贵州省黔西一中2013届高三上学期第一次月考数学(文)试卷(无答案)
贵州省2013年1月高中学业水平考试数学试题(含权威答案)

山东省2013年1月普通高中学业水平考试数 学 试 题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分100分,考试限定时间90分钟.交卷前,考生务必将自己的姓名、考籍号、座号填写在答题卡的相应位置,考试结束后,讲本试卷和答题卡一并交回.第Ⅰ卷(共60分)注意事项:每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动用像皮擦干净后再选涂其他答案标号,不涂在答题卡上,只涂在试卷上无效.一、选择题(本大题共20小题,每小题3分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合}2,1{},3,2,1{==N M ,则N M ⋂等于A .}2,1{B .}3,1{C .}3,2{D .}3,2,,1{ 2.函数)2lg()(-=x x f 的定义域是A .),2[+∞B .),2(+∞C .),3(+∞D .),3[+∞ 3.0410角的终边落在A .第一象限B .第二象限C .第三象限D .第四象限 4.抛掷一枚骰子,得到偶数点的概率是 A .61 B .41 C .31 D .215.下列函数中,在区间),0(+∞内单调递减的是 A .2x y = B .xy 1=C .x y 2=D .x y 2log = 6.直线0=-y x 与02=-+y x 的交点坐标是A .)1,1(B .)1,1(--C .)1,1(-D .)1,1(- 7.在区间]4,0[上任取一个实数x ,则1>x 的概率是 A .25.0 B .5.0 C .6.0 D .75.0 8.圆0622=-+x y x 的圆心坐标和半径分别是A .9),0,3(B .3),0,3(C .9),0,3(-D .3),0,3(-9.313tanπ的值是 A .33-B .3-C .33 D .3 10.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,已知0120,2,1===C b a ,则c 等于 A.2B .5C .7D .正(主)视图 侧(左)视图俯视图(第19题图)17.在ABC ∆中,角C B A ,,的对边分别是c b a ,,,若B c b sin 2=,则C sin 等于A .1B .23 C .22D .2118.某校学生一周课外自习总时间(h)的频率分布直方图如图所示,则该校学生一周课外自习时间落在区间[5,9)内频率是A .0.08B .0.32C .0.16D .0.6419A .4π B .2πC .πD .π220.下列函数中,图像如下图函数可能是( )A .3y x =B .2x y =C .y =D .2log y x =(第20题) 23.22log 12log 3-= ( )A .2-B .0C .12D .224.5.经过点),2(m P -和)4,(m Q 的直线的斜率等于1,则m 的值是 ( )A .4B .1C .1或3D .1或425.若c b a >>,则下列不等式中正确的A .bc ac >B .c b b a ->-C .c b c a ->-D .b c a >+ 26.在等差数列{}n a 中,若34a =,58a =,则1a = ( )A .-4B .0C .2D .427.将函数)3sin(2π+=x y 的图象上所有点的横坐标缩短到原来的21(纵坐标不变),所得图象对应的表达式为 A .)321sin(2π+=x y B .)621sin(2π+=x y D .)322sin(2π+=x y 28.下列四个说法①a //α,b ⊂α,则a // b ②a ∩α=P ,b ⊂α,则a 与b 不平行 ③a ⊄α,则a //α ④a //α,b //α,则a // b 其中错误的说法的个数是 ( ) A .1个 B .2个 C .3个 D .4个 29.已知在三角形ABC 中,a=7,b=10,c=6则此三角形为( ) A 锐角三角形 B 钝角三角形 C 直角三角形 D 不确定 30.sin 015=( )A462- B 426+ C 423- D 426- 30.函数()ln 2f x x x =-+的零点个数为 ()A .1B .2C .3D .03132. 直线30l y ++=的倾斜角α为 ( )A 、30;B 、60;C 、120;D 、150。
【Word版解析】贵州省四校2013届高三上学期期末联考数学(文)试题

2013届天柱民中、锦屏中学、黎平一中、黄平民中四校联考数学试题(文)考试说明:1.本试卷考试时间120分钟.2.答卷前,考生务必在答题卡上写好班级、姓名、考号. 3.将每题的答案写在答题卡上的指定位置.4.考试结束,将答题卡交回,答案写在试卷上视为无效答案.一 选择题(本大题共12小题,每小题5分,共60分)1.已知集合2{|10}M x x =-<,2{|log (2),}N y y x x M ==+∈,则=N M ( ) A .(0,1) B .(1,1)- C . (1,0)- D . ∅ 【答案】A 【解析】2{|10}M x x x =-<=, 2222{|log (2),}{|log (2),11}{log 1log 3}N y y x x M y y x x y y ==+∈==+-<<=<<,即2{0l o g 3}N y y =<<,所以{01}M N x x =<< ,即(0,1),选A.2.在复平面内,复数11+i所对应的点位于第( )象限 A .一 B .二 C .三 D . 四 【答案】D 【解析】21111ii i i+=+=-,对应的坐标为(1,1)-,在第四象限,选D. 3.如图所示的算法流程图中, 若2()2,()xf xg x x ==,则(3)h 的值等于( )A .1B . 1-C . 9D . 8【答案】C【解析】当3x =时,3(3)28f ==,2(3)39g ==,所以(3)(3)f g <,所以(3)(3)9h g ==,选C.4.若2a = ,4b = )a b a +⊥且(,则a 与b 的夹角是( )A .32π B .3π C .34π D .32π-【答案】A【解析】因为)a b a +⊥ (,所以2)0a b a a a b +=+=(,即24a b a =-=- ,所以41cos ,242a b a b a b -<>===-⨯,所以2,3a b π<>= ,选A. 5.已知x 为实数,条件p :x x <2,条件q :x12>,则p 是q 的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 【答案】B【解析】由x x <2得01x <<。
贵州省贵阳市高三适应性监测考试(一)数学文试题

贵阳市2013年高三适应性监测考试(一)文科数学参考答案与评分建议2013年2月题号 1 2 3 4 5 6 7 8 9 10 11 12 答案ADABCCBBDDBA二、填空题(13)102(14)52 (15)1- (16)π33 三、解答题 (17)解:(Ⅰ)设数列}{n a 的首项为1a ,公差为d ,由题意知⎩⎨⎧++=+=+).6)(()2(,106411211d a d a d a d a······································ 3分 解得123a b =-⎧⎨=⎩····························································· 5分所以35n a n =-. …………………………………………………………………… 6分 (Ⅱ)35112284--===⋅n a n n n b ∴数列{b n }是首项为41,公比为8的等比数列,…………………………………9分所以;281881)81(41-=--=n n n S ………………………………………12分(18)解:(Ⅰ)四天的发芽总数为33392646144+++=,这四天的平均发芽率为144100%36%400⨯= ············································ 6分 (Ⅱ)任选两天种子的发芽数为,m n ,因为m n <,用(,)m n 的形式列出所有的基本事件有:(26,33),(26,39),(26,46),(33,39),(33,46),(39,46),所有基本事件总数为6。
