=C ,3π=B .由正弦定理C c A a sin sin =,()CcC B a sin sin =+.∴4sin43sin πππc a =⎪⎭⎫ ⎝⎛+,∴224269c =+,∴c a 213+=.代入①式解得22=c .16.解:(1)将()30,A ,⎪⎭⎫⎝⎛233,P 代入椭圆12222=+b y a x 得:⎪⎪⎩⎪⎪⎨⎧=+=149919222b a b ,可得⎪⎩⎪⎨⎧==91222b a ,∴3222=-=b a c ,∴32=a ,3=c .∴离心率21323===a c e .(2)①当l 斜率不存在时,29332121=⨯⨯=-⋅=∆A P ABP x x PB S ,不符,舍去.②当l 斜率存在时,设l 方程:()323-=-x k y .联立()⎪⎪⎩⎪⎪⎨⎧=+-=-191232322y x x k y 可得:()()()02736212342222=--++-++k k x k k x k.由韦达定理:()34273622+--=⋅k k k x x B P ,又3=P x ,∴()3491222+--=k k k x B .∵BP 与y 轴交点⎪⎭⎫ ⎝⎛+-233,0k ,∴()9349123323213232122=+---⋅+=-+⋅=∆k k k k x x k S B P ABP 解得21=k 或23,∴l 方程x y 21=或0623=--y x .17.解:(1)证明:∵⊥P A 底面ABCD ,∴AD P A ⊥.又∵PB AD ⊥,∴⊥AD 平面P AB ,则AB AD ⊥.又∵1,32===BC AB AC ,,∴222BC AB AC +=,则BC AB ⊥,∴BC AD ∥.∵⊄AD 平面PBC ,⊂BC 平面PBC ,∴∥AD 平面PBC .(2)以D 为原点,DA 为x 轴正方向建立如图所示空间直角坐标系.设0,0,,>>==q p q DC p DA ,满足4222==+AC q p ,则()()()()0,0,0,0,,0,20,0,0,D q C p P p A ,,.设平面APC 法向量为()111,,z y x m =,∴()()0,,200q p AC AP -==,,,.∴⎪⎩⎪⎨⎧=+-=⋅==⋅002111qy px m AC z m AP ,取()0,,p q m = .设平面DPC 法向量为()()()0,,0,2,0,,,,222q DC p DP z y x n ===.∴⎪⎩⎪⎨⎧==⋅=+=⋅002222qy n DC z px n AP ,取()p n -=,0,2 .∴2222742142,cos ⎪⎪⎭⎫⎝⎛-=+⋅+=p q p qn m .∴7142=+p q .又∵422=+q p ,∴3=p ,即3=AD .18.解:(1)0=b 时,()ax x x x f +-=2ln,∴()()022≥+-⋅='a x x x f .∴()22-≥x x a .又∵()2,0∈x ,设()()22-=x x x h ,当()2,0∈x 时,()2max -=x h ,∴2-≥a .∴a 的最小值为2-.(2)由题意可知()x f 的定义域为()20,.()()()()()a x b x a xx bx x a x x x f x f 2111ln 111ln1133=-+-++-++++-+=-++.∴()x f 关于()a ,1中心对称.(3)()212ln 3->-++-x b ax xx ,即()0212ln3>+-++-x b ax x x 即()()02112ln 3>++-+-+-a x b x a xx.令1-=x t ,则()1,0∈t ,()0211ln 3>++++-+=a bt at tt t g .()t g 关于()a +2,0中心对称,则当且仅当()1,0∈t 时,()0>t g 恒成立.需02=+a ,即2-=a ,()0≥'t g 在()1,0恒成立.()()()()22222212231223032112t t t b t bt bt t t t g --≥⇒--≥⇒≥+--+='.令2t m =,则()1,0∈m ,()()12122-=--=m m m m m h .()2max -=m h ,∴23-≥b ,即32-≥b .∴⎪⎭⎫⎢⎣⎡+∞-∈,32b .19.