大学文科数学_2011_1.7
2011年全国统一高考数学试卷(文科)(新课标)解析版

2011年全国统一高考数学试卷(文科)(新课标)解析版参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)已知集合{0M =,1,2,3,4},{1N =,3,5},P M N =,则P 的子集共有( ) A .2个B .4个C .6个D .8个【考点】1E :交集及其运算 【专题】11:计算题【分析】利用集合的交集的定义求出集合P ;利用集合的子集的个数公式求出P 的子集个数.【解答】解:{0M =,1,2,3,4},{1N =,3,5}, {1P MN ∴==,3}P ∴的子集共有224=故选:B .【点评】本题考查利用集合的交集的定义求交集、考查一个集合含n 个元素,则其子集的个数是2n . 2.(5分)复数5(12ii=- ) A .2i -B .12i -C .2i -+D .12i -+【考点】5A :复数的运算 【专题】11:计算题【分析】将分子、分母同时乘以12i +,再利用多项式的乘法展开,将2i 用1- 代替即可. 【解答】解:55(12)212(12)(12)i i i i i i i +==-+--+ 故选:C .【点评】本题考查复数的除法运算法则:分子、分母同乘以分母的共轭复数. 3.(5分)下列函数中,既是偶函数又在(0,)+∞上单调递增的函数是( ) A .32y x =B .||1y x =+C .24y x =-+D .||2x y -=【考点】3K :函数奇偶性的性质与判断 【专题】11:计算题;51:函数的性质及应用【分析】由函数的奇偶性和单调性的定义和性质,对选项一一加以判断,即可得到既是偶函数又在(0,)+∞上单调递增的函数.【解答】解:对于A .32y x =,由3()2()f x x f x -=-=-,为奇函数,故排除A ;对于B .||1y x =+,由()||1()f x x f x-=-+=,为偶函数,当0x >时,1y x =+,是增函数,故B 正确;对于C .24y x =-+,有()()f x f x -=,是偶函数,但0x >时为减函数,故排除C ; 对于D .||2x y -=,有()()f x f x -=,是偶函数,当0x >时,2x y -=,为减函数,故排除D . 故选:B .【点评】本题考查函数的性质和运用,考查函数的奇偶性和单调性及运用,注意定义的运用,以及函数的定义域,属于基础题和易错题.4.(5分)椭圆221168x y +=的离心率为( )A .13B .12C D 【考点】4K :椭圆的性质 【专题】11:计算题【分析】根据椭圆的方程,可得a 、b 的值,结合椭圆的性质,可得c 的值,有椭圆的离心率公式,计算可得答案.【解答】解:根据椭圆的方程221168x y +=,可得4a =,b =则c ==则椭圆的离心率为c e a ==, 故选:D .【点评】本题考查椭圆的基本性质:222a b c =+,以及离心率的计算公式,注意与双曲线的对应性质的区分.5.(5分)执行如图的程序框图,如果输入的N 是6,那么输出的p 是( )A.120B.720C.1440D.5040【考点】EF:程序框图【专题】5K:算法和程序框图【分析】执行程序框图,写出每次循环p,k的值,当k N<不成立时输出p的值即可.【解答】解:执行程序框图,有6N=,1k=,1p=1P=,k N<成立,有2k=2P=,k N<成立,有3k=6P=,k N<成立,有4k=24P=,k N<成立,有5k=120P=,k N<成立,有6k=720P=,k N<不成立,输出p的值为720.故选:B.【点评】本题主要考察了程序框图和算法,属于基础题.6.(5分)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13B.12C.23D.34【考点】CB:古典概型及其概率计算公式【专题】5I :概率与统计【分析】本题是一个古典概型,试验发生包含的事件数是33⨯种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果. 【解答】解:由题意知本题是一个古典概型, 试验发生包含的事件数是339⨯=种结果,满足条件的事件是这两位同学参加同一个兴趣小组, 由于共有三个小组,则有3种结果, 根据古典概型概率公式得到3193P ==, 故选:A .【点评】本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.7.(5分)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2(θ= ) A .45-B .35-C .35D .45【考点】GS :二倍角的三角函数;5I :直线的图象特征与倾斜角、斜率的关系 【专题】11:计算题【分析】根据直线的斜率等于倾斜角的正切值,由已知直线的斜率得到tan θ的值,然后根据同角三角函数间的基本关系求出cos θ的平方,然后根据二倍角的余弦函数公式把所求的式子化简后,把cos θ的平方代入即可求出值. 