-2013天津市初中数学竞赛赛试题

合集下载

2013全国数学竞赛Word

2013全国数学竞赛Word

中国教育学会中学数学教学专业委员会2013年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分)1、对正整数n ,记!123......n n =⨯⨯⨯⨯,则1!2!3!......10!+++的末尾数为( )A 、0B 、1C 、3D 、52、已知关于x 的不等式组322553x t x x x +⎧-<⎪⎪⎨+⎪->-⎪⎩,恰好有5个整数解,则t 的取值范围( ) A 、1162t -<<-B 、1162t -≤<-C 、1162t -<≤-D 、1162t -≤≤- 3、已知关于x 的方程22222x x a x x x x x --+=--恰有一个实数根,则满足条件的a 值有( ) A 、1个 B 、2个 C 、3个 D 、4个4、如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( )A 、3B 、4C 、6D 、85、在分别标有号码2,3,4,……,10的9个球中,随机取出两个球记下它们的标号,则较大号码被较小号码整除的概率是( )A 、14B 、29C 、518D 、736二、填空题(共5小题,每小题7分,共35分) 6、设a =b 是2a 的小数部分,则()32b +的值为 ;7、一个质地均匀的正方体六个面上分别标有1,2,3,4,5,6,掷这个正方体三次,则朝上面的数字之和为3的倍数的概率为 ;8、已知正整数a ,b ,c 满足2220a b c +--=,2380a b c -+=,则abc 的最大值为 ;9、实数,,,a b c d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 ;10、小明某天在文具店做志愿卖笔,铅笔每支售4元,圆珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔。

2002~2013年全国初中数学竞赛试题及答案(完整版)

2002~2013年全国初中数学竞赛试题及答案(完整版)

2002年全国初中数学竞赛试题一、选择题1.设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为【 】 A 、3 B 、6 C 、2 D 、32.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于【 】A 、65 B 、54 C 、43 D 、32ABC DEF G4.设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于0 5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、()b a +21D 、a +b 二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。

8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。

9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。

全国数学联赛初中数学试题及答案

全国数学联赛初中数学试题及答案

2013年全国初中数学竞赛试题班级 姓名 成绩 供稿人:李锦扬一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )12.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--=(D )2222(2)0c x b ac x a ---=3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8(第3题)(第4题)5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967(B )1821967(C )5463967 (D )16389967二、填空题6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 .7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.(第7题)三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC -∠CBE .12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.(第11题)13.设a ,b ,c 是素数,记x b c a y c a b z a b c =+-=+-=+-,,,当2,2z y ==时,a ,b ,c 能否构成三角形的三边长?证明你的结论.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数12n a a a ,,…,,满足对任意一个正整数m ,在12n a a a ,,…,中都至少有一个为m 的魔术数.2013全国数学联赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ).(A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b acx x x x c+--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ). (A )OD (B )OE (C )DE(D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有(第3题)理数,而AC =·AD AB 不一定是有理数. 4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6(D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****L 的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=L ,则()20132012433m ****=*L 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*L 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.设33a =,b 是2a 的小数部分,则3(2)b +的值为 .【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,(第4题答题)(第4题)解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=.若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-.若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC -∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B (3,0),A (1-,0).直线y =113x -+过点B . 将点C (0,3-)的坐标代入y =(1)(3)a x x +-,得1a =.…………5分抛物线223y x x =--的顶点为E (1,4-).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE ∠=︒.…………10分 因此tan CBE ∠=CE CB =13.又tan ∠DBO =13OD OB =,则∠DBO =CBE ∠. …………15分所以,45DBC CBE DBC DBO OBC ∠-∠=∠-∠=∠=︒.…………20分12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形. 因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(第11题答题)(第11题)△ABC 为钝角三(ii )若角形.90A ∠>︒时,因为当()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。