解:(1)从1,2,3,4,5,6中删去()j i ,剩下的四个数从小到大构成等差数列,记为{}k b ,41≤≤k .设{}k b 公差为d ,已知1=d ,否则,若2≥d ,则6314≥=-d b b ,又51614=-≤-b b ,故矛盾,∴1=d ,则{}k b 可以为{}4,3,2,1,{}5,4,3,2,{}6,5,4,3,则对应()j i ,分别为()()()2,16,16,5,,.(2)证明:只需考虑前14项在去掉()13,2后如何构成3组4项的等差数列,后面剩下的()34124-=-m m 可自然依序划分为3-m 组等差数列.则只需构造{}14,12,11,10,9,8,7,6,5,4,3,1的一组划分,使划分出的3组数均成等差数列,取{}{}{}14,11,8,512,9,6,310,7,4,1,,,这单租数均为公差为3的等差数列,对于剩下的()34-m 个数,按每四个相邻数一组,划分为3-m 组即可.由此可见去掉()13,2后,剩余的m 4个数可以分为m 组,每组均为等差数列,故3≥m 时,24,2,1+m 是()13,2可分数列,即2421,,,+m a a a 是()13,2可分数列.(3)证明:用数学归纳法证明:共有不少于12++m m 中()j i ,的取法使24,2,1+m 是()j i ,可分数列,①当1=m 时,由(1)知,有11132++=种()j i ,的取法,②假设当n m =时,有至少12++n n 种()j i ,的取法,则当1+=n m 时,考虑数列{}64,,2,1+n 下对于()j i ,分三种情况讨论:1°当1=i 时,取()1,,,2,1,0,24+=+=n n k k j 则j i ,之间(不含j i ,)有k k 41124=--+个连续的自然数,可按形如{}{}{}14,4,14,249,8,7,65,4,3,2+--k k k k ,,, 划分,剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2,1,0+=n n k ,∴这种情况有2+n 种()j i ,的取法.2°当2=i 时,取()1,,,2,14+=+=n n k k j ,现以k 为公差构造划分为:{}13,12,11+++k k k ,,{}33,32,3,3+++k k k ,……{}14,13,12,1----k k k k ,{}k k k k 4,3,22,,{}24,23,22,2++++k k k k (注意当2=k 时,只有{}{}10,8,6,47,5,3,1,这两组)剩下的64,,44,34+++n k k ,也可按每四个连续自然数划分得到相应的等差数列,∵1,,,2+=n n k ,∴这种情况有n 种()j i ,的取法.3°当2>i 时,考虑{}64,,7,6,5+n 共24+n 个数,由归纳假设里n m =时,有至少12++n n 种()j i ,的取法.综合1°2°3°,当1+=n m 时,至少有()()()()1111222++++=+++++n n n n n n 中取法,由①②及数学归纳法原理,值共有不少于12++m m 种()j i ,的取法使24,2,1+m 为()j i ,可分数列,那么()()8188811681121411222222242=++++>++++=++++=++≥+m m m m m m m m m m m m C m m P m m ,∴81>m P .。
数学高考真题答案及解析版

数学高考真题答案及解析版一、选择题1. 本题考查函数的性质和应用。
设函数f(x) = 2^x - 3,若f(x) = 5,则x = 2。
因为f(x)在R上是增函数,所以f(x) > 5 当 x > 2。
因此,选项A正确。
2. 根据题目,我们需要求解不等式。
首先,将不等式整理为标准形式:3x - 2 > 7。
解得x > 3,所以选项C是正确答案。
3. 题目涉及三角函数的图像和性质。
正弦函数y = sin(x)在区间[0,2π]内的最大值为1,最小值为-1。
因此,选项B描述正确。
4. 这是一个关于复数的问题。
设复数z = a + bi,其中a和b是实数。
根据题目条件,z的模长为5,即√(a^2 + b^2) = 5。
又因为z的实部为3,即a = 3。
代入模长公式,解得b = 4。