【解答】解:根据题意可知:tan 2θ=, 所以222111cos sec tan 15θθθ===+, 则213cos22cos 12155θθ=-=⨯-=-.故选:B .【点评】此题考查学生掌握直线的斜率与倾斜角之间的关系,灵活运用同角三角函数间的基本关系化简求值,是一道中档题.8.(5分)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为( )A .B .C .D .【考点】7L :简单空间图形的三视图 【专题】13:作图题【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图. 【解答】解:由俯视图和正视图可以得到几何体是一个简单的组合体, 是由一个三棱锥和被轴截面截开的半个圆锥组成, ∴侧视图是一个中间有分界线的三角形,故选:D .【点评】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.9.(5分)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直.l 与C 交于A ,B 两点,||12AB =,P 为C 的准线上一点,则ABP ∆的面积为( )A .18B .24C .36D .48【考点】KH :直线与圆锥曲线的综合 【专题】44:数形结合法【分析】首先设抛物线的解析式22(0)y px p =>,写出次抛物线的焦点、对称轴以及准线,然后根据通径||2AB p =,求出p ,ABP ∆的面积是||AB 与DP 乘积一半. 【解答】解:设抛物线的解析式为22(0)y px p =>, 则焦点为(2p F ,0),对称轴为x 轴,准线为2px =- 直线l 经过抛物线的焦点,A 、B 是l 与C 的交点, 又AB x ⊥轴||212AB p ∴== 6p ∴=又点P 在准线上 (||)622p pDP p ∴=+-==11()6123622ABP S DP AB ∆∴==⨯⨯=故选:C .【点评】本题主要考查抛物线焦点、对称轴、准线以及焦点弦的特点;关于直线和圆锥曲线的关系问题一般采取数形结合法.10.(5分)在下列区间中,函数()43x f x e x =+-的零点所在的区间为( ) A .1(4,1)2B .1(4-,0)C .1(0,)4D .1(2,3)4【考点】52:函数零点的判定定理 【专题】52:导数的概念及应用【分析】根据导函数判断函数()43x f x e x =+-单调递增,运用零点判定定理,判定区间. 【解答】解:函数()43x f x e x =+-()4x f x e ∴'=+当0x >时,()40x f x e '=+>∴函数()43x f x e x =+-在(,)-∞+∞上为0(0)320f e =-=-<1()102f >1()204f = 11()()024f f <,∴函数()43x f x e x =+-的零点所在的区间为1(4,1)2故选:A .【点评】本题考察了函数零点的判断方法,借助导数,函数值,属于中档题. 11.(5分)设函数,则()sin(2)cos(2)44f x x x ππ=+++,则( )A .()y f x =在(0,)2π单调递增,其图象关于直线4x π=对称B .()y f x =在(0,)2π单调递增,其图象关于直线2x π=对称C .()y f x =在(0,)2π单调递减,其图象关于直线4x π=对称D .()y f x =在(0,)2π单调递减,其图象关于直线2x π=对称【考点】5H :正弦函数的单调性;6H :正弦函数的奇偶性和对称性 【专题】57:三角函数的图象与性质【分析】利用辅助角公式(两角和的正弦函数)化简函数()sin(2)cos(2)44f x x x ππ=+++,然后求出对称轴方程,判断()y f x =在(0,)2π单调性,即可得到答案.【解答】解:因为()sin(2)cos(2))442f x x x x x πππ=++++=.由于cos 2y x=的对称轴为1()2x k k Z π=∈,所以y x =的对称轴方程是:()2k x k Z π=∈,所以A ,C 错误;c o s 2y x =的单调递减区间为222()k x k k Z πππ+∈剟,即()2k xk k Z πππ+∈剟,函数()y f x =在(0,)2π单调递减,所以B 错误,D 正确.故选:D .【点评】本题是基础题,考查三角函数的化简,三角函数的性质:对称性、单调性,考查计算能力,常考题型.12.