贵州省2024-2025学年高三上学期第一次联考(9月月考)数学试题答案

数学参考答案·第1页(共9页)贵阳第一中学2025届高考适应性月考卷(一)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCBCBCAA【解析】1.由题,{|13}A x x x =<->或,{1234}B =,,,,则{4}A B = ,故选D .2.对于A 选项,1y x=-的定义域为(0)(0)-∞+∞,,,该函数在(0)-∞,和(0)+∞,上单调递增,在定义域内不单调;对于B 选项,2ln y x =的定义域为(0)(0)-∞+∞ ,,,该函数在(0)-∞,上单调递减,在(0)+∞,上单调递增, 在定义域内不单调;对于C 选项,32y x ==[0)+∞,,该函数在定义域上单调递增;对于D 选项,e x y x =的定义域为R . (1)e x y x '=+∵,当(1)x ∈-∞-,时,0y '<;当(1)x ∈-+∞,时,0y '>,e x y x =∴在(1)-∞-,上单调递减,在(1)-+∞,上单调递增,因此该函数在定义域内不单调,故选C .3.537232a a a =+=∵,516a =,6426d a a =-=,3d =,1544a a d =-=,故选B .4.设点00()A x y ,,则20000252||4y px p x y ⎧=⎪⎪+=⎨⎪=⎪⎩,,,整理得582p p ⎛⎫-= ⎪⎝⎭,解得2p =或8p =,故选C .5.(23)f x -∵的定义域为[23],. 当23x ≤≤时,1233x -≤≤,()f x ∴的定义域为[13],,即[13]A =,. 令1213x -≤≤,解得12x ≤≤,(21)x f -∴的定义域为[12],, 即[12]B =,. B A ⊆∵,∴“x A ∈”是“x B ∈”的必要不充分条件,故选B .6.由题,()()()e ()e ()()()5e ()5e x xx xg x g x f x fx hx h x f x f x --⎧=-+=-+⎧⎪⇒⎨⎨=---=--+⎩⎪⎩,,,解得()3e 2e x xf x -=+,所以()3e 2e x x f x -=+≥,当且仅当3e 2e x x -=,即12ln 23x =时,等号成立,min ()f x =∴C .数学参考答案·第2页(共9页)7.设51x ⎫+⎪⎭的二项展开式的通项公式为53521551C C kkk k kk T xx --+⎛⎫== ⎪⎝⎭,0k =,1,2,3,4,5,所以二项展开式共6项. 当0k =,2,4时的项为无理项;当1k =,3,5时的项为有理项. 两项乘积为有理数当且仅当此两项同时为无理项或同时为有理项,故其概率为223326C C 25C +=,故选A . 8.由题,1C :22(1)(1)2x y -+-=,即圆心为1(11)C ,(20)M ,,(02)N ,,MN 为1C 的直径. 1C ∵与2C 相外切,12||C C =+=∴. 由中线关系,有222222121||||2(||||)2(182)40C M C N C C C M +=+=⨯+=,22||||C M C N ∴≤2222||||202C M C N +=,当且仅当22||||C M C N =时,等号成立,所以22||||C M C N 的最大值为20,故选A .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 ACDBCBCD【解析】9.对于A 选项,由分布列性质可知正确;对于B 选项,由两点分布定义可知错误;对于C 选项,()202420252024(1)20252024E X m n n n n =+=-+=+. 01n <<∵,2024()2025E X <<∴,正确;对于D 选项,令2024Y X =-,则Y 服从两点分布,()(1)D Y n n mn =-=,()(2024)()D X D Y D Y mn =+==∴,正确,故选ACD.10.令2()21g x ax ax =-+,244a a ∆=-,对于A 选项,()f x 的定义域为0a ⇔=R 或0010a a >⎧⇔<⎨∆<⎩,≤,故A 错误;对于B 选项,()f x 的值域为()g x ⇔R 在定义域内的值域为0(0)0a a >⎧+∞⇔⇔⎨∆⎩,,≥1≥,故B 正确;对于C 选项,()f x 的最大值为2()g x ⇔在定义域内的最小值为011511616(1)16a a g >⎧⎪⇔⇔=⎨=⎪⎩,,故C 正确;对于D 选项,()f x 有极值()g x ⇔在定义域内有极值01(1)0a a g ≠⎧⇔⇔<⎨>⎩,且0a ≠,故D 选项错误,故选BC.数学参考答案·第3页(共9页)11.对于A 选项,因为(1)g x +为奇函数,所以(1)0g =,又由()(1)1g x f x --=,可得(1)(0)1g f -=,(0)1f =-,故A 错误;对于B 选项,由()(3)f x g x ''=+可得()(3)f x g x C =++,C 为常数,又由()(1)1g x f x --=,可得(1)()1g x f x --=,则(1)(3)1g x g x C --+-=,令1x =-,得(2)(2)1g g C --=,所以1C =-,所以(1)(3)g x g x -=+,()g x 的图象关于直线2x =对称,故B 正确;对于C 选项,因为(1)g x +为奇函数,所以(3)(1)(1)g x g x g x +=-=-+,所以(2)()g x g x +=-,(4)(2)g x g x +=-+ ()g x =,所以()g x 是一个周期为4的周期函数,()(3)1f x g x =+-,(4)(7)f x g x +=+ 1(3)1()g x f x -=+-=,所以()f x 也是一个周期为4的周期函数,故C 正确;对于D 选项,因为(1)g x +为奇函数,所以(1)0g =,(2)(0)(4)g g g =-=-,又(3)(1)0g g ==,又()g x 是周期为4的周期函数,所以20251()(1)0k g k g ===∑,故D 正确,故选BCD.三、填空题(本大题共3小题,每小题5分,共15分)题号 12 13 14 答案 e14433e 6-【解析】12.设切点坐标为()t t a ,,ln x y a a '=∵,∴切线方程为ln x y a a x = . 将()t t a ,代入得ln t t a a t a = ,可得1log e ln a t a==,∴切点纵坐标为e log e t a a a ==. 13.先对小七孔和千户苗寨两个相邻元素捆绑共有22A 种方法,再安排梵净山的位置共有13C 种方法,再排其余元素共有44A 种排法,故共有214234A C A 144= 种不同的方案.14.设123()()()f x f x f x t ===,由()f x 的函数图象知,23t <≤,又122x x +=-,3ln x t =∵,3e t x =,112233()()()2e t x f x x f x x f x t t ++=-+∴. 令()2e t t t t ϕ=-+,23t <≤,()t ϕ'= (1)e 20t t +->,()t ϕ∴在(23],上单调递增,则3max ()(3)3e 6t ϕϕ==-,112233()()()x f x x f x x f x ++∴的最大值为33e 6-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)(1)解:数列{n a }是首项为1,公比为3的等比数列,因此11133n n n a --=⨯=;…………………………………………………………………………………(3分)数学参考答案·第4页(共9页)数列{n b }是首项为1,公比为34的等比数列,因此,1133144n n n b --⎛⎫⎛⎫=⨯= ⎪⎪⎝⎭⎝⎭.