北京专家2020届高考模拟试卷(一)数学试卷解析(文科)

合集下载

2020年北京市顺义区高考数学一模试卷(文科)含答案解析

2020年北京市顺义区高考数学一模试卷(文科)含答案解析

2020年北京市顺义区高考数学一模试卷(文科)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知i为虚数单位,计算i(1+i)=()A.1﹣i B.1+i C.﹣1+i D.﹣1﹣i2.已知集合A={x|x2<1},B={x|2x<1},则A∩B=()A.(﹣1,0)B.(﹣1,1)C.(﹣∞,0]D.(﹣∞,1)3.下列函数在其定义域内既是奇函数又是增函数的是()A.y=2﹣x B.y=x3+x C.y=﹣D.y=lnx4.点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.x+y﹣1=0 B.2x+y﹣3=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=05.执行如图所示的程序框图,输出的结果是()A.15 B.21 C.24 D.356.已知a,b∈R,则“ab≥2”是“a2+b2≥4”成立的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件7.在平面直角坐标系中,若不等式组,(a为常数)表示的区域面积等于3,则a的值为()A.﹣5 B.﹣2 C.2 D.58.如图,矩形ABCD与矩形ADEF所在的平面互相垂直,将△DEF沿FD翻折,翻折后的点E(记为点P)恰好落在BC上,设AB=1,FA=x(x>1),AD=y,则以下结论正确的是()A.当x=2时,y有最小值B.当x=2时,有最大值C.当x=时,y有最小值2 D.当x=时,y有最大值2二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(2,1),+=(1,k),若⊥则实数k等于_______.10.抛物线y2=8x的准线与双曲线C:﹣=1的两条渐近线所围成的三角形面积为_______.11.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=2bsinA,则B=_______.12.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_______(单位:cm2).13.国家新能源汽车补贴政策,刺激了电动汽车的销售,据市场调查发现,某地区今年Q 型电动汽车的销售将以每月10%的增长率增长;R型电动汽车的销售将每月递增20辆,已知该地区今年1月份销售Q型和R型车均为50辆,据此推测该地区今年Q型汽车销售量约为_______辆;这两款车的销售总量约为_______辆.(参考数据:1.111≈2.9,1.112≈3.1,1.113≈3.5)14.设集合{+b|1≤a≤b≤2}中的最大和最小元素分别是M、m,则M=_______,m=_______.三、解答题:本大题共6小题,共80分.15.已知函数f(x)=sin2x﹣2cos2x.x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在[0,]上的最大值与最小值.16.某农业科研实验室,对春季昼夜温差大小与某蔬菜种子发芽多少之间的关系进行研究,分别记录了3月1日至3月6日的每天昼夜温差与实验室每天每100粒种子浸泡后的发芽数,得到如表数据:日期3月1日3月2日3月3日3月4日3月5日3月6日昼夜温差(℃)9 11 13 12 8 10发芽数(粒)23 25 30 26 16 24(1)求此种蔬菜种子在这6天的平均发芽率;(2)从3月1日至3月6日这六天中,按照日期从前往后的顺序任选2天记录发芽的种子数分别为m,n,用(m,n)的形式列出所有基本事件,并求满足的事件A的概率.17.已知等差数列{a n},a2=3,a5=9.(1)求数列{a n}的通项公式a n;(2)令b n=c,其中c为常数,且c>0,求数列{b n}的前n项和S n.18.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD是等边三角形,AD=DE=2AB=2,F,G分别为AD,DC的中点.(1)求证:CF⊥平面ABED;(2)求四棱锥C﹣ABED的体积;(3)判断直线AG与平面BCE的位置关系,并加以证明.19.已知函数f(x)=xe x+ax2+2x+1在x=﹣1处取得极值.(1)求函数f(x)的单调区间;(2)若函数y=f(x)﹣m﹣1在[﹣2,2]上恰有两个不同的零点,求实数m的取值范围.20.已知椭圆E: +=1(a>b>0)的一个焦点F(2,0),点A(2,)为椭圆上一点.(1)求椭圆E的方程;(2)设M、N为椭圆上两点,若直线AM的斜率与直线AN的斜率互为相反数,求证:直线MN的斜率为定值;(3)在(2)的条件下,△AMN的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.2020年北京市顺义区高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知i为虚数单位,计算i(1+i)=()A.1﹣i B.1+i C.﹣1+i D.﹣1﹣i【考点】复数代数形式的乘除运算.【分析】根据复数的运算和i2=﹣1进行化简即可.【解答】解:i(1+i)=i+i2=﹣1+i,故选C.2.已知集合A={x|x2<1},B={x|2x<1},则A∩B=()A.(﹣1,0)B.(﹣1,1)C.(﹣∞,0]D.(﹣∞,1)【考点】交集及其运算.【分析】分别求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.【解答】解:由A中不等式解得:﹣1<x<1,即A=(﹣1,1),由B中不等式变形得:2x<1=20,解得:x<0,即A=(﹣∞,0),则A∩B=(﹣1,0),故选:A.3.下列函数在其定义域内既是奇函数又是增函数的是()A.y=2﹣x B.y=x3+x C.y=﹣D.y=lnx【考点】函数单调性的判断与证明;函数奇偶性的判断.【分析】根据奇函数图象关于原点对称,一次函数和y=x3在R上的单调性,反比例函数在定义域上的单调性,以及指数函数和对数函数的图象便可判断每个选项的正误,从而找出正确选项.【解答】解:A.y=2﹣x的图象不关于原点对称,不是奇函数,∴该选项错误;B.y=x3+x的定义域为R,且(﹣x)3+(﹣x)=﹣(x3+x);∴该函数为定义域R上的奇函数;y=x3和y=x在R上都是增函数,∴y=x3+x在R上为增函数,∴该选项正确;C.反比例函数在定义域上没有单调性,∴该选项错误;D.y=lnx的图象不关于原点对称,不是奇函数,∴该选项错误.