所以,复数z = 3 +4i,选项D正确。
5. 本题要求我们利用概率的基本原理计算事件的概率。
根据古典概型,事件A的概率P(A) = 事件A的基本事件数 / 总的基本事件数。
这里,事件A是抽取到红色球,有3个红色球和5个蓝色球,总共8个球。
所以,P(A) = 3/8。
选项B是正确答案。
二、填空题1. 题目要求求解几何级数的和。
根据等比数列求和公式,S = a(1 -r^n) / (1 - r),其中a是首项,r是公比,n是项数。
将题目中的数值代入公式,得到S = 1(1 - 2^5) / (1 - 2) = 31/(-1) = -31。
2. 本题考查圆的方程和直线与圆的位置关系。
设圆心为O(0,0),半径r = 3。
直线方程为y = x + 1。
圆心到直线的距离d = |0 - 0 + 1|/ √2 = 1/√2。
因为 d < r,所以直线与圆相交。
根据相交弦的性质,弦长l = 2√(r^2 - d^2) = 2√(9 - 1/2) = √34。
三、解答题1. 首先,我们需要证明函数f(x) = x^3 - 3x^2 + 2x在区间[0,3]上是单调递增的。
高三数学考试卷子及答案

一、选择题(每题5分,共50分)1. 若函数f(x) = 2x^2 - 3x + 1的图像开口向上,则其顶点坐标为()。
A. (1, 0)B. (1, -2)C. (0, 1)D. (0, -2)2. 下列函数中,在区间(-∞,+∞)上单调递增的是()。
A. y = x^3B. y = x^2C. y = x^3 - xD. y = x^2 + 2x3. 若等差数列{an}的前n项和为Sn,且a1 = 3,S5 = 45,则该数列的公差d为()。
A. 3B. 4C. 5D. 64. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f(2) = 4,f(3) = 6,则a,b,c的值分别为()。
A. 1,1,1B. 2,0,2C. 1,2,1D. 2,1,25. 在三角形ABC中,∠A = 60°,AB = AC = 2,BC = √3,则三角形ABC的面积为()。
A. 2B. √3C. 3D. 46. 已知复数z = a + bi(a,b ∈ R),若|z| = 1,则z的辐角θ满足()。
A. 0 ≤ θ < 2πB. 0 ≤ θ ≤ 2πC. -π ≤ θ < 0D. -π ≤θ ≤ 07. 若函数f(x) = x^3 - 3x + 2在x = 1处的导数为0,则f(x)在x = 1处的极值点为()。
A. 极大值点B. 极小值点C. 无极值点D. 不存在极值点8. 下列不等式中,正确的是()。
A. 2x + 3 > 3x + 2B. x^2 + 2x + 1 < 0C. x^2 - 4x + 4 > 0D.x^2 - 3x + 2 ≤ 09. 在直角坐标系中,点P(2,-1)关于直线y = x的对称点为()。
A. (2,-1)B. (1,2)C. (-1,2)D. (-2,1)10. 已知函数f(x) = |x - 2| + |x + 3|,则f(x)的最小值为()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2012北京,18,13分)已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a2=4b时,求函数f(x)+g(x)的单调区间,并求其在区间(-∞,-1]上的最大值.2.(2012安徽,19,13分)设函数f(x)=ae x++b(a>0).(1)求f(x)在[0,+∞)内的最小值;(2)设曲线y=f(x)在点(2, f(2))处的切线方程为y=x,求a,b的值.3.(2012重庆,16,13分)设f(x)=aln x++x+1,其中a∈R,曲线y=f(x)在点(1, f(1))处的切线垂直于y轴.(1)求a的值;(2)求函数f(x)的极值.4. (2012大纲全国,20,12分)设函数f(x)=ax+cos x,x∈[0,π].(1)讨论f(x)的单调性;(2)设f(x)≤1+sin x,求a的取值范围.5.