…………………………………………………………………………………(6分)(2)证明:由(1)可得121121121333344n n n n n n n c a b a b a b a b ----⎛⎫⎛⎫=++++=++ ⎪⎪⎝⎭⎝⎭121333344n n --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭ 12101111141111331444414n n n n n ----⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦- 214314n n -⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ , ………………………………………………………(10分)因为2114314411334n n n nn nc a --⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 所以413n n c a <≤,所以4.3n n n a c a <≤ …………………………………………………(13分) 16.(本小题满分15分)(1)证明:如图1,连接1A C ,设11A C C G O = ,连接1HO A G ,,三棱台111A B C ABC -,则11A C AC ∥,又122CG AC ==, ∴四边形11A C CG 为平行四边形,则1.CO OA = ………………………………………………………………(2分)∵点H 是BC 的中点,∴1BA OH ∥. …………………………………………………………………(4分)又OH ⊂平面1C HG ,1A B ⊄平面1C HG ,∴1A B ∥平面1C HG . …………………………………………………………………(6分)(2)解:因为平面1C GH 分三棱台111A B C ABC -所成两部分几何体的体积比为2∶5, 所以111127C GHC A B C ABC V V --=,即11111121()373GHC ABC A B C S CC S S CC =++ △△△, 化简得12GHC ABC S S =△△, 图1数学参考答案·第5页(共9页)此时点H 与点B 重合. ……………………………………………………………(8分)1190C CA BCC ∠=∠=︒,∵11C C BC CC AC BC AC C ⊥⊥= ∴,,且都在平面ABC ,则1CC ⊥平面ABC , 又ABC △为等腰直角三角形,则BG AC ⊥. 又由(1)知11A G CC ∥,则1A G ⊥平面ABC , 建立如图2所示的坐标系G xyz -,…………………………………………………(10分)则(200)(020)(000)(020)H A G C -,,,,,,,,,,,,11(02(122)1)C B --,,,,,.设平面1C HG 的法向量()n x y z =,,,1(022)(200)GC GH =-= ,,,,,, 则22020y z x -+=⎧⎨=⎩,,令1y =,解得(011)n =,,, 设平面1B GH 的法向量1()(112)m a b c GB ==-,,,,,,则2020a b c a -+=⎧⎨=⎩,,令2b =,解得(021)m = ,,. ……………………………………(12分) 设二面角11C GH B --的平面角为θ,|||cos |=|cos |||||m n m n m n θ〈〉==,=, ………………(14分)所以sin θ==所以二面角11C GH B --的正弦值为10. …………………………………………(15分)解得21m =,即双曲线N :2212y x -=. ………………………………………………(3分) 因为双曲线M 与双曲线N 的离心率相同, 不妨设双曲线M 的方程为222y x λ-=, 因为双曲线M 经过点(22),,所以42λ-=,解得2λ=,则双曲线M 的方程为221.24x y -= ………………………………………………(6分) 图2数学参考答案·第6页(共9页)(2)易知直线l 的斜率存在,不妨设直线l 的方程为11223344()()()()y kx t A x y B x y C x y D x y =+,,,,,,,,,联立222y kx t y x λ=+⎧⎪⎨-=⎪⎩,,消去y 并整理得222(2)220k x ktx t λ----=,此时222222Δ44(2)(2)0202k k t t t k λλ⎧=+-+>⎪⎨--<⎪-⎩,,可得22k <,…………………………………(8分)当2λ=时,由韦达定理得21222kt x x k +=-,221242t x x k --=-;当1λ=时,由韦达定理得23422kt x x k +=-,232422t x x k --=-,………………………(10分)则||||2AB CD ==== 化简可得222t k +=, …………………………………………………………………(13分) 由(1)可知圆O :222x y +=,则圆心O 到直线l的距离d ==== 所以直线l 与圆O 相切或相交. …………………………………………………(15分) 18.(本小题满分17分)解:(1)由频率分布直方图知,200只小白鼠按指标值分布为: 在[020),内有0.00252020010⨯⨯=(只); 在[2040),内有0.006252020025⨯⨯=(只); 在[4060),内有0.008752020035⨯⨯=(只); 在[6080),内有0.025********⨯⨯=(只); 在[80100],内有0.00752020030⨯⨯=(只).…………………………………………(1分) 由题意,有抗体且指标值小于60的有50只;而指标值小于60的小白鼠共有10253570++=(只),所以指标值小于60且没有抗体的小白鼠有20只,同理,指标值不小于60且没有抗体的小白鼠有20只,故列联表如下:数学参考答案·第7页(共9页)单位:只指标值抗体小于60不小于60合计有抗体 50 110 160 没有抗体 20 20 40 合计70130200……………………………………………………………………………………………(3分) 零假设为0H :注射疫苗后小白鼠产生抗体与指标值不小于60无关联.…………………………………………………………………………………………(4分) 根据列联表中数据,得220.01200(502020110) 4.945 6.6351604070130x χ⨯⨯-⨯=≈<=⨯⨯⨯. ………………………………………………………………………………………(6分) 根据0.01α=的独立性检验,没有充分证据认为注射疫苗后小白鼠产生抗体与指标值不小于60有关.…………………………………………………………………………………(7分) (2)(i )令事件A =“小白鼠第一次注射疫苗产生抗体”,事件B =“小白鼠第二次注射疫苗产生抗体”,事件C =“小白鼠注射2次疫苗后产生抗体”. 记事件A ,B ,C 发生的概率分别为()P A ,()P B ,()P C , 则160()0.8200P A ==,20()0.540P B ==, ……………………………………………(9分) 0.20.509()1()().1P C P A P B =-=-⨯=,所以一只小白鼠注射2次疫苗后产生抗体的概率0.9P =.