故选:B.4.点P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程为()A.x+y﹣1=0 B.2x+y﹣3=0 C.x﹣y﹣3=0 D.2x﹣y﹣5=0【考点】直线与圆相交的性质.【分析】由垂径定理,得AB中点与圆心C的连线与AB互相垂直,由此算出AB的斜率k=1,结合直线方程的点斜式列式,即可得到直线AB的方程.【解答】解:∵AB是圆(x﹣1)2+y2=25的弦,圆心为C(1,0)∴设AB的中点是P(2,﹣1)满足AB⊥CP因此,PQ的斜率k===1可得直线PQ的方程是y+1=x﹣2,化简得x﹣y﹣3=0故选:C5.执行如图所示的程序框图,输出的结果是()A.15 B.21 C.24 D.35【考点】程序框图.【分析】根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦满足条件就退出循环,从而到结论.【解答】解:模拟执行程序,可得S=0,i=1T=3,S=3,i=2不满足i>4,T=5,S=8,i=3不满足i>4,T=7,S=15,i=4不满足i>4,T=9,S=24,i=5满足i>4,退出循环,输出S的值为24.故选:C.6.已知a,b∈R,则“ab≥2”是“a2+b2≥4”成立的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分又不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】ab≥2,可得:a2+b2≥2ab≥4.反之不成立,例如取a=,b=2.即可判断出结论.【解答】解:∵ab≥2,∴a2+b2≥2ab≥4,当且仅当a=b=时取等号.反之不成立,例如取a=,b=2.∴“ab≥2”是“a2+b2≥4”成立的充分不必要条件.故选:A.7.在平面直角坐标系中,若不等式组,(a为常数)表示的区域面积等于3,则a的值为()A.﹣5 B.﹣2 C.2 D.5【考点】简单线性规划.【分析】本题主要考查线性规划的基本知识,先画出约束条件的可行域,根据已知条件中,表示的平面区域的面积等于3,构造关于a的方程,解方程即可得到答案.【解答】解:不等式组,(a为常数)围成的区域如图所示.∵由于x,y的不等式组所表示的平面区域的面积等于3,∴×|AC|×|x A﹣x B|=3,解得|AC|=6,∴C的坐标为(1,6),由于点C在直线ax﹣y+1=0上,则a﹣6+1=0,解得a=5.故选:D.8.如图,矩形ABCD与矩形ADEF所在的平面互相垂直,将△DEF沿FD翻折,翻折后的点E(记为点P)恰好落在BC上,设AB=1,FA=x(x>1),AD=y,则以下结论正确的是()A.当x=2时,y有最小值B.当x=2时,有最大值C.当x=时,y有最小值2 D.当x=时,y有最大值2【考点】二面角的平面角及求法.【分析】由已知得FE=FP=AD=BC=y,AB=DC=1,FA=DE=DP=x,从而PC=,AP=,BP=,进而得到y2==,由此利用换元法及二次函数性质能求出结果.【解答】解:∵矩形ABCD与矩形ADEF所在的平面互相垂直,AB=1,FA=x(x>1),AD=y,∴FE=FP=AD=BC=y,AB=DC=1,FA=DE=DP=x在Rt△DCP中,PC=,在Rt△FAP中,AP=,在Rt△ABP中,BP=,∵BC=BP+PC=+=y整理得y2==,令t=则y2=,则当t=,即x=时,y取最小值.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(2,1),+=(1,k),若⊥则实数k等于3.【考点】数量积判断两个平面向量的垂直关系.【分析】由条件求出的坐标,由⊥可得•=0,解方程求得k 的值.【解答】解:∵向量=(2,1),+=(1,k),∴=(﹣1,k﹣1)∵⊥,则•=(2,1)•(﹣1,k﹣1)=﹣2+k﹣1=0,∴k=3,故答案为3.10.抛物线y2=8x的准线与双曲线C:﹣=1的两条渐近线所围成的三角形面积为2.【考点】双曲线的简单性质.【分析】求得抛物线的准线方程和双曲线的渐近线方程,解得两交点,由三角形的面积公式,计算即可得到所求值.【解答】解:抛物线y2=8x的准线为x=﹣2,双曲线C:﹣=1的两条渐近线为y=±x,可得两交点为(﹣2,),(﹣2,﹣),即有三角形的面积为×2×2=2.故答案为:2.11.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=2bsinA,则B=或.【考点】正弦定理.【分析】由已知利用正弦定理可得,sinA=2sinBsinA,从而可求sinB,进而可求B.【解答】解:∵a=2bsinA,由正弦定理可得,sinA=2sinBsinA,∵sinA≠0,∴sinB=,∵0°<B<180°.∴B=或.故答案为:或.12.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是3π+4(单位:cm2).【考点】由三视图求面积、体积.【分析】由三视图知几何体是半个圆柱,由三视图求出几何元素的长度,由圆柱的表面积公式求出几何体的表面积.【解答】解:根据三视图可知几何体是半个圆柱,且正视图是底面,∴底面圆的半径是1cm,母线长是2cm,∴几何体的表面积S=π×12+π×1×2+2×2=3π+4(cm2),故答案为:3π+4.13.国家新能源汽车补贴政策,刺激了电动汽车的销售,据市场调查发现,某地区今年Q 型电动汽车的销售将以每月10%的增长率增长;R型电动汽车的销售将每月递增20辆,已知该地区今年1月份销售Q型和R型车均为50辆,据此推测该地区今年Q型汽车销售量约为1050辆;这两款车的销售总量约为2970辆.(参考数据:1.111≈2.9,1.112≈3.1,1.113≈3.5)【考点】等差数列与等比数列的综合;对数的运算性质.【分析】由题意可得,今年Q型电动汽车的月销售量与R型电动汽车的月销售量分别构成等比数列和等差数列,然后利用等比数列和等差数列的前n项和求解.【解答】解:由题意可得,今年Q型电动汽车的月销售量构成以50为首项,以1.1为公比的等比数列,则今年Q型电动汽车的销售量为≈1050;R型电动汽车的月销售量构成以50为首项,以20为公差的等差数列,则R型电动汽车的销售量为=1920.∴这两款车的销售总量约为:1050+1920=2970.故答案为:1050;2970.14.设集合{+b|1≤a≤b≤2}中的最大和最小元素分别是M、m,则M=5,m=2.【考点】集合的表示法.【分析】根据级别不等式的性质求出最小值,a取最小值1,b取最大值2时,求出最大值M.【解答】解: +b≥+a≥2,故m=2,a=1,b=2时+b=5,故M=5,故答案为:.三、解答题:本大题共6小题,共80分.15.已知函数f(x)=sin2x﹣2cos2x.x∈R.