2013年全国初中数学联赛试题及答案详解

2013年全国初中数学联赛试题及答案详解

选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合则 =A. B. C. D.2.函数的定义域是A. B. C. D.3.若则复数的模是A.2B.3C.4)D.54.已知,那么5.执行如图1所示的程序框图,若输入n的值为3,则输入s的值是6.某三棱锥的三视图如图2所示,则该三棱锥的体积是7.垂直于直线且于圆的直线方程是8.设为直线,是两个不同的平面.下列命题中正确的是9.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是10.设是已知的平面向量且 .关于向量的分解,有如下四个命题:①给定向量b,总存在向量c,使;②给定向量b和c,总存在实数和,使;③给定向量b和正数,总存在单位向量c,使 .④给定正数和,总存在单位向量b和单位向量c,使 .上述命题中的向量b,c和a在同一平面内且两两不共线,则真命题的个数是A.1B.2C.3D.4二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

(一)必做题(11~13题)11.设数列{ }是首项为1,公比为的等比数列,则 ________。

12.若曲线在点(1,)处的切线平行于轴,则 =________。

13.已知变量,满足约束条件则的最大值是________。

(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线C的极坐标方程,以极点为原点,极轴为轴的正半轴建立直角坐标系,则曲线的参数方程为________。

15.(几何证明选讲选做题)如图3,在矩形中,,,,垂足为,则 =________。

三、解答题:本大题共6小题,满分30分,解答题写出文字说明、证明过程和演算步骤。

16、(本小题满分12分)已知函数,(1)求的值;(2),,求。

17、(本小题满分12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:分组(重量) [80,85 [80,90 [90,95 [95,100频数(个) 5 10 20 15(1)根据频数分布表计算苹果的重量在[90,95 的频率;(2)用分层抽样的方法从重量在[80,85 和[95,100 的苹果中共抽取4个,其中重量在[80,85 的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85 和[95,100 中各有1的概率。

天津市初中数学竞赛赛试题

天津市初中数学竞赛赛试题