……………………………(11分) (ii )由题意,知随机变量(1000.9)X B ,,所以()1000.990.E X np ==⨯= ………………………………………………(13分)又()C 0.90.1()012k k n kn P k n X k -=⨯⋅⋅==⨯⋅,,,,,设0k k =时,()P X k =最大, 所以000000000000100119910010010011101100100C 0.90.1C 0.90.1C 0.90.1C 0.90.1k k k k k k k k k k k k -++-----⎧⨯⨯⨯⨯⎪⎨⨯⨯⨯⨯⎪⎩≥,≥, ………………………………(15分) 解得089.990.9k ≤≤,因为0k 是整数,所以090k =.…………………………………(17分)数学参考答案·第8页(共9页)19.(本小题满分17分)(1)若选①,证明如下:22sin 3sin(2)sin 2cos cos 2sin 2sin cos (12sin )sin θθθθθθθθθθθ=+=+=+-2232sin (1sin )(12sin )sin 3sin 4sin θθθθθθ=-+-=-.………………………………(4分)若选②,证明如下:22cos3cos(2)cos 2cos sin 2sin (2cos 1)cos 2sin cos θθθθθθθθθθθ=+=-=--3232cos cos 2(1cos )cos 4cos 3cos θθθθθθ=---=-. ………………………………(4分)(2)(i)解:2()33f x x a =-', …………………………………………………………(5分) 当0a ≤时,()0f x '≥恒成立,所以()f x 在()-∞+∞,上单调递增,至多有一个零点;令()0fx '>,得x <x >,所以()f x 在(上单调递减,在(-∞,,)+∞上单调递增.0f <⎪⎩,220a -<⎪⎩,且3222(4)(4)3(4)(4)(516)0f a a a a aa aa a +=+-++=++++>,所以()f x 在4)a +上有唯一一个零点,同理-<2(22)0g a-=-+=<, 所以()f x 在(-上有唯一一个零点.又()f x 在(上有唯一一个零点,所以()f x 有三个零点,综上可知a 的取值范围为(04)., …………………………………………………(10分) (ii)证明:设22133()()3())(x f x x x x x ax x a x ==----+, 则23211(0)f x x x a ==-=.又04a <<,所以1a =. ………………………………………………………………(11分) 此时(2)10(1)30(1)10(2)30f f f f -=-<-=>=-<=>,,,,方程3031x x -+=的三个根均在(22)-,内,…………………………………………(12分)数学参考答案·第9页(共9页)方程3031x x -+=变形为3143222x x =⎛⎫- ⎪⎝⎭ ,令ππsin 222x θθ⎛⎫=-<< ⎪⎝⎭,则由三倍角公式31sin 33sin 4sin .2θθθ=-= 因为3π3π322θ⎛⎫∈- ⎪⎝⎭,,所以7ππ5π3666θ=-,,,7ππ5π.181818θ=-,,…………………………………………………………………………………………(14分) 因为123x x x <<,所以12327ππ52sin2si π181n n 81si 8x x x =-==, ……………………………………………………………………………(15分)所以222221π7ππ7π21cos 21cos 18184sin4sin 99x x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝=⎭- 137ππ5π7π2cos2cos 2sin 2sin .991818x x =-=--=- …………………………………(17分)。
贵州省 高三数学第一次考试试题 文

高三年级第一次考试试题 数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径()()()P A B P A P B ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率343V R π=是p ,那么n 次独立重复试验中事件A 其中R 表示球的半径恰好发生k 次的概率()(1)(0,1,2,,)k k n kn n P k C P P k n -=-=第Ⅰ卷 (选择题 60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知{1,2,3,4}M ⊆,且{1,2}{1,2}M=,则集合M 的个数是(A )1 (B )2 (C )3 (D )42. 不等式302x x -<+的解集为(A ){|23}x x -<< (B ){|2}x x <- (C ){|23}x x x <->或 (D ){|3}x x >3. 函数1)y x =≤的反函数是(A )21(10)y x x =--≤≤ (B )21(01)y x x =-≤≤ (C )21(01)y x x =-≤≤ (D )21(0)y x x =-≤4. 已知函数2()log f x x =,则函数(1)y f x =-的大致图象是5. 已知1cos 44πα⎛⎫-=⎪⎝⎭,则sin 2α= (A )3132 (B )3132- (C )78 (D )78-6. 已知平面上三点A 、B 、C 满足||3,||4,||5,AB BC CA ===则AB BC BC CA CA AB ⋅+⋅+⋅的值等于(A )25 (B )24 (C )-25 (D )-247. 一个正三棱锥的四个顶点都在半径为R 的球面上,其中底面的三个顶点在该球的一个大圆上,且该正三棱锥的体积是,则球的体积为(A)13π (B)43π (C)323π (D)16π 8. 已知等差数列{}n a的前n 项和为n S ,且210S =,555S =,则过点(,)n P n a *()n N ∈和(2,2)n Q n a ++*()n N ∈的直线的一个方向向量坐标可以是(A)(2,4) (B)()1,1-- (C)1,12⎛⎫-- ⎪⎝⎭ (D)14,33⎛⎫-- ⎪⎝⎭ 9. 设函数()pf x x qx =+的导函数()21,f x x '=+则数列1{}()f n 的前n 项的和为(A )1nn + (B )1n n + (C )1nn - (D )21n n ++10. 若(,1]x ∈-∞-时,不等式2()420x xm m -⋅-<恒成立,则实数m 的取值范围是 (A )(-2,1) (B )(-4,3) (C )(-1,2) (D )(-3,4)11.曲线1[2,2])y x =∈-与直线(2)4y k x =-+有两个公共点时,实数k 的取值范围是(A)50,12⎛⎫ ⎪⎝⎭ (B)53,124⎛⎤ ⎥⎝⎦ (C)5,12⎛⎫+∞ ⎪⎝⎭ (D)13,34⎛⎤⎥⎝⎦ 12. 已知椭圆22194x y +=,椭圆左焦点为1F ,O 为坐标原点,A 是椭圆上一点,点M 在线段1AF 上,且12OA OF OM +=,2OM =,则点A 的横坐标为(A)(B) (C) (D)第Ⅱ卷 (非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13、已知61()x 的项展开式中的第5项的值等于5,则x = . 14. 将5名志愿者分配到3个不同的场馆参加接待工作,每个场馆至少分配一名志愿者的方案数为 .15. 已知实数,x y 满足条件2040250x y x y x y -+≥⎧⎪+-≥⎨⎪--≤⎩则24z x y =+-的最大值为 .16. 若对于函数()f x 的定义域内的任一个x 的值,均有()()(),2f x f x f x π=-=-+对于下列五个函数:①24cos cos y x x =-;②44sin cos y x x =-;③sin(2)cos(2)44y x x ππ=+++ ;④|tan |y x =. 其中符合已知条件的函数序号为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设向量(1)OM =,向量(cos ,sin )(0).ON αααπ=-<< (1)若向量OM ON ⊥,求tan α的值; (2)求||MN 的最大值及此时α的值。