(1)求函数f(x)的最小正周期;(2)求函数f(x)在[0,]上的最大值与最小值.【考点】三角函数中的恒等变换应用;三角函数的周期性及其求法.【分析】(1)根据两角差的正弦公式得到f(x)=,从而求出f(x)的最小正周期;(2)根据x的范围,求出2x﹣的范围,从而求出f(x)的最大值和最小值即可.【解答】解:(1)由已知f(x)=sin2x﹣2cos2x=,∴f(x)的最小正周期为π;(2)∵,∴,∴当,即x=0时,f min(x)=﹣2,当,即时,.16.某农业科研实验室,对春季昼夜温差大小与某蔬菜种子发芽多少之间的关系进行研究,分别记录了3月1日至3月6日的每天昼夜温差与实验室每天每100粒种子浸泡后的发芽数,得到如表数据:日期3月1日3月2日3月3日3月4日3月5日3月6日昼夜温差(℃)9 11 13 12 8 10发芽数(粒)23 25 30 26 16 24(1)求此种蔬菜种子在这6天的平均发芽率;(2)从3月1日至3月6日这六天中,按照日期从前往后的顺序任选2天记录发芽的种子数分别为m,n,用(m,n)的形式列出所有基本事件,并求满足的事件A的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)根据平均数即可求出,(2)一一列举出所有的基本事件,再找到满足条件的基本事件,根据概率公式计算即可.(1)这6天的平均发芽率为:,【解答】解:∴这6天的平均发芽率为24%,(2)(m,n)的取值情况有事件数为15,设为事件A,则事件A包含的基本事件为(25,30),(25,26)(30,26),∴所求概率.17.已知等差数列{a n},a2=3,a5=9.(1)求数列{a n}的通项公式a n;(2)令b n=c,其中c为常数,且c>0,求数列{b n}的前n项和S n.【考点】数列的求和;等差数列的通项公式.【分析】(1)利用等差数列通项公式即可得出.(2)对c分类讨论,利用等比数列的前n项和公式即可得出.【解答】解:(1)由已知,解得d=2,a1=1,∴数列{a n}的通项公式为a n=2n﹣1.(2)由(Ⅰ)知:b n=c=c2n﹣1,当c=1时,b n=1,∴S n=n.当c≠1时,∵,∴{b n}是b1=c,公比为c2的等比数列;∴.18.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD是等边三角形,AD=DE=2AB=2,F,G分别为AD,DC的中点.(1)求证:CF⊥平面ABED;(2)求四棱锥C﹣ABED的体积;(3)判断直线AG与平面BCE的位置关系,并加以证明.【考点】直线与平面所成的角;棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【分析】(1)由AB⊥平面ACD得出平面ACD⊥平面ABED,由等边三角形得出CF⊥AD,利用面面垂直的性质得出CF⊥平面ABED;(2)棱锥的底面ABED为直角梯形,高为CF,代入体积公式计算即可;'(3)取CE的中点H,连结GH,BH,则可证明四边形ABHG是平行四边形,于是AG∥BH,得出AG∥平面BCE.【解答】证明:(1)∵F为等腰△ACD的边AD的中点,∴CF⊥AD,∵AB⊥平面ACD,AB⊂平面ABED,∴平面ACD⊥平面ABED,∵平面ACD∩平面ABED=AD,CF⊥AD,.CF⊂平面ACD,∴CF⊥平面ABED.(2)∵△ACD是边长为2的等边三角形,∴CF=.==3,∵S梯形ABED∴.(3)结论:直线AG∥平面BCE.证明:取CE的中点H,连结GH,BH,∵G是CD的中点,∴GH∥DE,且GH==1,∵AB⊥平面ACD,DE⊥平面ACD,∴GH∥AB,又GH=AB=1,∴四边形ABHG为平行四边形,∴AG∥BH,又AG⊄平面BCE,BH⊂平面BCE,∴AG∥平面BCE.19.已知函数f(x)=xe x+ax2+2x+1在x=﹣1处取得极值.(1)求函数f(x)的单调区间;(2)若函数y=f(x)﹣m﹣1在[﹣2,2]上恰有两个不同的零点,求实数m的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,得到关于a的方程,求出a,解关于导函数的不等式,求出函数的单调区间即可;(2)问题等价于xe x+x2+2x=m在[﹣2,2]上恰有两个不同的实根.令g(x)=xe x+x2+2x,求出函数的单调性求出g(x)的最小值,从而求出m的范围即可.【解答】解:(1)f'(x)=e x+xe x+2ax+2,∵f(x)在x=1处取得极值,∴f'(﹣1)=0,解得a=1.经检验a=1适合,∴f(x)=xe x+x2+2x+1,f'(x)=(x+1)(e x+2),当x∈(﹣∞,﹣1)时,f'(x)<0,∴f(x)在(﹣∞,﹣1)递减;当x∈(﹣1+∞)时,f'(x)>0,∴f(x)在(﹣1,+∞)递增.(2)函数y=f(x)﹣m﹣1在[﹣2,2]上恰有两个不同的零点,等价于xe x+x2+2x﹣m=0在[﹣2,2]上恰有两个不同的实根,等价于xe x+x2+2x=m在[﹣2,2]上恰有两个不同的实根.令g(x)=xe x+x2+2x,∴g'(x)=(x+1)(e x+2),由(1)知g(x)在(﹣∞,﹣1)递减;在(﹣1,+∞)递增.g(x)在[﹣2,2]上的极小值也是最小值;.又,g(2)=8+2e2>g(﹣2),∴,即.20.已知椭圆E: +=1(a>b>0)的一个焦点F(2,0),点A(2,)为椭圆上一点.(1)求椭圆E的方程;(2)设M、N为椭圆上两点,若直线AM的斜率与直线AN的斜率互为相反数,求证:直线MN的斜率为定值;(3)在(2)的条件下,△AMN的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)由题意可得c=2,由A满足椭圆方程,结合a,b,c的关系,可得a,b,进而得到椭圆方程;(2)设M(x1,y1),N(x2,y2),直线AM的斜率为k,则直线AN的斜率为﹣k,联立直线方程和椭圆方程,运用韦达定理,结合两点的斜率公式计算即可得到所求定值;(3)不妨设过M,N的直线方程为:,代入椭圆方程,运用韦达定理和弦长公式,以及点到直线的距离公式,由点到直线的距离公式,结合二次函数的最值求法,即可得到所求最大值.【解答】解:(1)由已知c=2,∵在椭圆上,∴,又a2=b2+c2,解得b2=4,a2=8,可得椭圆方程为+=1;(2)设M(x1,y1),N(x2,y2),直线AM的斜率为k,则直线AN的斜率为﹣k,∴由,消去y得(1+2k2)x2﹣(8k2﹣4k)x+8k2﹣8k﹣4=0,由曲线E与直线l只有两个公共点,可得△>0,且x1,2是方程的二根,∴,∴,∴,同理,∴为定值.(3)不妨设过M,N的直线方程为:由,消去y得,由△>0,解得m2<8,,,计算得:点到直线MN的距离,∴=∴当m2=4,即m=±2时,.2020年9月8日。