(5分)已知函数()y f x =的周期为2,当[1x ∈-,1]时2()f x x =,那么函数()y f x =的图象与函数||y lgx =的图象的交点共有( ) A .10个B .9个C .8个D .1个【考点】3Q :函数的周期性;4N :对数函数的图象与性质 【专题】16:压轴题;31:数形结合【分析】根据对数函数的性质与绝对值的非负性质,作出两个函数图象,再通过计算函数值【解答】解:作出两个函数的图象如上函数()y f x =的周期为2,在[1-,0]上为减函数,在[0,1]上为增函数 ∴函数()y f x =在区间[0,10]上有5次周期性变化,在[0,1]、[2,3]、[4,5]、[6,7]、[8,9]上为增函数, 在[1,2]、[3,4]、[5,6]、[7,8]、[9,10]上为减函数, 且函数在每个单调区间的取值都为[0,1],再看函数||y lgx =,在区间(0,1]上为减函数,在区间[1,)+∞上为增函数, 且当1x =时0y =;10x =时1y =,再结合两个函数的草图,可得两图象的交点一共有10个,故选:A .【点评】本题着重考查了基本初等函数的图象作法,以及函数图象的周期性,属于基本题. 二、填空题(共4小题,每小题5分,满分20分)13.(5分)已知a 与b 为两个垂直的单位向量,k 为实数,若向量a b +与向量ka b -垂直,则k = 1 .【考点】9T :数量积判断两个平面向量的垂直关系 【专题】11:计算题【分析】利用向量垂直的充要条件:数量积为0;利用向量模的平方等于向量的平方列出方程,求出k 值. 【解答】解:a b ⊥∴0a b =a b ka b +-与垂直∴()()0a b ka b +-=即220ka ka b a b b +--=1k ∴=【点评】本题考查向量垂直的充要条件、考查向量模的性质:向量模的平方等于向量的平方. 14.(5分)若变量x ,y 满足约束条件32969x y x y +⎧⎨-⎩剟剟,则2z x y =+的最小值为 6- .【考点】7C :简单线性规划 【专题】11:计算题【分析】在坐标系中画出约束条件的可行域,得到的图形是一个平行四边形,把目标函数2z x y =+变化为122zy x =-+,当直线沿着y 轴向上移动时,z 的值随着增大,当直线过A 点时,z 取到最小值,求出两条直线的交点坐标,代入目标函数得到最小值.【解答】解:在坐标系中画出约束条件的可行域, 得到的图形是一个平行四边形, 目标函数2z x y =+, 变化为122zy x =-+,当直线沿着y 轴向上移动时,z 的值随着增大, 当直线过A 点时,z 取到最小值, 由9y x =-与23x y +=的交点得到(4,5)A - 42(5)6z ∴=+-=-故答案为:6-.【点评】本题考查线性规划问题,考查根据不等式组画出可行域,在可行域中,找出满足条件的点,把点的坐标代入,求出最值.15.(5分)ABC ∆中,120B ∠=︒,7AC =,5AB =,则ABC ∆的面积为 . 【考点】HP :正弦定理;HR :余弦定理 【专题】58:解三角形【分析】先利用余弦定理和已知条件求得BC ,进而利用三角形面积公式求得答案.【解答】解:由余弦定理可知225491cos 252BC B BC +-==-,求得8BC =-或3(舍负)ABC ∴∆的面积为11sin 5322AB BC B =⨯⨯=【点评】本题主要考查了正弦定理和余弦定理的应用.在求三角形面积过程中,利用两边和夹角来求解是常用的方法.16.(5分)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为13. 【考点】5L :旋转体(圆柱、圆锥、圆台);LG :球的体积和表面积 【专题】11:计算题;16:压轴题【分析】所成球的半径,求出球的面积,然后求出圆锥的底面积,求出圆锥的底面半径,即可求出体积较小者的高与体积较大者的高的比值.【解答】解:不妨设球的半径为:4;球的表面积为:64π,圆锥的底面积为:12π,圆锥的底面半径为:;由几何体的特征知球心到圆锥底面的距离,求的半径以及圆锥底面的半径三者可以构成一个直角三角形2,所以圆锥体积较小者的高为:422-=,同理可得圆锥体积较大者的高为:426+=; 所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:13.故答案为:13【点评】本题是基础题,考查旋转体的体积,球的内接圆锥的体积的计算,考查计算能力,空间想象能力,常考题型. 三、解答题(共8小题,满分70分)17.(12分)已知等比数列{}n a 中,113a =,公比13q =.(Ⅰ)n S 为{}n a 的前n 项和,证明:12nn a S -=(Ⅱ)设31323log log log n n b a a a =++⋯+,求数列{}n b 的通项公式. 