2013天津市初中数学竞赛赛试题所属班级 姓名 一、选择题(每小题7分,满分35分):1、设实数,,a b c 满足2346c b a a +=-+,244c b a a -=-+,则,,a b c 的大小关系是( ).A 、a b c <≤B 、b a c <≤C 、b c a <≤D 、c a b <≤2、设O 为锐角⊿ABC 的外心,连结AO 、BO 、CO ,并分别延长,交对边于点D 、E 、F ,若⊿ABC 的外接圆半径为6,111AD BE CF ++的值是( ). A 、1 B 、12C 、13D 、163、已知20122011a x =+,20122012b x =+,20122013c x =+,那么222a b c ab bc ca ++---的值为( ).A 、3B 、2C 、1D 、04、如图,在平面直角坐标系xoy 中,直线PA 是一次函数y x n =+的图像,与x 轴、y 轴分别交于点A 、Q. 直线PB 是一次函数2y x m =-+的图像,与x 轴交于点B.若AB=2,四边形OBPQ 的面 积等于56,则m nm n+-的值为( ). A 、1 B 、 2 C 、 3 D 、 45、已知10个彼此不相等的正整数1210,,,a a a 满足条件215a a a =+,326a a a =+,437a a a =+,658a a a =+,769a a a =+,9810a a a =+,则4a 的最小值是( ). A 、19 B 、20 C 、21 D 、22二、填空题(每小题7分,满分35分):6、若1111110111219a =++++,则a 的整数部分为 .7、若关于x 的不等式()250a b x a b -+->的解集为107x <,则关于x 的不等式ax b >的解集为 .8、如图,一钢球从入口处自上而下沿通道自由落下,在每个岔口处向两侧滑落是等可能的,则钢球落入出口乙的概率为 .9.如图,在矩形ABCD 中,E 、F 分别是AD 、BC 的中点,AC 与EF 交于点O ,点M 在线段AO 上,ME 、CD 的延长线相交于点N.若∠MFB= 57︒,则∠FNC 的大小等于 . 10.在一张正方形纸片的内部给出了2013个点,连同正方形的4个顶点共有2017个点,按下列规则将这张纸片剪成一些三角形:①每个三角形的顶点都在给出的2017个点中;②每个三角形内部不再有这2017个点中的点.那么,最多可以剪出的三角形的个数是 .三、解答题(每小题20分,满分80分):11. 已知关于x 的函数()2122y k x kx k =--++的图像与x 轴有交点. ⑴求k 的取值范围;⑵若12,x x 是函数图像与x 轴两个不同交点的横坐标,且满足()212121224k x kx k x x -+++=. ①求k 的值;②请结合图像,确定当2k x k ≤≤+时,函数y 的最大值和最小值.出口丁出口丙出口乙出口甲入口MFO E N DCBA12.已知,,a b c 均为正整数,其中c 不是完全平方数,且24a b -== 求a b c ++的值.13. 如图,四边形ABCD内接于⊙O,E、F分别是BC、AD的中点,AC⊥BD,垂足为H.求证:四边形HFOE 是平行四边形.14. 如图,已知D 为锐角⊿ABC 内部的一个点,使得90ADB ACB ∠=∠+︒,且AC BD AD BC ⋅=⋅. ⑴求AB CDAC BD⋅⋅的值.⑵求证:⊿ACD 的外接圆和⊿BCD 的外接圆在C 点切线互相垂直.HO FE DCBADBAC。