2020年高考第一次模拟考试文科数学试卷(含答案)

2020年高考第一次模拟考试文科数学试卷(含答案)

2020年高考第一次模拟考试文科数学试卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有项是符合题目要求的.1.若集合A ={x |0≤x ≤2},B ={x |x 2>1},则A ∪B =( ) A .{x |0≤x ≤1}B .{x |x >0或x <﹣1}C .{x |1<x ≤2}D .{x |x ≥0或x <﹣1}2.复数z 满足z =2i1−i ,则复数z 的虚部为( ) A .﹣1B .1C .iD .﹣i3.双曲线x 2−y 24=1的渐近线方程是( )A .y =±√55x B .y =±√5x C .y =±12xD .y =±2x4.已知数列{a n }满足2a n =a n ﹣1+a n +1(n ≥2),a 2+a 4+a 6=12,a 1+a 3+a 5=9,则a 3+a 4=( ) A .6B .7C .8D .95.已知向量a →=(x ,−1),b →=(1,√3),若a →⊥b →,则|a →|=( ) A .√2B .√3C .2D .46.“cos2α=12”是“α=kπ+π6(k ∈Z)”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件7.描金又称泥金画漆,是一种传统工艺美术技艺.起源于战国时期,在漆器表面,用金色描绘花纹的装饰方法,常以黑漆作底,也有少数以朱漆为底.描金工作分为两道工序,第一道工序是上漆,第二道工序是描绘花纹.现甲、乙两位工匠要完成A ,B ,C 三件原料的描金工作,每件原料先由甲上漆,再由乙描绘花纹.每道工序所需的时间(单位:小时)如下:则完成这三件原料的描金工作最少需要( )A .43小时B .46小时C .47小时D .49小时8.设直线x ﹣y ﹣a =0与圆x 2+y 2=4相交于A ,B 两点,O 为坐标原点,若△AOB 为等边三角形,则实数a 的值为( ) A .±√3 B .±√6 C .±3 D .±99.函数f (x )=a1−x 2(a >1)的部分图象大致是( )10.已知定义域为I 的偶函数f (x )在(0,+∞)上单调递增,且∃x 0∈I ,f (x 0)<0,则下列函数中符合上述条件的是( ) A .f (x )=x 2+|x | B .f (x )=2x ﹣2﹣xC .f (x )=log 2|x |D .f(x)=x−4311.已知三棱锥A ﹣BCD 内接于球O ,且AD =BC =3,AC =BD =4,AB =CD =√13,则三棱锥A ﹣BCD 的外接球的表面积是( ) A .38πB .9πC .76πD .19π12.已知函数f (x )=lnx +a ,g (x )=ax +b +1,若∀x >0,f (x )≤g (x ),则b a的最小值是( ) A .1+eB .1﹣eC .e ﹣1D .2e ﹣1二、填空题:本大题共4小题,每小题5分,共20分13.若关于x 的不等式(2a ﹣b )x +(a +b )>0的解集为{x |x >﹣3},则ba = .14.若平面向量a →=(cosθ,sinθ),b →=(1,﹣1),且a →⊥b →,则sin2θ的值是 . 15.若整数x 、y 满足不等式组{0≤x ≤2x +y −2>0x −y +2>0,则z =yx的最小值为 .16.三角形ABC 中,AB =2且AC =2BC ,则三角形ABC 面积的最大值为 . 三、解答题:本大题共5小题,满分共70分.解答应写出文字说明、证明过程或演算过程 (一)必考题:共60分.17.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b =c ,2sin B =√3sin A .。

2020年北京高考模拟试题(一卷)数学试卷答案

2020年北京高考模拟试题(一卷)数学试卷答案

高考模拟试卷参考答案 第 7 页 共 7 页
高考模拟试卷参考答案 第 3 页 共 7 页
EX 0 7 1 31 2 6 11 --------------------------------------------11 分
50 50 25 10
(Ⅲ)
DY1
1 2
1 2
1 4

DY2
3 20
17 20
51 400

DY3
3 4
若 ,则前 4 项中有 2 项大于 3,因此
,矛盾.


,因此
.--(12 分)
假设当
时命题成立,则当
时,
构造数列 ,满足
,
可知
,
,同理
,

满足题设条件,由归纳假设可知
, ------(13 分)
因此
,
,
,
高考模拟试卷参考答案 第 6 页 共 7 页
即当
时命题成立,证毕.
-------(14 分)
连接 GH
GH AD, AD 2GH
…………1 分
底面 ABCD 是正方形,
AD BC, AD BC
…………2 分
BC=2EF ,BC EF
AD EF,AD=2EF EF HG,EF=HG
EFGH 是平行四边形 FG EH
…………4 分
FG 面ABE, EH 面ABE
40 40 50
PX 1 12 8 28 32 31
40 40 40 40 50
PX 2 12 32 6 --------------------------------------------9 分

2020学年普通高等学校招生全国统一考试(北京卷)数学文及答案解析

2020学年普通高等学校招生全国统一考试(北京卷)数学文及答案解析

2020年普通高等学校招生全国统一考试(北京卷)数学文一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项。

1.已知集合A={x||x|<2},B={-2,0,1,2},则A∩B=( )A.{0,1}B.{-1,0,1}C.{-2,0,1,2}D.{-1,0,1,2}解析:∵集合A={x||x|<2}={x|-2<x<2},B={-2,0,1,2},∴A∩B={0,1}.答案:A2.在复平面内,复数11i-的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限解析:复数()()1111 11122iii i i+==+--+,共轭复数对应点的坐标(1122-,)在第四象限.答案:D3.执行如图所示的程序框图,输出的s值为( )A.1 2B.5 6C.7 6D.7 12解析:在执行第一次循环时,k=1,S=1.在执行第一次循环时,S=1-1122=.由于k=2≤3,所以执行下一次循环.S=115236+=,k=3,直接输出S=56.答案:B4.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:若a,b,c,d成等比数列,则ad=bc,反之数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.答案:B5.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为( )A.32fB.32 2fC.125 2fD.127 2f解析:从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f,则第八个单音的频率为:()7127 122?2f f=.答案:D6.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4解析:四棱锥的三视图对应的直观图为:PA⊥底面ABCD,,,PC=3,PD=22,可得三角形PCD不是直角三角形.==AC CD55所以侧面中有3个直角三角形,分别为:△PAB,△PBC,△PAD.答案:C,,,是圆x2+y2=1上的四段弧(如图),点P其中一段上,7.在平面直角坐标系中,AB CD EF GH角α以Ox为始边,OP为终边.若tanα<cosα<sinα,则P所在的圆弧是( )A.ABB.CDC.EFD.GH解析:A、在AB段,正弦线小于余弦线,即cosα<sinα不成立,故A不满足条件.B、在CD段正切线最大,则cosα<sinα<tanα,故B不满足条件.C、在EF段,正切线,余弦线为负值,正弦线为正,满足tanα<cosα<sinα,D、在GH段,正切线为正值,正弦线和余弦线为负值,满足cosα<sinα<tanα不满足tanα<cosα<sinα.答案:C8.设集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2},则( )A.对任意实数a,(2,1)∈AB.对任意实数a,(2,1)∉AC.当且仅当a<0时,(2,1)∉AD.当且仅当a≤32时,(2,1)∉A解析:当a=-1时,集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2}={(x,y)|x-y≥1,-x+y>4,x+y≤2},显然(2,1)不满足,-x+y>4,x+y≤2,所以A,C不正确;当a=4,集合A={(x,y)|x-y≥1,ax+y>4,x-ay≤2}={(x,y)|x-y≥1,4x+y>4,x-4y≤2},显然(2,1)在可行域内,满足不等式,所以B不正确.答案:D二、填空题共6小题,每小题5分,共30分。