【考点】89:等比数列的前n 项和 【专题】15:综合题【分析】()I 根据数列{}n a 是等比数列,113a =,公比13q =,求出通项公式n a 和前n 项和n S ,然后经过运算即可证明.()II 根据数列{}n a 的通项公式和对数函数运算性质求出数列{}n b 的通项公式.【解答】证明:()I 数列{}n a 为等比数列,113a =,13q =1111()333n n n a -∴=⨯=,111(1)13331213n nn S --==- 又111322nna S --==12nn a S -∴= 1()3n nII a =31323333log log log log 3(2log 3)(log 3)n n b a a a n ∴=++⋯+=-+-+⋯+-(12)n =-++⋯+(1)2n n +=-∴数列{}n b 的通项公式为:(1)2n n n b +=-【点评】本题主要考查等比数列的通项公式、前n 项和以及对数函数的运算性质.18.(12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形.60DAB ∠=︒,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥(Ⅱ)设1PD AD ==,求棱锥D PBC -的高.【考点】LF :棱柱、棱锥、棱台的体积;LW :直线与平面垂直 【专题】11:计算题;14:证明题;15:综合题【分析】(Ⅰ)因为60DAB ∠=︒,2AB AD =,由余弦定理得BD ,利用勾股定理证明BD AD ⊥,根据PD ⊥底面ABCD ,易证BD PD ⊥,根据线面垂直的判定定理和性质定理,可证PA BD ⊥;()II 要求棱锥D PBC -的高.只需证BC ⊥平面PBD ,然后得平面PBC ⊥平面PBD ,作DE PB ⊥于E ,则DE ⊥平面PBC ,利用勾股定理可求得DE 的长.【解答】解:(Ⅰ)证明:因为60DAB ∠=︒,2AB AD =,由余弦定理得BD , 从而222BD AD AB +=,故BD AD ⊥ 又PD ⊥底面ABCD ,可得BD PD ⊥ 所以BD ⊥平面PAD .故PA BD ⊥.()II 解:作DE PB ⊥于E ,已知PD ⊥底面ABCD ,则PD BC ⊥,由()I 知,BD AD ⊥,又//BC AD ,BC BD ∴⊥.故BC ⊥平面PBD ,BC DE ⊥, 则DE ⊥平面PBC .由题设知1PD =,则BD 2PB =.根据DE PB PD BD =,得DE =即棱锥D PBC - 【点评】此题是个中档题.考查线面垂直的性质定理和判定定理,以及点到面的距离,查了同学们观察、推理以及创造性地分析问题、解决问题能力.19.(12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:A 配方的频数分布表B 配方的频数分布表(1)分别估计用A 配方,B 配方生产的产品的优质品率;(2)已知用B 配方生产的一件产品的利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=<⎨⎪⎩…… 估计用B 配方生产的一件产品的利润大于0的概率,并求用B 配方生产的上述100件产品平均一件的利润.【考点】CH :离散型随机变量的期望与方差 【专题】5I :概率与统计【分析】(1)由试验结果先求出用A 配方生产的产品中优质品的频率和用B 配方生产的产品中优质品的频率,由此能分别估计用A 配方,B 配方生产的产品的优质品率. (2)由条件知,用B 配方生产的一件产品的利润大于0,当且仅当其质量指标值94t ….由试验结果知,质量指标值94t …的频率为0.96.由此能求出用B 配方生产的产品平均一件的利润.【解答】解:(1)由试验结果知,用A 配方生产的产品中优质品的频率为2280.3100+=, 所以用A 配方生产的产品的优质品率的估计值为0.3. 由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=, 所以用B 配方生产的产品的优质品率的估计值为0.42.(2)由条件知,用B 配方生产的一件产品的利润大于0,当且仅当其质量指标值94t ….由试验结果知,质量指标值94t …的频率为0.96. 所以用B 配方生产的一件产品的利润大于0的概率估计值为0.96. 用B 配方生产的产品平均一件的利润为 1[4(2)542424] 2.68100⨯⨯-+⨯+⨯=(元). 【点评】本题考查产品的优质品率的求法,考查产品平均一件的利润的求法,是中档题,解题时要认真审题,注意频数分布表的合理运用.20.(12分)在平面直角坐标系xOy 中,曲线261y x x =-+与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线0x y a -+=交与A ,B 两点,且OA OB ⊥,求a 的值. 