(2012湖北,17,12分)已知向量a=(cos ωx-sin ωx,sin ωx),b=(-cos ωx-sin ωx,2cos ωx),设函数f(x)=a·b+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈. (1)求函数f(x)的最小正周期(2)若y=f(x)的图像经过点,求函数f(x)在区间上的取值范围6.(2012湖北,18,12分)已知等差数列{a n}前三项的和为-3,前三项的积为8.(1)求等差数列{a n}的通项公式;(2)若a2,a3,a1成等比数列,求数列{|a n|}的前n项和.8.(2012河北高三模拟,21,12分)设函数f(x)=x4+bx2+cx+d,当x=t1时, f(x)有极小值. (1)若b=-6时,函数f(x)有极大值,求实数c的取值范围;(2)在(1)的条件下,若存在实数c,使函数f(x)在闭区间[m-2,m+2]上单调递增,求实数m的取值范围;(3)若函数f(x)只有一个极值点,且存在t2∈(t1,t1+1),使f '(t2)=0,证明:函数g(x)=f(x)-x2+t1x在区间(t1,t2)内最多有一个零点.9. (2012沈阳高三模拟,21,12分)已知椭圆+=1(a>b>0)与x轴、y轴的正半轴分别交于A、B两点,原点O到直线AB的距离为,该椭圆的离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过点P的直线l与椭圆交于M,N两个不同的点,使=4成立?若存在,求出l的方程;若不存在,说明理由.10.(2013高考仿真试题一,20,12分)已知抛物线y2=2px(p>0)的焦点为F,过点F作直线l 与抛物线交于A,B两点,抛物线的准线与x轴交于点C.(1)证明:∠ACF=∠BCF;(2)求∠ACB的最大值,并求∠ACB取得最大值时线段AB的长.11.(2013高考仿真试题二,20,12分)已知中心在原点O,焦点在x轴上,离心率为的椭圆过点.(1)求椭圆的方程;(2)设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.12.(2013高考仿真试题三,20,12分)已知圆x2+y2=1过椭圆+=1(a>b>0)的两焦点,与椭圆有且仅有两个公共点,直线y=kx+m与圆x2+y2=1相切,与椭圆+=1相交于A,B两点. 记λ=·,且≤λ≤.(1)求椭圆的方程;(2)求k的取值范围;(3)求△OAB的面积S的取值范围.13. (2013高考仿真试题五,21,12分)已知函数f(x)=aln x+x2-(1+a)x,其中a∈R.(1)求函数f(x)的单调区间;(2)若f(x)≥0对定义域内的任意x恒成立,求实数a的取值范围;(3)证明:对于任意正整数m,n,不等式++…+>恒成立.14.(2012浙江绍兴一中高三十月月考,20,10分)已知,,其中(e是自然常数).(Ⅰ)求的单调性和极小值;(Ⅱ)求证:在上单调递增;(Ⅲ)求证:.15. (2012江西省临川一中、师大附中联考,20,13分)已知函数,a∈R.(1)若a=-4,求函数f(x)的单调区间;(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).16. (2012北京海淀区高三11月月考,19,14分)已知函数.(Ⅰ)若在处取得极大值,求实数的值;(Ⅱ)若,直线都不是曲线的切线,求的取值范围;(Ⅲ)若,求在区间上的最大值.17.(2012湖北省黄冈中学高三11月月考,21,14分)已知函数在上为增函数,且,,.(1)求的值;(2)当时,求函数的单调区间和极值;(3)若在上至少存在一个,使得成立,求的取值范围.18.(2013湖北黄冈市高三三月质量检测,22,14分)设.(Ⅰ)若对一切恒成立,求的最大值.(Ⅱ)设,且是曲线上任意两点,若对任意的,直线AB的斜率恒大于常数,求的取值范围;(Ⅲ)求证:.答案理数1.(1)f '(x)=2ax,g'(x)=3x2+b.因为曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,所以f(1)=g(1),且f'(1)=g'(1).即a+1=1+b,且2a=3+b.解得a=3,b=3.(2)记h(x)=f(x)+g(x). 当b=a2时,h(x)=x3+ax2+a2x+1, h'(x)=3x2+2ax+a2.