2020年高考全国1卷数学(文科)模拟试卷(含答案)

2020年高考全国1卷数学(文科)模拟试卷(含答案)

2020年高考全国1卷数学(文科)模拟试卷考试时间:120分钟 满分150分一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B 2C 2D .22、已知集合{}|12A x x =-<,12|log 1B x x ⎧⎫=>-⎨⎬⎩⎭,则AB =A .{}|04x x <<B .{}|22x x -<<C .{}|02x x <<D .{}|13x x << 3、以下判断正确的个数是( )①相关系数r r ,值越小,变量之间的相关性越强;②命题“存在01,2<-+∈x x R x ”的否定是“不存在01,2≥-+∈x x R x ”; ③“q p ∨”为真是“p ”为假的必要不充分条件;④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是08.023.1ˆ+=x y. A .4 B .2 C.3 D .14、设,a b 是非零向量,则“存在实数λ,使得=λa b ”是“||||||+=+a b a b ”的A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5、 已知正三角形ABC 的顶点()()3,1,1,1B A ,顶点C 在第一象限,若点()y x ,在ABC ∆的内部,则y x z +-=的取值范围是 A.()2,31- B.()2,0 C.()2,13- D.()31,0+6、使函数)2cos()2sin(3)(θθ+++=x x x f 是偶函数,且在]4,0[π上是减函数的θ的一个值是 A .6π B .3π C .34π D .67π7、在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是8、已知数列{}n a 的前n 项和为n S ,且满足121a a ==,21n n S a +=-,则下列命题错误的是( ) A.21n n n a a a ++=+B.13599100a a a a a ++++=…C.2469899a a a a a ++++=…D.12398100100S S S S S ++++=-…9、某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形,③ 三棱锥四个面的面积中最大的值是32所有正确的说法 A 、①B 、①②C 、②③D 、①③10、已知双曲线)0,(12222>b a by a x =-的左、右顶点分别为B A ,,右焦点为F ,过点F 且垂直于x 轴的直线l 交双曲线于N M ,两点,P 为直线l 上的一点,当APB ∆的外接圆面积达到最小值时,点P 恰好在M (或N )处,则双曲线的离心率为 A.2 B.3 C.2 D.511、珠算被誉为中国的第五大发明,最早见于汉朝徐岳撰写的《数术记遗》•2013年联合国教科文组织正式将中国珠算项目列入教科文组织人类非物质文化遗产.如图,我国传统算盘每一档为两粒上珠,五粒下珠,也称为“七珠算盘”.未记数(或表示零)时,每档的各珠位置均与图中最左档一样;记数时,要拨珠靠梁,一个上珠表示“5”,一个下珠表示“1”,例如:当千位档一个上珠、百位档一个上珠、十位档一个下珠、个位档一个上珠分别靠梁时,所表示的数是5515.现选定“个位档”、“十位档”、“百位档”和“千位档”,若规定每档拨动一珠靠梁(其它各珠不动),则在其可能表示的所有四位数中随机取一个数,这个数能被3整除的概率为( ) A .12B .25C .38D .1312、已知函数()21ln (1)(0)2x ax a f a x x a =-+-+>的值域与函数()()f f x 的值域相同,则a 的取值范围为( ) A. (]0,1B. ()1,+∞C. 40,3⎛⎤ ⎥⎝⎦D. 4,3⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析