【考点】1J :圆的标准方程;8J :直线与圆相交的性质 【专题】5B :直线与圆【分析】(Ⅰ)法一:写出曲线与坐标轴的交点坐标,利用圆心的几何特征设出圆心坐标,构造关于圆心坐标的方程,通过解方程确定出圆心坐标,进而算出半径,写出圆的方程; 法二:可设出圆的一般式方程,利用曲线与方程的对应关系,根据同一性直接求出参数, (Ⅱ)利用设而不求思想设出圆C 与直线0x y a -+=的交点A ,B 坐标,通过OA OB ⊥建立坐标之间的关系,结合韦达定理寻找关于a 的方程,通过解方程确定出a 的值.【解答】解:(Ⅰ)法一:曲线261y x x =-+与y 轴的交点为(0,1),与x 轴的交点为(3+,0),(3-,0).可知圆心在直线3x =上,故可设该圆的圆心C 为(3,)t ,则有22223(1)t t +-=+,解得1t =,故圆C 3=,所以圆C 的方程为22(3)(1)9x y -+-=. 法二:圆220x y Dx Ey F ++++=0x =,1y =有10E F ++=0y =,2610x x -+=与20x Dx F ++=是同一方程,故有6D =-,1F =,2E =-,即圆方程为226210x y x y +--+=(Ⅱ)设1(A x ,1)y ,2(B x ,2)y ,其坐标满足方程组22(3)(1)9x y a x y -+=⎧⎨-+-=⎩,消去y ,得到方程222(28)210x a x a a +-+-+=,由已知可得判别式△2561640a a =-->.在此条件下利用根与系数的关系得到124x x a +=-,212212a a x x -+=①,由于O AO B ⊥可得12120y x x y +=,又11y x a =+,22y x a =+,所以可得212122()0x x a x x a +++=②由①②可得1a =-,满足△2561640a a =-->.故1a =-.【点评】本题考查圆的方程的求解,考查学生的待定系数法,考查学生的方程思想,直线与圆的相交问题的解决方法和设而不求的思想,考查垂直问题的解决思想,考查学生分析问题解决问题的能力,属于直线与圆的方程的基本题型. 21.(12分)已知函数()1alnx bf x x x=++,曲线()y f x =在点(1,f (1))处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)证明:当0x >,且1x ≠时,()1lnxf x x >-. 【考点】6E :利用导数研究函数的最值;6H :利用导数研究曲线上某点切线方程 【专题】15:综合题;16:压轴题;32:分类讨论;35:转化思想【分析】()I 据切点在切线上,求出切点坐标;求出导函数;利用导函数在切点处的值为切线的斜率及切点在曲线上,列出方程组,求出a ,b 的值.()II 构造新函数,求出导函数,通过研究导函数的符号判断出函数的单调性,求出函数的最值,证得不等式.【解答】解:221()()()(1)x a lnx b x I f x x x+-'=-+. 由于直线230x y +-=的斜率为12-,且过点(1,1)所以1122b a b =⎧⎪=-⎨-⎪⎩解得1a =,1b = ()II 由()I 知1()1lnx f x x x=++所以2211()(2)11lnx x f x lnx x x x--=---考虑函数21()2(0)x h x lnx x x-=->,则2222222(1)(1)()x x x h x x x x ---'=-=-所以当1x ≠时,()0h x '<而h (1)0=, 当(0,1)x ∈时,()0h x >可得21()01h x x >-; 当()()()211,,0,01x h x h x x ∈+∞-时可得从而当0x >且1x ≠时, ()()011lnx lnxf x f x x x ->>--即 【点评】本题考查导函数的几何意义:在切点处的导数值为切线的斜率、考查通过判断导函数的符号求出函数的单调性;通过求函数的最值证明不等式恒成立.22.(10分)如图,D ,E 分别为ABC ∆的边AB ,AC 上的点,且不与ABC ∆的顶点重合.已知AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根.(Ⅰ)证明:C ,B ,D ,E 四点共圆;(Ⅱ)若90A ∠=︒,且4m =,6n =,求C ,B ,D ,E 所在圆的半径.【考点】7N :圆周角定理;NC :与圆有关的比例线段 【专题】11:计算题;14:证明题【分析】()I 做出辅助线,根据所给的AE 的长为m ,AC 的长为n ,AD ,AB 的长是关于x 的方程2140x x mn -+=的两个根,得到比例式,根据比例式得到三角形相似,根据相似三角形的对应角相等,得到结论.