令h'(x)=0,得x1=-,x2=-.a>0时,h(x)与h'(x)的情况如下:x-∞,---,---,+∞h'(x) + 0 - 0 +h(x) ↗↘↗所以函数h(x)的单调递增区间为和;单调递减区间为.当-≥-1,即0<a≤2时,函数h(x)在区间(-∞,-1]上单调递增,h(x)在区间(-∞,-1]上的最大值为h(-1)=a-a2.当-<-1,且-≥-1,即2<a≤6时,函数h(x)在区间内单调递增,在区间上单调递减,h(x)在区间(-∞,-1]上的最大值为h=1.当-<-1,即a>6时,函数h(x)在区间内单调递增,在区间内单调递减,在区间上单调递增.又因h-h(-1)=1-a+a2=(a-2)2>0,所以h(x)在区间(-∞,-1]上的最大值为h=1. 2.(1)f '(x)=ae x-,当f '(x)>0,即x>-ln a时, f(x)在(-ln a,+∞)上递增;当f '(x)<0,即x<-ln a时, f(x)在(-∞,-ln a)上递减.(i)当0<a<1时,-ln a>0, f(x)在(0,-ln a)上递减,在(-ln a,+∞)上递增,从而f(x)在[0,+∞)上的最小值为f(-ln a)=2+b;(ii)当a≥1时,-ln a≤0, f(x)在[0,+∞)上递增,从而f(x)在[0,+∞)上的最小值为f(0)=a++b. (2)依题意f '(2)=ae2-=,解得ae2=2或ae2=-(舍去).所以a=,代入原函数可得2++b=3,即b=.故a=,b=. 3.(1)因f(x)=aln x++x+1,故f '(x)=-+.由于曲线y=f(x)在点(1, f(1))处的切线垂直于y轴,故该切线斜率为0,即f '(1)=0,从而a-+=0,解得a=-1.(2)由(1)知f(x)=-ln x++x+1(x>0),f '(x)=--+==.令f '(x)=0,解得x1=1,x2=-因x2=-不在定义域内,舍去.当x∈(0,1)时, f '(x)<0,故f(x)在(0,1)上为减函数;当x∈(1,+∞)时, f '(x)>0,故f(x)在(1,+∞)上为增函数.故f(x)在x=1处取得极小值f(1)=3. 4.(1)f '(x)=a-sin x. (2分)(i)当a≥1时,f '(x)≥0,且仅当a=1,x=时, f '(x)=0,所以f(x)在[0,π]上是增函数;(ii)当a≤0时, f '(x)≤0,且仅当a=0,x=0或x=π时, f '(x)=0,所以f(x)在[0,π]上是减函数; (iii)当0<a<1时,由f '(x)=0解得x1=arcsin a,x2=π-arcsin a.当x∈[0,x1)时,sin x<a, f '(x)>0, f(x)是增函数;当x∈(x1,x2)时,sin x>a, f '(x)<0, f(x)是减函数;当x∈(x2,π]时,sin x<a, f '(x)>0, f(x)是增函数. (6分)(2)由f(x)≤1+sin x得f(π)≤1,aπ-1≤1,所以a≤.令g(x)=sin x-x,则g'(x)=cos x-.当x∈时,g'(x)>0,当x∈时,g'(x)<0.又g(0)=g=0,所以g(x)≥0,即x≤sin x. (9分)当a≤时,有f(x)≤x+cos x.(i)当0≤x≤时,x≤sin x,cos x≤1,所以f(x)≤1+sin x;(ii)当≤x≤π时, f(x)≤x+cos x=1+-sin≤1+sin x.综上,a的取值范围是. (12分) 5. (1)因为f(x)=sin2ωx-cos2ωx+2sin ωx·cos ωx+λ=-cos 2ωx+sin 2ωx+λ=2sin+λ.由直线x=π是y=f(x)图象的一条对称轴,可得sin=±1,所以2ωπ-=kπ+(k∈Z),即ω=+(k∈Z).又ω∈,k∈Z,所以k=1,故ω=.所以f(x)的最小正周期是.(2)由y=f(x)的图象过点,得f=0,即λ=-2sin=-2sin=-,即λ=-.故f(x)=2sin-,由0≤x≤,有-≤x-≤,所以-≤sin≤1,得-1-≤2sin-≤2-,故函数f(x)在上的取值范围为[-1-,2-]. 6. (1)设等差数列{a n}的公差为d,则a2=a1+d,a3=a1+2d,由题意得解得或所以由等差数列通项公式可得a n=2-3(n-1)=-3n+5或a n=-4+3(n-1)=3n-7.