贵州省黔东南州2013届高三3月第一次模拟考试试数学文试题-含答案

绝密★启用前 【考试时间:2013年3月 2日 15:00—17:00】贵州省黔东南州2013届高三3月第一次模拟考数学文试题注意事项1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考试结束后,请将本试卷和答题卡一并交回.满分150分,考试时间120分钟.2、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮檫檫干净后,再选涂其它答案标号,不能答在试题卷上.3、答题前认真阅读答题卡上的“注意事项”. 参考公式: 样本数据12,,,n x x x 的标准差s 其中x 为样本平均数 柱体体积公式VSh =其中S 为底面面积,h 为高锥体体积公式13V Sh =其中S 为底面面积,h 为高球的表面积,体积公式24R S π=,334R V π=其中R 为球的半径第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}|,1||{},1,0,1{A a a x x B A ∈-==-=,则B A 中的元素的个数为A .2B .4C .6D .82.已知复数iiz +-=12(i 为虚数单位),则z 在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知向量b a ,满足:||1,||2a b ==,且()b a a +⊥,则与的夹角为A . 60B . 90C . 120D . 1504.下列有关命题:①设R m ∈,命题“若b a >,则22bm am >”的逆否命题为假命题;②命题,,:R p ∈∃βα()βαβαtan tan tan +=+的否定R p ∈∀⌝βα,:,()βαβαtan tan tan +≠+;③设b a ,为空间任意两条直线,则“b a //”是“a 与b 没有公共点”的充要条件.其中正确的是 A .①②B .②③C .①③D .①②③5.若抛物线()220y px p =>的准线与圆()22316x y -+=相切,则此抛物线的方程为A .22y x =B .24y x =C .28y x =D . 2y x =6.函数()x x x f 2cos 2sin ⋅=的最小正周期为A .π2B .πC .2π D .4π 7. 已知某几何体的正(主)视图,侧(左)视图和俯视图均为边长为1的正方形(如图1),若该几何体的顶点都在同一球面上,则此球的表面积为 A .π4 B .π3 C .π2 D .π8.定义在R 上的函数()x f 满足:对任意21x x <,都有)()(21x f x f >, 设()()23.03,32ln ,2-=⎪⎭⎫⎝⎛==f c f b f a ,则c b a ,,的大小关系为A .c b a >>B .b c a >>C .a b c >>D .a c b >>9.已知函数()x x x x f cos sin +=的导函数为()f x ',则()y f x ='的部分图象大致为xxxxA .B .C .D .10.已知正三棱柱(即底面为正三角形,侧棱与底面垂直的三棱柱)111ABC A B C -的底面边长与侧棱长相等,D 为线段11B A 的中点,则异面直线AD 与1B C 所成角的余弦值为A .4 B .5 C .10 D .1011.直线2=x 与双曲线14:22=-y x C 的渐近线交于B A ,两点,设P 为双曲线C 上的任意一点,若OB b OA a OP +=(O R b a ,,∈为坐标原点),则下列不等式恒成立的是A .222a b +≥B .2122≥+b a C .222a b +≤ D .2212a b +≤12.已知数列{}{}n n b a ,满足2,2,1121===b a a ,且对任意的正整数l k j i ,,,,当l k j i +=+时,都有l k j i b a b a +=+,则()∑=+2013120131i i ib a(注:n ni i a a a a +++=∑= 211)的值为图1俯视图侧(左)视图正(主)视图A .2012B .2013C .2014D .2015第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,共20分.13.某学校高一、高二、高三三个年级共有学生3500人,其中高一学生人数是1600,高二学生人数为1100,现按1100的抽样比例用分层抽样的方法抽取样本,则高三学生应抽取的人数为 . 14.执行如图2所示的程序框图,那么输出的S 等于 .15.已知n S 为数列{}n a 的前n 项和,且点()1,(*)n n a a n N +∈均在直线2y x =上,则53S a 的值为 .16.设不等式组434;0;4.x y y x -≥⎧⎪≥⎨⎪≤⎩表示的三角形区域Ω内有一内切圆M ,若向区域Ω内随机投一个点,则该点落在圆M 内的概率为 . 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,内角A 、B 、C 所对的边分别为a 、b 、c,已知sin cos b A B =.(I )求角B 的大小;(II )若2b =,ABC ∆,求a c +的值. 18.(本小题满分12分)有甲、乙、丙、丁、戊五位工人参加技能竞赛培训.现分别从甲、乙两人在培训期间参加的若干次预赛成绩中随机抽取6次,用茎叶图表示这两组数据如图3所示 (I )现要从甲、乙两人中选派一人参加技能竞赛,从平均成绩及 发挥稳定性角度考虑,你认为派哪位工人参加合适?请说明理由. (II )若从参加培训的5位工人中选出2人参加技能竞赛,求甲、乙两人至少有一人参加技能竞赛的概率. 19.(本小题满分12分)如图4,已知,AA BB ''为圆柱OO '的母线,BC 是底面圆O 的直径,,D E 分别是AA CB ','的中点. (I )求证://DE 平面ABC ;(II )若DE ⊥平面B BC ',求四棱锥C ABB A -''与圆柱OO '的体积比.是结束=0S k +1图2图 3 B'A'O'OE DA20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且椭圆C 上一点与两个焦点构成的三角形的周长为222+.(I )求椭圆C 的方程;(II )设直线l 与椭圆C 交于A B 、两点,且0=⋅,请问是否存在这样的直线l 过椭圆C 的右焦点F ?若存在,求出直线l 的方程;若不存在,请说明理由.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目的题号涂黑.22.(本小题满分10分)【选修4—1:几何证明选讲】如图5,已知ABC ∆的两条角平分线AD 和CE 相交于点H ,60B ∠=,点F 在AC 上,且AE AF =.(I )求证:,,,B D H E 四点共圆; (II)求证:CE 平分DEF ∠.23.(本小题满分10分)【选修4—4:坐标系与参数方程】已知直线l 的参数方程为4=153=15x t y t⎧+⎪⎪⎨⎪--⎪⎩(t 为参数),若以直角坐标系xOy 的原点为极点,x 轴的正半轴为极轴,选取相同的长度单位建立极坐标系,圆C 的极坐标方程为)4πρθ=+.(I )将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程;(II )判断直线l 与圆C 的位置关系,若相交,求直线被圆C 截得的弦长;若不相交,请说明理由. 24.(本小题满分10分)【选修4—5:不等式选讲】已知函数()()2log |1||2|f x x x m =++--.D图5(I )当5m =时,求函数()f x 的定义域;(II )若关于x 的不等式()21f x ≥的解集为R ,求实数m 的取值范围.