()II 根据所给的条件做出方程的两个根,即得到两条线段的长度,取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH ,根据四点共圆得到半径的大小.【解答】解:()I 连接DE ,根据题意在ADE ∆和ACB ∆中,AD AB mn AE AC ⨯==⨯,即AD AEAC AB=又DAE CAB ∠=∠,从而ADE ACB ∆∆∽ 因此ADE ACB ∠=∠C ∴,B ,D ,E 四点共圆.(Ⅱ)4m =,6n =时,方程2140x x mn -+=的两根为12x =,212x =. 故2AD =,12AB =.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH .C ,B ,D ,E 四点共圆,C ∴,B ,D ,E 四点所在圆的圆心为H ,半径为DH .由于90A ∠=︒,故//GH AB ,//HF AC .5HF AG ==,1(122)52DF =-=.故C ,B ,D ,E 四点所在圆的半径为【点评】本题考查圆周角定理,考查与圆有关的比例线段,考查一元二次方程的解,考查四点共圆的判断和性质,本题是一个几何证明的综合题.23.在直角坐标系xOy 中,曲线1C 的参数方程为2cos (22sin x y ααα=⎧⎨=+⎩为参数)M 是1C 上的动点,P 点满足2OP OM =,P 点的轨迹为曲线2C (Ⅰ)求2C 的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求||AB .【考点】3J :轨迹方程;4Q :简单曲线的极坐标方程 【专题】11:计算题;16:压轴题【分析】()I 先设出点P 的坐标,然后根据点P 满足的条件代入曲线1C 的方程即可求出曲线2C 的方程;()II 根据()I 将求出曲线1C 的极坐标方程,分别求出射线3πθ=与1C 的交点A 的极径为1ρ,以及射线3πθ=与2C 的交点B 的极径为2ρ,最后根据21||||AB ρρ=-求出所求.【解答】解:()I 设(,)P x y ,则由条件知(2x M ,)2y.由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩即4cos 44sin x y αα=⎧⎨=+⎩从而2C 的参数方程为 4cos (44sin x y ααα=⎧⎨=+⎩为参数) (Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=. 射线3πθ=与1C 的交点A 的极径为14sin3πρ=, 射线3πθ=与2C 的交点B 的极径为28sin3πρ=.所以21||||AB ρρ=-=【点评】本题考查点的极坐标和直角坐标的互化,以及轨迹方程的求解和线段的度量,属于中档题.24.设函数()||3f x x a x =-+,其中0a >. (Ⅰ)当1a =时,求不等式()32f x x +…的解集 (Ⅱ)若不等式()0f x …的解集为{|1}x x -…,求a 的值. 【考点】5R :绝对值不等式的解法【专题】11:计算题;16:压轴题;32:分类讨论【分析】(Ⅰ)当1a =时,()32f x x +…可化为|1|2x -….直接求出不等式()32f x x +…的解集即可.(Ⅱ)由()0f x …得||30x a x -+…分x a …和x a …推出等价不等式组,分别求解,然后求出a 的值.【解答】解:(Ⅰ)当1a =时,()32f x x +…可化为 |1|2x -….由此可得3x …或1x -…. 故不等式()32f x x +…的解集为 {|3x x …或1}x -….(Ⅱ)由()0f x …得 ||30x a x -+…此不等式化为不等式组 30x a x a x ⎧⎨-+⎩……或30x aa x x ⎧⎨-+⎩…… 即4x a a x ⎧⎪⎨⎪⎩……或2x a a x ⎧⎪⎨-⎪⎩……因为0a >,所以不等式组的解集为{|}2ax x -…由题设可得12a-=-,故2a =【点评】本题是中档题,考查绝对值不等式的解法,注意分类讨论思想的应用,考查计算能力,常考题型.。
2011年高考试题——数学文(全国卷)精校版

2011年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号,在试题卷....上作答无效.....。