故a n=-3n+5或a n=3n-7.(2)当a n=-3n+5时,a2,a3,a1分别为-1,-4,2,不成等比数列;当a n=3n-7时,a2,a3,a1分别为-1,2,-4,成等比数列,满足条件.故|a n|=|3n-7|=记数列{|a n|}的前n项和为S n.当n=1时,S1=|a1|=4;当n=2时,S2=|a1|+|a2|=5;当n≥3时,S n=S2+|a3|+|a4|+…+|a n|=5+(3×3-7)+(3×4-7)+…+(3n-7)=5+=n2-n+10.当n=2时,满足此式,综上,S n=7.(1)当n=k∈N+时,S n=-n2+kn取最大值,即8=S k=-k2+k2=k2,故k2=16,因此k=4,从而a n=S n-S n-1=-n(n≥2).又a1=S1=,所以a n=-n.(2)因为b n==,T n=b1+b2+…+b n=1+++…++,所以T n=2T n-T n=2+1++…+-=4--=4-. 8.(1)因为f(x)=x4+bx2+cx+d,所以f '(x)=x3-12x+c. 设h(x)=x3-12x+c,(2分)由题意知,方程h(x)=0有三个互异的实根,∵h'(x)=3x2-12,令h'(x)=0,得x=±2.x (-∞,-2) -2 (-2,2) 2 (2,+∞) h'(x) + 0 - 0 +h(x) 增c+16(极大值) 减c-16(极小值) 增所以故-16<C<16. span (4<>分)(2)存在c∈(-16,16),使f '(x)≥0,即x3-12x≥-c,所以x3-12x>-16,即(x-2)2(x+4)>0,(*)在区间[m-2,m+2]上恒成立. (6分)所以[m-2,m+2]是不等式(*)解集的子集,所以或m-2>2,即-2或m>4. (8分)(3)证明:由题设,可得存在α,β∈R,使f '(x)=x3+2bx+c=(x-t1)(x2+αx+β),且x2+αx+β≥0恒成立. (9分)又f '(t2)=0,且在x=t2两侧同号,所以f '(x)=(x-t1)(x-t2)2. (10分)另一方面,g'(x)=x3+2bx+c-(x-t1)=x3+(2b-1)x+t1+c=(x-t1)[(x-t2)2-1].因为t12,且t2-t1<1,所以-11-t22<0.所以0<(x-t2)2<1,所以(x-t2)2-1<0,而x-t1>0,所以g'(x)<0,所以g(x)在(t1,t2)内单调递减.从而g(x)在(t1,t2)内最多有一个零点. (12分)9.(Ⅰ)由题意得,直线AB的方程为bx+ay-ab=0(a>b>0),(1分)由=及=,得a=2,b=1. (3分)所以椭圆的方程为+y2=1. (4分)(Ⅱ)当直线l的斜率不存在时,M(0,-1),N(0,1),易知符合条件,此时直线l的方程为x=0. (6分) 当直线l的斜率存在时,设直线l的方程为y=kx+,代入+y2=1得(9+36k2)x2+120kx+64=0.由Δ=14 400k2-256(9+36k2)>0,解得k2>.设M(x1,y1),N(x2,y2),则x1+x2=-,①x1x2=,②(9分)由=4得x1=4x2,③(10分)由①②③消去x1,x2,得=,即=1,无解.综上,存在符合条件的直线l,且其方程为x=0. (12分)10.(1)证明:由题设知,F,C, 设A(x1,y1),B(x2,y2),直线l的方程为x=my+,代入抛物线方程y2=2px,得y2-2pmy-p2=0.则y1+y2=2pm,y1y2=-p2. (4分)不妨设y1>0,y2<0,则tan∠ACF=====,tan∠BCF=-=-,∴tan∠ACF=tan∠BCF,又∠ACF,∠BCF∈(0,π),∴∠ACF=∠BCF. (8分)(2)如(1)所设y1>0,tan∠ACF=≤=1,当且仅当y1=p时取等号,此时∠ACF取最大值,∠ACB=2∠ACF取最大值,并且A,B,|AB|=2p. (12分)失分警示:(1)不能准确地得出∠ACF与∠BCF的正切值.(2)没有注意到∠ACF取得最大值时,y1=p. 11.