2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。

北京市西城区2020届高三下第一次模拟测试(数学文)doc高中数学

北京市西城区2020届高三下第一次模拟测试(数学文)doc高中数学

北京市西城区2020届高三下第一次模拟测试(数学文)doc高中数学高三数学试卷〔文科〕2018.4 第一卷〔选择题共40分〕一、选择题:本大题共8小题,每题5分,共40分.在每题给出的四个选项中1. 设集合P {x x 1},Q {x x(x 1)0},以下结论正确的选项是A. P QB. P^Q RC. P QD. Q Py x 4,,…2. 下面四个点中,在区域内的点是y xA. (0,0)B. (0,2) C . ( 3,2) D . ( 2,0)3.设等差数列{a n}的前n项和为S n, a2 6,那么等于A . 10B . 12C . 15 D. 304•假设0 m n ,那么以下结论正确的选项是2n B. (2)m(『C . log 2 m log 2 nD . log 1 m2 log-I n25.甲乙两名运动员在某项测试中的6次成绩如茎叶图所示, 的平均数,$ , S2分不表示甲乙两名运动员这项测试成绩的A.x x2 , 3S2 B . x1x, Si S2C . % x, S1S2 D .% x, S1S2甲标准差,那乙9084 5 5 61 3 5 5 7122132121B .138_1313D .8么有6•阅读右面的程序框图,运行相应的程序,输出的结果为x1,x2分不表示甲乙两名运动员这项测试成绩2D .当AB 与CD 相交,直线AC 平行于I 时,直线BD 能够与I 相交第二卷〔非选择题共110分〕、填空题:本大题共 6小题,每题5分,共30分. 9. i 是虚数单位,10.在边长为1的正方形ABCD 内任取一点P ,那么点P 到点A 的距离小于1的概率为 ____________________f (x l) f(x),那么称f (x)为M 上的I 高调函数.现给出以下命题:1①函数f(x) ( )x 为R 上的1高调函数;② 函数f (x) si n2x 为R 上的 高调函数;2③ 假如定义域是[1,)的函数f(x) x 2为[1,)上的m 高调函数,那么实数m 的取值范畴是[2,).其中正确的命题是 __________ .〔写出所有正确命题的序号〕三、解答题:本大题共 6小题,共80分.解承诺写出必要的文字讲明、证明过程或演算步骤 15. 〔本小题总分值12分〕27.双曲线X1的左顶点为 A ,右焦点为F 2, P 为双曲线右支上一点,那么8.如图,平面 点,B,D 是81 C . 1 16平面 内不同的线段AB,CD 的中点. 以下判定正确的选项是: 不同的两A .当B .当C . M CD CD2 AB 时, 2 AB 时,,N 两点可能重合, M,N 两点不可能重合 线段AB, CD 在平面上正投影的长度不可能相等但现在直线 AC 与直线1不可能相交11.12.f(x)3 , a, b 的夹角为60,那么x 2 x, x 0,1 2lgx,x 0,假设 f(x) 2,2a b那么13.在 ABC 中,C 为钝角, 竺 3 , si nA BC 2那么角C ,sin B14.设函数f (x)的定义域为 D ,假设存在非零实数 l 使得关于任意x M (M D),有 x l D ,且的最小值为n两点,M , N 分不是1一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分不是1、2、3、4,现从盒子中随机抽取2〔I 〕假设一次抽取 3张卡片,求3张卡片上数字之和大于 7的概率;〔H 〕假设第一次抽 1张卡片,放回后再抽取 1张卡片,求两次抽取中至少一次抽到数字3的概率.16. 〔本小题总分值12分〕〔I 〕求tan 的值;17. 〔本小题总分值14分〕视图和侧〔左〕视图如图 2所示.〔I 〕证明:AD 平面PBC ; 〔n 〕求三棱锥D ABC 的体积;18. 〔本小题总分值14分〕2 2椭圆C :笃每 1( a b a 2 b 2 〔I 〕求椭圆C 的方程;卡片.为锐角,且tan (4 )2. 〔n 〕求sin 2 coscos2sin的值.如图1,在三棱锥P ABC 中,PA平面ABC , AC BC , D 为侧棱PC 上一点,它的正〔主〕〔川〕在ACB 的平分线上确定一点 Q ,使得PQ //平面ABD ,并求现在PQ 的长.0)的离心率为 —,且过点(2,0).C图2〔n〕设直线l : y x m与椭圆C交于两点AB , O为坐标原点,假设OAB为直角三角形,求m 的值.19. 〔本小题总分值14分〕设数列{a n}为等比数列,数列{b n}满足b n (n 1归2川2a n 1 a n,n N*,d m,, 3m »亠小b2 ,其中m 0.2(i )求数列{a n}的首项和公比;(n)当m 1时,求b n;(川)设S n为数列{a n}的前n项和,假设关于任意的正整数n,都有& [1,3],求实数m的取值范畴.20. 〔本小题总分值14分〕函数f(x) (x2 mx m) e x〔m R〕.〔I〕假设函数f (x)存在零点,求实数m的取值范畴;〔n〕当m 0时,求函数f(x)的单调区间;并确定现在f(x)是否存在最小值,假如存在,求出最小值,假如不存在,请讲明理由.北京市西城区2018年抽样测试参考答案高三数学试卷〔文科〕2018.4、选择题:本大题共8小题,每题5分,共40分.三、解答题:〔本大题共6小题,共80分.假设考生的解法与本解答不同,正确者可参照评分标准给分 •〕15、解:〔I 〕设A 表示事件”抽取3张卡片上的数字之和大于 7”,任取三张卡片,三张卡片上的数字全部可能的结果是〔 1、2、3〕,〔 1、2、4〕,〔 1、3、4〕,〔2、3、4〕, ........................ 2 分其中数字之和大于 7的是〔1、3、4〕,〔2、3、4〕, .............. 4分 因此P(A) -. ............................ 6分 〔□〕设B 表示事件”至少一次抽到 3 ” ,每次抽1张,连续抽取两张全部可能的差不多结果有: 〔1、1〕〔 1、2〕〔 1、3〕〔 1、4〕〔 2、1〕〔 2、2〕〔2、3〕〔 2、4〕〔 3、1〕〔3、2〕〔 3、3〕〔 3、4〕〔4、1〕〔 4、2〕〔 4、3〕〔4、4〕,共 16 个差不多结果. ............. 