2013年全国初中数学竞赛试题(含答案)

2013年全国初中数学竞赛试题(含答案)

2013年全国初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a cx x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB,(第3题)垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ). (A )OD (B )OE (C )DE (D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF . 因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967 (C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则(第3题答题)(第4题答题)(第4题)()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题 6.设a =b 是2a 的小数部分,则3(2)b +的值为 .【答案】9【解答】由于2123a a <<<<,故222b a =-=-,因此33(2)9b +==.7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解;(第7题答题)(第7题)若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.…………5分(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。

2013全国数学联赛初中数学试题及答案

2013全国数学联赛初中数学试题及答案

2013全国数学联赛初中数学竞赛试题参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ,,则222abbc ca abc的值为().(A )12(B )0(C )12(D )1【答案】A【解答】由已知得(234)(23)0abc a b c a b c ,故2()0ab c .于是2221()2abbccaabc ,所以22212ab bc ca abc.2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x,221x为两个实根的是().(A )2222(2)0c x b ac x a (B )2222(2)0c xbac x a(C )2222(2)0c xbac xa(D )2222(2)0c xbac xa【答案】B 【解答】由于20axbx c 是关于x 的一元二次方程,则0a.因为12b x x a,12c x x a,且120x x ,所以0c ,且221212222221212()2112x x x x ba c xxx xc ,22221211a x x c,于是根据方程根与系数的关系,以211x,221x为两个实根的一元二次方程是222220bac axxcc,即2222(2)0c xbac x a.3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为().(A )OD(B )OE(第3题)(C )DE (D )AC【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2ADBD是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2ODOE OC,·DC DO DEOC都是有理数,而AC =·AD AB 不一定是有理数.4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF ,DCFE 是平行四边形,则图中阴影部分的面积为().(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE//CF ,且EF//DC .连接CE ,因为DE//CF ,即DE//BF ,所以S △DEB = S △DEC ,因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF//CD ,即EF//AC ,所以S △ACE = S △ACF .因为4BCCF ,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:32233333451160x y x yxyx yxy ,且x y zx yz ,则2013201232的值为().(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ,则20132012433m 32323339274593316460mm m m m m ,于是2013201232923223333923929245546310360967.(第3题答题)(第4题答题)(第4题)二、填空题6.设33a,b 是2a 的小数部分,则3(2)b 的值为.【答案】9【解答】由于2123aa,故32292b a,因此333(2)(9)9b .7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是.【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEFBFEBCF AFDAFDCDFS SSBF S S S FDS ,354AFDAFDCDFBCF AEFAEFBEFSSSCF S SSFES,解得10813AEFS ,9613AFDS.所以,四边形AEFD 的面积是20413.8.已知正整数a ,b ,c 满足2220a b c ,2380ab c,则abc 的最大值为.【答案】2013【解答】由已知2220a bc ,2380abc 消去c ,并整理得228666baa .由a 为正整数及26aa ≤66,可得1≤a ≤3.若1a ,则2859b,无正整数解;若2a ,则2840b ,无正整数解;若3a,则289b,于是可解得11b ,5b .(i )若11b ,则61c ,从而可得311612013abc ;(ii )若5b,则13c,从而可得3513195abc.综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20xcx d 的两根为a ,b ,一元二次方程20xax b 的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为.【答案】(1212),,,,(00),,,t t (t 为任意实数)【解答】由韦达定理得,,,.a b c ab d c d a cd b 由上式,可知b a cd .若0b d ,则1d a b,1b cd,进而2bdac.若0bd,则ca ,有()(00),,,,,,abcd t t (t 为任意实数).经检验,数组(1212),,,与(00),,,t t (t 为任意实数)满足条件.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,x y x y 所以201371(5032)44yy xy ,于是14y是整数.又20134()343503x y y y ,所以204y ,故y 的最小值为207,此时141x.三、解答题11.如图,抛物线y23axbx,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113yx 与y 轴交于点D .求∠DBC ∠CBE .【解答】将0x分别代入y113x,23y axbx 知,D(0,1),C(0,3),所以B(3,0),A(1,0).直线y 113x 过点B .将点C(0,3)的坐标代入y(1)(3)a x x,得1a.…………5分抛物线223yxx的顶点为E (1,4).于是由勾股定理得BC =32,CE =2,BE =25.因为BC 2+CE 2=BE 2,所以,△BCE 为直角三角形,90BCE.…………10分因此tan CBE =CE CB=13.又tan ∠DBO=13OD OB,则∠DBO =CBE .…………15分所以,45DBCCBEDBCDBOOBC.…………20分(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC 所有可能的度数.【解答】分三种情况讨论.(i )若△ABC 为锐角三角形.因为1802BHC A BOC A ,,所以由BHCBOC ,可得1802AA ,于是60A.…………5分(ii )若△ABC 为钝角三角形.当90A时,因为1802180BHC A BOCA ,,所以由180BHCBOC,可得3180180A,于是120A。

【精校】2013年天津初中毕业生学业考试数学(含答案)

【精校】2013年天津初中毕业生学业考试数学(含答案)

2013年天津市初中毕业生学业考试试卷数学第Ⅰ卷注意事项:1.每题选出答案后,用2B铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共10题,共30分。