(1)由题意可设椭圆方程为+=1(a>b>0),则解得所以椭圆方程为+y2=1. (4分)(2)由题意可知,直线l的斜率存在且不为0,OP,OQ的斜率存在,故可设直线l的方程为y=kx+m(m≠0且m≠±1),P(x1,y1),Q(x2,y2),由消去y得(1+4k2)x2+8kmx+4(m2-1)=0,Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0,且x1+x2=,x1x2=.故y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.因为直线OP,PQ,OQ的斜率依次成等比数列,所以·==k2,即+m2=0,又m≠0,所以k2=,即k=±.又m≠±1,且Δ>0,∴02<2且m2≠1.又S△OPQ=|x1-x2||m|=|m|=,所以S△OPQ的取值范围为(0,1). (12分)失分警示:根据直线OP、PQ、OQ的斜率依次成等比数列求出k的值,从而用m表示出S△OPQ. 12.(1)由题意知2c=2,c=1.因为圆与椭圆有且只有两个公共点,从而b=1,故a=,所以所求椭圆方程为+y2=1. (3分)(2)因为直线l:y=kx+m与圆x2+y2=1相切,所以原点O到直线l的距离为=1,即m2=k2+1. (5分)由得(1+2k2)x2+4kmx+2m2-2=0.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=. (7分)λ=·=x1x2+y1y2=(1+k2)x1x2+km(x1+x2)+m2=,由≤λ≤,得≤k2≤1,即k的取值范围是∪. (9分)(3)|AB|2=(x1-x2)2+(y1-y2)2=(1+k2)[(x1+x2)2-4x1x2]=2-,由≤k2≤1,得≤|AB|≤. (11分)设△OAB的AB边上的高为d,则S=|AB|d=|AB|,所以≤S≤. (12分)失分警示:(1)没有将几何关系转化为代数式;(2)计算时不细心或不耐心. 13.f'(x)=+x-(1+a)==.(1)当a≤0时,若0则f '(x)<0,若x>1,则f '(x)>0,故此时函数f(x)的单调递减区间是(0,1),单调递增区间是(1,+∞);当0时,随着x的变化, f '(x),f(x)的变化情况如下表:x (0,a) a (a,1) 1 (1,+∞)f '(x) + 0 - 0 +f(x) 单调递增极大值单调递减极小值单调递增所以函数f(x)的单调递增区间是(0,a),(1,+∞),单调递减区间是(a,1).当a=1时,f '(x)=≥0,函数f(x)的单调递增区间是(0,+∞);当a>1时,同理可得,函数f(x)的单调递增区间是(0,1),(a,+∞),单调递减区间是(1,a). (4分) (2)由于f(1)=--a,显然当a>0时, f(1)<0,此时f(x)≥0不是恒成立的;当a≤0时,根据(1)知,函数f(x)在区间(0,+∞)上的极小值,也是最小值,为f(1)=--a,此时只要f(1)≥0即可,解得a≤-, 故实数a的取值范围是. (7分)(3)证明:由(2)得,当a=-时, f(x)=-ln x+x2-·x≥0,当且仅当x=1时等号成立,即ln x≤x2-x,当x>1时,可以变换为>=,(9分)在上面不等式中分别令x取m+1,m+2,…,m+n,然后不等式两边再相加得++…+>++…+=++…+=-=.所以++…+>. (12分)失分警示:(1)忽略a=1的情形;(2)在证明第(3)问时,没有注意到(2)的结论. 14.(Ⅰ)函数的定义域是,,令,解得;令,解得.当变化时,的变化如下表所示:1- 0 + 0↘极小值↗由表知,函数单调递减区间是,单调递增区间是,的极小值为. ------(4分)(Ⅱ)函数的定义域是,,当时,,∴,∴在上是增函数. ------(7分)(Ⅲ)由(Ⅰ)知函数在上的最小值为,∴,,由(Ⅱ)知函数在上的最大值是,∴,即不等式成立. ------(10分)15.(1)函数的定义域是.,,……..3分令,解得;令,解得.所以函数的单调递增区间为(-1,3),单调递减区间为(3,+∞). ……….5分(2)函数的定义域是,.,此时函数在定义域上是减函数,不存在极值点. ……..7分当时,关于的方程令,解得,………………9分则,若,则,令,解得;令,解得,或.当变化时,的变化如下表所示:- 0 + 0 -↘极小值↗极大值↘由表知,函数的极小值点;极大值点是. ……………..11分若,,令,解得;令,解得.