8分事件B 包含的差不多结果有〔1、3〕〔 2、3〕〔 3、1〕〔 3、2〕〔 3、3〕〔 3、4〕〔 4、3〕,共7个差不多结果• ............ 10分因此 1 tan 2, 1 tan 2 2tan1 tan1 因此tan ........ 5分 3cos 2sin 2 cos sin 2sin2 .cos sin二、填空题: 本大题共6小题,每题5分,共30分.11. 9.i10. —11.卫2 2413. 150 ,2.23 14.②③.612.1 或.10因此所求事件的概率为 P(B)—.12分16、解:〔I 〕tan( —41 tan 1 tancos2注:两空的题目,第一个空 2分,第二个空3分.2因为O 为CQ 中点,因此PQ//OD , 因为PQ 平面ABD , OD 平面ABD , 因此PQ//平面ABD , ............................ 12分 连接AQ , BQ ,四边形ACBQ 的对角线互相平分, 因此ACBQ 为平行四边形, 因此AQ 4,又PA 平面ABC , 因此在直角 PAQ 中,cos2 cos2因为tan -,因此cos33sin因此sin 2110,又为锐角,因此sin1010,r,, sin 2因此一 cossin'帀cos210 .10分.2,又sinsin (2cos 1) sin cos2------------------------ ------------------- sin2cos12分17、解: 〔I 〕因为PA 平面 ABC ,因此PA BC 又AC BC ,因此BC 平面 PAC , 因此BC AD . 由三视图可得,在 PAC 中,PA AC 4 , D 为 因此AD PC , 因此AD 平面PBC , 〔n 〕由三视图可得 BC 4, 由〔I 〕知 ADC 90:, BC 平面 PAC , 积, 又三棱锥D ABC 的体积即为三棱锥 因此,所求三棱锥的体积 V 2分CADC 4 PC 中点,〔川〕取AB 的中点0,连接CO 并延长至Q , 使得CQ 2CO ,点Q 即为所求.10分即所求实数m 的取值范畴是 {m2 m 3}.18、解:〔[〕由c a罷41 ............. 2,a 2',......... 3分 因此a2, c .3 ,又 a 2 b 22c , 因此b 1,2因此椭圆 C 的方程为xy 2 1 ............ ............ 5分42x21 〔n 〕联立 4 yy x m消去 y 得 5x 2 8mx 4m 24 0, .......................... 6 分 64m 2 80( m 2 1)16m 2 80,令 0,即16m 280 0,解得 、、5 m 、. 5 ......................... 7 分〔i 〕当 AOB 为直角时,由直线I 的斜率为1,可得直线OA 的斜率为1,1,即y 1 花, ...........................12分13分PQ , AP 2 AQ 24,2.14分设代B 两点的坐标分不为任,yJ ,(X 2, y 2),那么 x 1 x 28m ,x_jX 254m 2 4 5即 X 1X 2 y 』20,因此 2x 1x 2 m(x-i x 2)m 2 0,因此28m m 20,解得m〔ii 〕当 OAB 或 OBA 为直角时,不妨设210. ............................... 11 分5OAB 为直角,2 y1因为 AOB 为直角,因此因此-x 21 ,X 12.5 ,4 5 m % 为 2为 4、5, 5 经检验,所求 m 值均符合题意,19、解:(I 由b i a i ,因此a i ) 14分 综上,m 的值为 2、.10和 4飞. 5 5b 2 2a 1 a 2,因此 2^ a 2 32m , 解得a 2 1时, a n (》n 12n^ (n 1)a 2Ill.... ①2a n 1an①,na ? (n1)a 3 III Q 0 a ..... .... ②nn 1②,(n )当 m b nan1 ,m -,因此数列{a n }的公比q n a 2 a 3III因此2b n 『(1)n ]*b n2n 329(6n 2 ( 92)1因为1m[12)n ] 孑 2)n 0,2m3 因此,注意到, 因此1[1 (1)n ], A ( 2)n ],10分S n [1,3 ]得-1 1 1(1)n2m 3(叨(1刍,当 13—)n 最大值为一,最小值为 2 2J_1($n 为奇数时1关于任意的正整数 n 都有- 1 234. 2m 3n 为偶数时 12分4 2m c c 因此 2, 2 m 3 33.14分即所求实数m 的取值范畴是 {m2 m 3}.因为m 0,因此x 1 0 x 2,20、 2设f (x)有零点,即函数g (x) x mx m 有零点, 因此 2 m 4m 0, 解得m 〕f (x) (2x m) x e (x 令f (x) 0, 得x 0或x 因为 m0时, 因此 m 2当x ( ,m 2)时, 当x (m 2,0 )时,f 〔n解:〔I 〕 2 mx m) m 2, 0, f (X) 0 , 当 x (0, 现在, 4 或 m 0. (x) 0,函数f (x)单调递减; e x x(x m 2)e x 函数f(x)单调递增; )时,f (x) 0,函数f(x)单调递增• f (x)存在最小值• f (x)的极小值为f(0) m 0 .依照f(x)的单调性,f (x)在区间(m 2,)上的最小值为解f(x) 0,得f(x)的零点为x .m \m 2 4m 十和x 2m m 2 4m2 ,10分结合 f (x) (x 2 mx m) e x ,可得在区间(,xj 和(x 2, ) 上,f(x)0.11分同时捲(m 2) m m2 4m24 \ m 2 4m即 x 1 m 2,m 4 (2 m)1 0,13分综上,在区间(,捲)和(X 2,) 上, f (x)0,f (x)在区间(m 2,)上的最小值为 m ,m 0,因此,当m 0时f (x)存在最小值,最小值为 m .14分。