一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-3)+(-9)的结果等于(A)12 (B)-12 (C)6 (D)-6(2)tan60︒的值等于(A)1 (B)2(C)3(D)2(3)下列标志中,可以看作是中心对称图形的是(A)(B)(C)(D)(4)中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8 210 000m2.将8210 000用科学记数法表示应为(A)4⨯(D)70.82110⨯8.2110⨯(C)6⨯(B)58211082.110(5)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15.由此可知(A)(1)班比(2)班的成绩稳定(B)(2)班比(1)班的成绩稳定(C)两个班的成绩一样稳定(D)无法确定哪班的成绩更稳定(6)右图是一个由3个相同的正方体组成的立体图形,它的三视图是(A)(B)(C)(D)(7)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(A)矩形(B)菱形(C)正方形(D)梯形(8)正六边形的边心距与边长之比为(A3(B:2(C)1:2(D2(9)若222112648xx yx y x y=-=---,,则的值等于(A)117-(B)117(C)116(D)115(10)如图,是一对变量满足的函数关系的图象.有下列3个不同的问题情境:①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;第(6)题第(7)题FB②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速 向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x 分,桶内的水量为y 升;③矩形ABCD 中,AB =4,BC =3,动点P 从点A 出发,依次沿对角线AC 、边CD 、边DA 运动至点A 停止,设点P 的运动路程为x ,当点P 与点A 不重合时,y =S △ABP ;当点P 与点A 重合时,y =0.其中,符合图中所示函数关系的问题情境的个数为(A ) 0 (B ) 1 (C ) 2 (D )3第Ⅱ卷 注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013天津市初中数学竞赛赛试题
所属班级 姓名 一、选择题(每小题7分,满分35分):
1、设实数,,a b c 满足2346c b a a +=-+,244c b a a -=-+,则,,a b c 的大小关系是( ). A 、a b c <≤ B 、b a c <≤ C 、b c a <≤ D 、c a b <≤
2、设O 为锐角⊿ABC 的外心,连结AO 、BO 、CO ,并分别延长,交对边于点D 、E 、F ,若
⊿ABC 的外接圆半径为6,111AD BE CF
++的值是( ). A 、1 B 、12 C 、13 D 、1
6
3、已知20122011a x =+,20122012b x =+,20122013c x =+,那么222a b c ab bc ca ++---的值为( ). A 、3 B 、2 C 、1 D 、0
4、如图,在平面直角坐标系xoy 中,直线PA 是一次函数y x n =+的图像,与x 轴、y 轴分别交于点A 、Q. 直线PB 是一次函数2y x m =-+的图像,与x 轴交于点B.若AB=2,四边形OBPQ 的面
积等于56,则m n
m n
+-的值为( ).
A 、1
B 、 2
C 、 3
D 、 4
5、已知10个彼此不相等的正整数1210,,,a a a 满足条件215a a a =+,326a a a =+,437a a a =+,658a a a =+,769a a a =+,9810a a a =+,则4a 的最小值是( ). A 、19 B 、20 C 、21 D 、22
二、填空题(每小题7分,满分35分):
6、若1
10111219
a =++++ ,则a 的整数部分为 .
7、若关于x 的不等式()250a b x a b -+->的解集为10
7
x <,则关于x 的不等式ax b >的解集为 .
8、如图,一钢球从入口处自上而下沿通道自由落下,在每个岔口处向两侧滑落是等可能的,则钢球落入出口乙的概率为 .
9.如图,在矩形ABCD 中,E 、F 分别是AD 、BC 的中点,AC 与EF 交于点O ,点M 在线段AO 上,ME 、CD 的延长线相交于点N.若∠MFB= 57︒,则∠FNC 的大小等于 .
10.在一张正方形纸片的内部给出了2013个点,连同正方形的4个顶点共有2017个点,按下列规则将这张纸片剪成一些三角形:①每个三角形的顶点都在给出的2017个点中;②每个三角形内部不再有这2017个点中的点.那么,最多可以剪出的三角形的个数是 .
三、解答题(每小题20分,满分80分):
11. 已知关于x 的函数()2122y k x kx k =--++的图像与x 轴有交点. ⑴求k 的取值范围;
⑵若12,x x 是函数图像与x 轴两个不同交点的横坐标,且满足()212121224k x kx k x x -+++=. ①求k 的值;
②请结合图像,确定当2k x k ≤≤+时,函数y 的最大值和最小值.
出口丁
出口丙出口乙出口甲入口
M F O
E
N
D C B
A
12.已知,,a b c 均为正整数,其中c 不是完全平方数,且24a b -== 求a b c ++的值.
13. 如图,四边形ABCD内接于⊙O,E、F分别是BC、AD的中点,AC⊥BD,垂足为H.
求证:四边形HFOE是平行四边形.
14. 如图,已知D为锐角⊿ABC内部的一个点,使得90
ADB ACB
∠=∠+︒,且AC BD AD BC
⋅=⋅.
⑴求AB CD
AC BD


的值.
⑵求证:⊿ACD的外接圆和⊿BCD的外接圆在C点切线互相垂直.
H O
F
E
D
C B
A
D
A
C。

相关文档
最新文档