当变化时,的变化如下表所示:+ 0 -↗极大值↘由表知,函数的极大值点是,不存在极小值点.……………..12分综上所得,当时,函数不存在极值点;当时,函数的极小值点,极大值点是;当时,函数的极大值点是,不存在极小值点. ……………..13分16.(Ⅰ),………………2分令,解得,,令,解得或;令,解得.当变化时,,随的变化情况如下表:0 0………………4分由表知,函数在处取得极大值,所以. ………………5分(II),………………6分因为,直线都不是曲线的切线,所以对成立,………………7分则只要的最小值,所以. ………………8分(III) ,,因为所以当时,对成立,在R上是增函数,所以当时,取得最大值;………………9分当时,在时,,是增函数,在时,,是减函数,所以当时,取得最大值;………………10分当时,在时,,单调递减,所以当时,取得最大值;………………11分当时,在时,,是减函数,在时,,是增函数,又,当时,在取得最大值,当时,在取得最大值,当时,在,处都取得最大值.综上所得,当或时,取得最大值;当时,在,处都取得最大值;当时,在取得最大值;当时,取得最大值. ………………14分17.(1),又函数在上为增函数,∴,即恒成立,∵,∴,∴在上恒成立,即在上恒成立,又在的最大值是1,∴,又,∴仅有.……………………4分(2)∵,∴,,∴,令,解得,令,解得;令,解得.∴函数的单调递增区间是,单调递减区间为.当变化时,、的变化情况如下表:+ 0极大值由表知函数的极大值,不存在极小值.……………………9分(3)由(1)知,则,.令,,当时,,∵,∴,,∴恒有,∴此时不存在使得,即此时不存在使得成立;当时,,又,∴,,∴在上恒成立,∴在上是增函数,∴,又在上至少存在一个,使得成立,即恒成立,∴必有,∴,解得,综上所得,的取值范围为.……………………14分18.(Ⅰ)∵f(x)=e x-a (x+1),∴f′(x)=e x-a,∵a>0,f′(x)=e x-a=0的解为x=lna.∴f(x)min=f(lna)=a-a(lna+1)=-alna,∵f(x)≥0对一切x∈R恒成立,∴-alna≥0,∴alna≤0,∴a max=1.(Ⅱ)设是任意的两实数,且,,故,不妨令函数,则上单调递增..,恒成立.=.故. ……9分(Ⅲ)由(1)知e x≥x+1,取x=, 得1-即 . 累加得(故存在正整数a=2.使得.19.(Ⅰ).由的判别式①当即时,恒成立,则在单调递增②当时,在恒成立,则在单调递增③当时,方程的两正根为则在单调递增,单调递减,单调递增综上,当时,只有单调递增区间当时,单调递增区间为,单调递减区间为(Ⅱ)即时,恒成立当时,在单调递增∴当时,满足条件当时,在单调递减则在单调递减此时不满足条件故实数的取值范围为.(Ⅲ)由(2)知,在恒成立.令则,∴.又,∴∴.20.(Ⅰ) 因为f ' (x) =(r+1) (1+x) r-(r+1) =(r+1) [(1+x) r-1], 令f ' (x) =0, 解得x=0.当-1< x< 0时, f ' (x) < 0, 所以f(x) 在(-1,0) 内是减函数;当x> 0时, f ' (x) > 0, 所以f(x) 在(0, +∞) 内是增函数.故函数f(x) 在x=0处取得最小值f(0) =0.(Ⅱ) 由(Ⅰ), 当x∈(-1, +∞) 时, 有f(x) ≥f(0) =0, 即(1+x) r+1≥1+(r+1) x, 且等号当且仅当x=0时成立,故当x> -1且x≠0时, 有(1+x) r+1> 1+(r+1) x. ①在①中, 令x=(这时x> -1且x≠0), 得> 1+.上式两边同乘n r+1, 得(n+1) r+1> n r+1+n r(r+1),即n r< . ②当n> 1时, 在①中令x=-(这时x> -1且x≠0), 类似可得n r> . ③且当n=1时, ③也成立.综合②, ③得< n r< . ④(Ⅲ) 在④中, 令r=, n分别取值81,82, 83, …, 125, 得(8-8) < < (8-8),(8-8) < < (8-8),(8-8) < < (8-8),……(12-12) < < (12-12).将以上各式相加, 并整理得(12-8) < S< (12-8).代入数据计算, 可得(12-8) ≈210.2, (12-8) ≈210.9. 由[S]的定义, 得[S]=211.。