2020年高考第一次模拟考试数学(文科)试卷(含答案)

2020年高考第一次模拟考试数学(文科)试卷(含答案)

2020年高考第一次模拟考试数学(文科)试卷一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|-1≤x ≤5},B={x|x 2-2x >3},则A ∩B=A.{x|3<x ≤5}B.{x|-l ≤x ≤5} C .{x|x<-l 或x>3} D .R2.已知复数z 满足i(3+z )=1+i ,则z 的虚部为A .-iB .iC .-1D .13.已知函数⎩⎨⎧>≤-=1,ln ,1,)1()(3x x x x x f 若f(a))>f(b),则下列不等关系正确的是 A .111122+<+b a B .33b a > C .ab a <2 D .)1ln()1ln(22+>+b a 4.国家统计局服务业调查中心和中国物流与采购联合会发布的2018年10月份至2019年9月份共12个月的中国制造业采购经理指数( PMl)如下图所示,则下列结论中错误的是A .12个月的PMI 值不低于50%的频率为31 B .12个月的PMI 值的平均值低于50% C .12个月的PMI 值的众数为49. 4% D .12个月的PMI 值的中位数为50.3% 5.已知函数)42sin()(π-=x x f 的图象向左平移ϕ)0(>ϕ个单位后得到函数)42sin()(π+=x x g 的图象,则ϕ 的最小值为 A .4π B .83π C .2π D .85π 6.已知数列{a n }满足a n+1-a n =2,且a 1,a 3,a 4成等比数列,若{a n }的前n 项和为S n ,则S n 的最小值为A. - 10 B .- 14 C .-18 D .-207.已知32)2019cos(-=+a π,则=-)22sin(a π A .97 B .95 C .-95 D .-97 8.已知双曲线C: 2222by a x -=l(a>0,b>0)的右焦点为F ,过右顶点A 且与x 轴垂直的直线交双曲线的一条渐近线于M 点,MF 的中点恰好在双曲线C 上则C 的离心率为 A .5-1 B .2 C .3 D .59.执行如图所示的程序框图,若输出的结果为11,则图中的判断条件可以为A .S> -1?B .S<0?C .S<-l?D .S >0?10.过抛物线E:x 2 =2py(p>0)的焦点F 作两条相互垂直的弦AB ,CD ,没P 为抛物线上的一动点,Q(1,2).若41||1||1=+CD AB ,则|PF|+|PQ|的最小值是 A .1 B .2 C .3 D .411.已知函数f(x)=x 3 -ax -1,以下结论正确的个数为①当a=0时,函数f(x)的图象的对称中心为(0,一1);②当a ≥3时,函数f(x)在(-1,1)上为单调递减函数;③若函数f(x)在(-1,1)上不单凋,则0<a<3;④当n =12时f(x)在[-4,5]上的最大值为15.A .1B .2C .3D .412.已知四棱锥E-ABCD ,底面ABCD 是边长为1的正方形,ED=1,平面ECD 上平面ABCD ,当点C 到平面ABE 的距离最大时,该四棱锥的体积为A. 62 B .31 C .32 D.1 二、填空题:本题共4小题.每小题5分.共20分.13.已知向量a =(l ,1),|b |=3,(2a +b )•a =2,则|a -b |=14.为激发学生团结协作、敢于拼搏、不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛l 场,目前(一)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为____. 15.将底面直径为4,高为3的圆锥形石块打磨成一个圆柱,则该圆柱的侧面积的最大值为16.如图,已知圆内接四边形ABCD ,其中AB =6,BC =3,CD =4,AD =5,则=+BA sin 2sin 2 .三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17 - 21题为必考题,每个试题考生都必须作答,第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知数列{a n }的各项都为正数,a 1 =2,且.1211+=++n n n n a a a a。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京专家2020届高考模拟试卷数学试卷解析(文科)一、选择题:本大题共12小题,每小题5分,共60分.每小题只有一个正确选项.1.已知集合{}{}|1,|(1)(2)0A x x B x x x =<=+-<,则A B =(A)[1,1)-(B)(-1,2)(C)(1,1)-(D)(,2)-∞解析:选C ,易知(1,2)B =-,故(1,1)A B =- 2.设i 为虚数单位,复数z 满足(2i)5-=z ,则z =(A)2i+(B)2i -(C)2i -+(D)2i --解析:选A ,易知52i 2iz ==+-.3.在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知2π7,3,3a c A ===,则b =(A)4(B)5(C)8(D)5或8解析:选B ,由余弦定理:2222cos b c bc A a +-=,即23400b b +-=,解之得5b =.4.下列函数中既不是奇函数,也不是偶函数的是(A)3y x x =-(B)||e x y =(C)|ln |y x =(D)sin y x=解析:选C ,由奇偶性的定义可知,(A)(D)是奇函数,(B)是偶函数,(C)既不是奇函数也不是偶函数.5.设实数,x y 满足条件20,1,0,x y x y y -≥⎧⎪+≥⎨⎪≥⎩则23x y +的最小值为(A)2(B)83(C)4(D)5解析:选A ,作出可行域如图,设23z x y =+,即2133y x z =-+,当直线2133y x z =-+经过点A (1,0)时,截距最小,此时232x y +=.6.若51-<<-x ,则函数222()22++=+x x f x x 有(A)最小值1(B)最大值1(C)最小值-1(D)最大值-1解析:选D ,由于2(1)111()[(1)]2(1)21x f x x x x ++==++++,根据题意410x -<+<,故由均值不等式1()(2)12f x ≤⨯-=-,当且仅当11x +=-即2x =-时取等.7.已知函数()sin f x x x =+,若2(2),(log 5)a f b f c f ===,则,,a b c 的大小关系是(A)c b a <<(B)b c a <<(C)a c b <<(D)a b c<<解析:选D ,由于()1cos 0f x x '=+≥,则()f x 在R22log 5<<,从而a b c <<.8.在正三角形ABC 中,AB =2,1,2BD DC AE EB == ,且AD 与CE 相交于点O ,则OA OC ⋅=(A)45-(B)34-(C)23-(D)12-解析:选B,如图,设(1,0)A C,由坐标法可求解出2O ,从而OA OC ⋅= 34-.9.《九章算术》是我国的数学名著,书中有如下问题:今有蒲(水生植物名)生长一日,长为三尺;莞(植物名)生长一日,长为一尺.蒲的生长逐日减半,莞的生长逐日增加一倍.问当蒲和莞长度相等时,其长度是(A)五尺(B)六尺(C)七尺(D)八尺解析:选A ,设蒲和莞每日生长长度分别构成等比数列{}n a ,{}n b ,其前n 项和分别为,n n A B ,则13(1212,12112n n n n A B --==--,令n n A B =,化简得26n =,所以2log 6n =,此时5n n A B ==10.已知函数2()2sin cos 1)(0)f x x x x ωωωω=-->在区间π(0,)2内有且只有一个极值点,则ω的取值范围是(A)5(0,)6(B)11(0,]6(C)511[,66(D)511(,66解析:选D ,注意到π()2sin(2)3f x x ω=-,由π02x <<得,πππ2π333x ωω-<-<-,根据题意,ππ3ππ232ω<-≤,即51166ω<≤.11.如图,点P 为单位圆上一点,∠xOP π3=,点P 沿单位圆逆时针方向旋转角α到点43(,)55Q -,则cos α=(D)解析:选B ,由三角函数的定义可知π4π3cos(),sin()3535αα+=-+=,故ππ4133334cos cos(())33525210αα-=+-=-⨯+⨯=.12.函数(1)()ln 1a x f x x x -=-+有三个零点,则实数a 的取值范围是(A )(0,2)(B )(2,e)(C )(e,)+∞(D )(2,)+∞解析:选D ,222122(1)1()(1)(1)a x a x f x x x x x +-+'=-=++,其中0x >,令2()2(1)1u x x a x =+-+,当2a ≤时,()0u x ≥,从而()f x 在(0,)+∞上单调递增,至多一个零点;当2a >时,此时()f x 有两个极值点121x x <<,并且()f x 在1(0,)x 单调递增,在12(,)x x 单调递减,在2(,)x +∞单调递增,注意到(1)0f =,故12()(1)0()f x f f x >=>,又因为0,(),,()x f x x f x →→-∞→+∞→+∞,故此时函数()f x 有三个零点,符合题意.二、填空题:本大题共4小题,每小题5分,共20分.13.函数()(1)e x f x x =-的图象在(1,0)处的切线为y ax b =+,则a b +的值为.答案:0;解析:由()e x f x x '=⋅得,(1)e f '=,而(1)0f =,故切线e(1)y x =-,从而e,e a b ==-,即0a b +=.14.已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于.答案:-1;解析:λa +b =(λ+2,2λ),由共线可得:-2(λ+2)=2λ,即λ=-1.15.如图是一个算法的程序框图,该算法输出的结果是.答案:1011;解析:通过计算,执行第10次循环时,11011,10,11111i m n ===-=,不满足判断框内的条件,此时输出1011.16.在△ABC 中,23AB AC =,AD 是∠BAC 的角平分线,设AD mAC =,则实数m 的取值范围是.答案:6(0,)5;解析:设3,2AB t AC t ==,∠BAD =∠CAD =α,由BAD CAD BAC S S S ∆∆∆+=得:11132sin 22sin 32sin 2222t mt t mt t t ααα⋅⋅⋅+⋅⋅⋅=⋅⋅⋅,化简得6cos 5m α=,由于π(0,2α∈,故6(0,)5m ∈.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)已知各项均为正数的等比数列{}n a 中,11a =,公比为q ,等差数列{}n b 中,13b =,且{}n b 的前n 项和为n S ,3327a S +=,22S q a =.(Ⅰ)求{}n a 与{}n b 的通项公式;(Ⅱ)已知n n n c a b =⋅,求数列{}n c 的前n 项和n T .解析:(I )设数列{}n b 的公差为d ,由已知可得:332227,,a S S q a +=⎧⎪⎨=⎪⎩故22318,6,q d d q ⎧+=⎪⎨+=⎪⎩······································································3分而0n a >,解之得3, 3.q d ==所以13,3n n n a b n -==.··················································································6分(Ⅱ)由(I )知3nn c n =⋅1213233n n T n =⨯+⨯++⋅ ,①21313(1)33n n n T n n +=⨯++-⋅+⋅ ,②····················································9分由①-②可得:12113(13)23333313n n n n n T n n ++--=+++-⋅=-⋅- 化简得1(21)334n n n T +-+=·········································································12分2019年9月,联合国最高环保荣誉“地球卫士奖”中的“激励与行动奖”颁发给了中国互联网环保项目“蚂蚁森林”,以鼓励中国人在生态保护中取得的巨大进展。

相关文档
最新文档