黔东南州2013届高三年级第一次模拟考试试卷文科数学参考答案一、选择题:本大题共12小题.每小题5分,共60分.二、填空题:本大题共4个小题,每小题5分,共20分.13、 8 14、121 15、314 16、6π 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17、解:(I )由sin cos b A B =得sin sin cos B A A B = ································ 2'又sin 0A ≠ 所以sin B B =,即tan B =···································································· 4'而(0,)B π∈,故3B π=. ······················································································ 6'(II )由1sin 23ABC S ac B B π∆=== 可得4ac = ········································································································ 8'又22222()21cos 222a cb ac ac b B ac ac +-+--=== 将2,4b ac ==代入上式解得4a c += ··································································· 12' 18、解:(Ⅰ)派甲工人参加比较合适. ····································································· 1' 理由如下:()1787981849395856x =+++++=甲,()1758083859295856x =+++++=乙 22222221133[(7885)(7985)(8185)(8485)(9385)(9585)]63s =-+-+-+-+-+-=甲22222221139[(7585)(8085)(8385)(8585)(9285)(9585)]63s =-+-+-+-+-+-=乙 4' 因为x x =乙甲,22s s <乙甲所以甲、乙两人的成绩相当,但是甲的成绩较乙更为稳定,派甲参加较为合适. ················ 6' (Ⅱ)因为任选两人参加有:(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊)共10种情况; ················································· 8' 其中甲乙两人都不参加有(丙,丁),(丙,戊),(丁,戊)3种情况. ···························· 10' 所以,甲乙两人至少有一人参加的概率:3711010P =-= ········································ 12' 19、解:(I )连接,OE OA . 因为,O E 分别为,BC B C '的中点 所以//OE BB '且12OE BB =' ················································································ 2' 又//AD BB '且12AD BB =' 所以//AD OE 且AD OE =所以四边形ADEO 是平行四边形………………………………………4' 所以//AO DE又DE ⊄平面ABC ,AO ⊂平面ABC ,故//DE 平面ABC . ····························································································· 6' (Ⅱ)由题知:DE ⊥平面B BC ',且由(I )知//DE AO . AO ∴⊥平面B BC ', AO ∴⊥BC ,A B A C ∴=, ································································································ 8' BC 为底面圆O 的直径, A B A C∴⊥, 又AA AC '⊥,AA AB A '=AC ∴⊥平面AA B B '',即AC 为四棱锥C ABB A -''的高. 设圆柱的高为h ,底面半径为r ,则2=V r h π柱,2112()333AA B B V S AC h hr ''=⋅==锥2222::33V V hr r h ππ∴==锥柱 ············································································ 12'20、(I)由题意知:2c a =,且222a c += ················································· 2'解得:1a c ==A'OED A B'O'进而2221b a c =-= ···························································································· 4'∴ 椭圆C 的方程为2212x y += ············································································· 5' (II )假设存在过右焦点F 的直线l 与C 交于A B 、两点,且0=⋅ ①当直线l 的斜率不存在时,则:1l x =,此时(1,),(1,)22A B -, 1(1,(1,02OA OB ⋅=⋅=≠,不合题意. ························································ 7' ②当直线l 的斜率存在时,设:(1)l y k x =-,联立方程组22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,消去y 整理得2222(21)4220k x k x k +-+-= ···················· 9'设1122(,),(,)A x y B x y ,则22121222422,2121k k x x x x k k -+==++1122(,(1))(,(1))OA OB x k x x k x ⋅=-⋅-2221212(1)()k x x k x x k =+-++ 2222222224(1)2121k k k k k k k -=+⋅-⋅+++222021k k -==+ 解得k =由①②可知,存在过右焦点F 的直线l 与C 交于A B、两点,且0=⋅此时直线l 0y ±=···································································· 12'所以曲线()=y f x 在点()1,(1)f 处的切线方程为()121y x -=⨯-,即210x y --= ········ 6'··········································· 12' 22、解:(I )在ABC ∆中,60B ∠=,所以120BAC ACB ∠+∠= ························· 2' 因为,AD CE 是角平分线 所以60HAC HCA ∠+∠=于是 120AHC ∠= ·························································································· 3' 所以120EHD ∠=这样180,180B EHD BEH BDH ∠+∠=∠+∠= ···················································· 4' 所以,,,B D H E 四点共圆 ······················································································ 5' (II )连接BH ,则BH 平分ABC ∠,所以30HBD ∠= 由(I )知:,,,B D H E 四点共圆所以30CED HBD ∠=∠=……………………………………8'又由(I )120AHC ∠=,所以=60AHE ∠又由AE AF =,AD 是角平分线可推出AD EF ⊥ 所以30CEF ∠=因此CE 平分DEF ∠. ······················································································· 10'23、解:(I )将方程4=153=15x t y t⎧+⎪⎪⎨⎪--⎪⎩消参数t ,并化简整理得:3410x y ++= ··················· 2'由)4πρθ=+得:cos cos sin sin cos sin 44ππρθθθθ⎫=-=-⎪⎭所以2cos sin ρρθρθ=-,于是22x y x y +=-即220x y x y +-+= ······················································································· 5'(II )圆22111:()()222C x y -++=,圆心为11(,)22-,半径2r =因为圆心到直线l的距离:11|34()1|110d ⨯+⨯-+==<所以直线l 与圆C 相交 ·························································································· 8' 直线l 被圆C截得的弦长:7||5AB === ······························· 10' 24、(Ⅰ)当5m =时:1250x x ++-->.即125x x ++-> ································ 2'①当1x ≤-时:(1)(2)5,x x -+-->即2,x <- 2x ∴<-; ②当12x -<≤时:(1)(2)5,x x +-->即3>5不成立. x φ∴∈; ③当2x >时:(1)(2)5,x x ++->即3,x > 3x ∴>. 综上所述,函数()f x 的定义域为(,2)(3,)-∞-+∞. ················································· 5'(Ⅱ)2()log (12)f x x x m =++--2(2)l o g (2122)f x x x m∴=++-- 若(2)1f x ≥的解集为R ,则对,x R ∀∈关于x 的不等式 21222x x m ++--≥恒成立, 即11122mx x ++-≥+恒成立, ·································································· 7'1131()(1)222x x x x ++-≥+--= 3122m∴≥+, 解得1m ≤.∴实数m 的取值范围为(,1]-∞. ···································································· 10'。
贵州省黔西县高三上学期期末考试数学文试题(无答案)新人教A版

黔西县洪水中学2013届高三期末考试数学试卷(文)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合}111|{≥-+=x x x M ,集合}032|{>+=x x N ,则=⋂N M C R )(( )A .(-1,23)B .(-1,23] C .[-1,23) D .[-1,23]2、 300cos 的值是( )A .21B .21- C .23D .23-3、已知3(,),sin ,25παπα∈=则tan()4πα+等于( )A .17 B. 7 C. 17- D. 7-4、已知等差数列{}241071510S n a a a ==中,,,则前项和=( )A.420B.380C.210D.1405、已知圆22:40C x y x +-=,l 过点(3,0)P 的直线,则( )A.l 与C 相交B. l 与C 相切C.l 与C 相离D. 以上三个选项均有可能6、 已知)(x f 是定义在R 上的奇函数,当x <0时,,)31()(x x f =那么)21(f 的值是( )A .33B .-33C .3D .-37、平面向量a 与b 的夹角为060,a =(2,0),| b|=1 , 则︱a +2b ︳=( )A .. . 4 D . 128、已知i 是虚数单位,则i i+-221等于 ( )A .i -B .iC .i 5354- D .i -549、曲线2xy x =+在点(-1,-1)处的切线方程为( )A.y=2x+1 B .y=2x-1 C. y=-2x-3 D.y=-2x-210、已知函数a x x x f ++=2sin 3cos 2)(2(a 为常数)的定义域为⎥⎦⎤⎢⎣⎡2,0π,)(x f 的最大值为6,则a 等于( )A .5B .4C .3D .6 11、设x,y 满足241,22x y x y z x y x y +≥⎧⎪-≥-=+⎨⎪-≤⎩则 ( )A.有最小值2,最大值3B.有最小值2,无最大值C.有最大值3,无最小值D.既无最小值,也无最大值12、已知0,1||,1||=⋅==,点C 在AOC ∠30o =的边AC 上, 设),(+∈+=R n m OB n OA m OC ,则m n等于( ) A. 13B. 3二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13、函数)1(log 232)(22---=x x x x f 的定义域是 ;14、已知向量a,b 夹角为450 ,且|a|=1,则|b|= ;15、 15、已知数列}{n a 的前n 项和为122++=n n S n 则=n a ;16、给出下列四个命题:①命题"0cos ,">∈∀x R x 的否定是"0cos ,"≤∈∃x R x ;②若0<a<1,则函数3)(2-+=x a x x f 只有一个零点; ③函数x x y cos sin 22=在⎥⎦⎤⎢⎣⎡-4,4ππ上是单调递减函数; ④若1ga+1gb=1g (a+b ),则a+b 的最小值为4;其中真命题的序号是 (把所有真命题的序号都填上)三、解答题(要求写出必要的计算步骤和思维过程。
贵州省六校联盟2013届高三第一次联考文科数学试题(2012.12.26)

贵州省六校联盟2013届高考第一次联考试题文科数学12月26日15:00—17:00命题单位:凯里一中本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|6<0}M x x x =--,2{|=log (1)}N x y x =-,则N M 等于( )A .(1,2)B .(1,2)-C .(1,3)D .(1,3)-2.i 是虚数单位,则复数21ii -在复平面内对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.等差数列}{n a 的前n 项和为n S ,已知6,835==S a ,则9a =( )A .8B .12C .16D .24 4.投掷一枚质地均匀的骰子两次,若第一次面向上的点数小于第二次面向上的点数我们称其为前效实验,若第二次面向上的点数小于第一次面向上的点数我们称其为后效实验,若两次面向上的点数相等我们称其为等效试验.那么一个人投掷该骰子两次后出现等效实验的概率是( )A .12 B .16 C .112 D .1365.阅读图1所示的程序框图,运行相应的程序,若输入x 的值为5-, 则输出的y 值是( )A .1-B .1C .2D .416.设不等式⎩⎨⎧>+>-00y x y x 表示的平面区域与抛物线24y x =-的准线围成的三角形区域(包含边界)为D ,),(y x P 为D 内的一个动点,则目标函数52+-=y x z 的最大值为( ) A .4 B .5 C .8 D .12图1是输出y x =|x -3||x |>3输入x 开始7. 若点(1,1)P 为圆22(3)9x y -+=的弦MN 的中点,则弦MN 所在直线方程为( )A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --=8.某几何体的三视图如图2所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A .203B .163C . 86π-D .83π- 9.设0.53a =,3log 2b =,2cos =c ,则( ) A .c b a << B .c a b <<C .a b c <<D .b c a <<10. 给出下列四个命题: (1)命题“若4πα=,则1tan =α”的逆否命题为假命题;(2)命题1sin ,:≤∈∀x R x p .则R x p ∈∃⌝0:,使1sin 0>x ;(3)“)(2Z k k ∈+=ππϕ”是“函数)2sin(ϕ+=x y 为偶函数”的充要条件;(4)命题:p “R x ∈∃0,使23cos sin 00=+x x ”;命题:q “若sin sin αβ>,则αβ>”,那么q p ∧⌝)(为真命题.其中正确的个数是( ) A .4 B .3C .2D .1 11.已知函数()y xf x ='的图象如图3所示(其中()f x '是函数)(x f 的 导函数).下面四个图象中,)(x f y =的图象大致是( )A .B .C .D .12.已知椭圆1C :)0(12222>>=+B A By A x 和双曲线2C :)0,0(12222>>=-b a b y a x 有相同的焦俯视图侧视图正视图图2点1F 、2F ,c 2是它们的共同焦距,且它们的离心率互为倒数,P 是它们在第一象限的交点,当60cos 21=∠PF F 时,下列结论中正确的是( )A .224443c a a c =+B .224443c a a c =+C .224463c a a c =+D .224463c a a c =+第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4个小题,每小题5分,共20分.13.某同学学业水平考试的9科成绩如茎叶图4所示,则根据茎叶图可知该同学的平均分为 .14.函数)(x f y =的导数记为)('x f ,若)('x f 的导数记为)()2(x f ,)()2(x f 的导数记为)()3(x f ,…….。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第一次数学(文)月考试卷
一.选择题 (每小题5分,共60分) 1. 已知命题p x R x p ⌝>+∈∀则,012,:2
是 A.012,2
≤+∈∀x R x B.012,2
>+∈∃x R x C.012,2
<+∈∃x R x D.012,2
≤+∈∃x R x
2. 已知集合}2,1,1{-=M ,集合},|{2
M x x y y N ∈==,则N M 是 A.}3,2,1{ B.}4,1{
C.}1{ Φ.D
3. x ≤2是x <2的
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分条件也非必要条件 4. 关于x 的不等式a x 2+b x +2>0的解集是}3
1
21|{<<-x x ,则a +b= A.10 B.-10 C.14 D.-14
5. 设a ≥b >0,则下列不等式中错误的是 A.ab b a 22
2
≥+ B.222b a a +≥ C.1
12--+≥b a ab D.b a ab
ab +≤2 6. 函数2
1
-+
=x x y (其中x >2)的最小值为 A.2 B. 3 C. 4 D.无最小值
7. 设正数a ,b,c,d ,满足a +d=b+c ,且|a -d|<|b -c|,则
A .bc ad =
B .bc ad <
C .bc ad >
D .bc ad ≤
8.已知函数⎩⎨⎧≤>=)
0(3)0(log )(2x x x x f x ,则1
[()]4f f 的值为
A.9
B.91
C.-9
D.9
1-
9. 的单调递减区间是函数|1|)3
1
(-=x y
)[1,,0)(- D. )[1, C. ,1](- B. ,0)(- .+∞∞+∞∞∞ A
10. 已知下列四个不等式的证明过程: ①若a 、R ∈b ,则22=≥+⋅b
a a
b b a a b ;②若x 、+∈R y ,则y x y x lg lg lg lg ⋅≥+; ③若-∈R x ,则44
24-=-≥+
⋅x
x x x ; ④若-∈R x ,则222222=≥--⋅⋅x x x x .其中正确的是
A.①②
B.④
C.③
D.②④
11.
则函数y=f(x)g(x)的图象可能为
12.已知函数f(x)= -x-x 3,x 1 ,x 2 ,x 3 ∈R, 且x 1+x 2>0, x 2+x 3>0 ,x 1+x 3>0,则 f(x 1)+f(x 2)+f(x 3)的值
A.一定大于零
B.一定小于零
C.等于零
D.正负都有可能
13.命题“若b a ,都是偶数,则b a +是偶数”的否命题是____________________
14.已知c b a ,,为正数,且3=++c b a ,则a
c c b b a 2
22++的最小值是__________
15,设奇函数f (x )的定义域为[-5,5].若当∈x [0,5]时, f (x )的图象如右图,则不等式f (x )<0的解是 .
16.若存在实数x 使|3|1||≤-+-x a x 成立,则实数a 的取值范围是__________________
17.(10分) }2
1{}022|{},02|{2
2
==++==++=B A nx x x B m x x x A 且已知 求 A ∪B
x
18.(12分)已知函数f (x )=21x 2
-x +2
3, (1)写出函数f (x )图象的顶点坐标及其单调递增、递减区间; (2)若函数的定义域和值域都是[1, a ] (a>1),求a 的值
19.(12分已知)0(012:2|3
1
1:|22>≤-+-≤--
m m x x q x p ,;
¬p 是¬q 的必要不充分条件,求实数m 的取值范围.
20 (12分).证明下列不等式
(1)已知c b a ,,为正数,求证:)(3
3
3
c b a ++[]
)()()((2
1222
b a
c c a b c b a +++++≥
(2)已知+∈R d c b a ,,,,且1=+++d c b a ,求证:1)(42
222≥+++d c b a
21 (12分).已知定义域为[0,1]的函数)(x f 同时满足:
①对于任意的∈x [0,1],总有0)(≥x f ;②1)1(=f ;③若1,0,02121≤+≥≥x x x x , 则有).()()(2121x f x f x x f +≥+ (1)求f (0)的值; (2)求)(x f 的最大值.
22(12分).已知函数R a ax x f ∈+=|1|)( 不等式3)(≤x f 的解集为}12|{≤≤-x x (1)求a 的值。
(2)若k x f x f ≤-)2
(2)(恒成立,求k 的取值范围.。