3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U=⋂ð(M N ) (A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥ (C )24y x =()x R ∈ (D )24(0)y x x =≥(3)设向量a,b 满足|a|=|b|=1,则2a b +=(A(B(C(D(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3(5)下面四个条件中,使a>b 成立的充分而不必要的条件是(A) 1a b >+(B) 1a b >-(C) a 2> b 2 (D) a 3> b 3(6) 设S n 为等差数列{}n a 的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =(A)8 (B)7 (C) 6 (D) 5(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9(8) 已知直二面角α- l –β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l,D 为垂足.若AB =2,AC =BD =1,则CD =(A ) 2 (B (C (D )1(9)4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有(A) 12种 (B) 24种 (C) 30种 (D)36种(10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=(A) -12 (B)1 4- (C)14 (D)12(11)设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =(A)4 (B) (C)8 (D)(12)已知平面α截一球面得圆M , 过圆心M 且与α成060,二面角的平面β截该球面得圆N.若该球的半径为4,圆M 的面积为4π,则圆N 的面积为(A)7π (B)9π (c)11π (D)13π第Ⅱ卷注意事项:1答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
[高考数学]2011年全国高考文科数学试题及答案-全国
![[高考数学]2011年全国高考文科数学试题及答案-全国](https://img.taocdn.com/s3/m/f3fe570d783e0912a3162a44.png)
2011年普通高等学校招生全国统一考试文科数学(必修+选修II )本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
.......... 3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题1.设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则=⋂(M N )ðA .{}12,B .{}23,C .{}2,4D .{}1,42.函数0)y x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥3.权向量a,b 满足1||||1,2a b a b ==⋅=-,则2a b +=ABCD4.若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则23z x y -+的最小值为A .17B .14C .5D .3 5.下面四个条件中,使a b >成立的充分而不必要的条件是 A .1a b >+ B .1a b >-C .22a b >D .33a b >6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差为22,24k k d S S +=-=,则k=A .8B .7C .6D .57.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于A .13B .3C .6D .98.已知二面角l αβ--,点,,A AC l α∈⊥C 为垂足,点,B BD l β∈⊥,D 为垂足,若AB=2,AC=BD=1,则CD=A .2BCD .19.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有 A .12种 B .24种 C .30种 D .36种 10.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .1211.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C =A .4B .C .8D .12.已知平面α截一球面得圆M ,过圆心M 且与α成060,二面角的平面β截该球面得圆N ,若该球的半径为4,圆M 的面积为4π,则圆N 的面积为A .7πB .9πC .11πD .13π第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。
2011年新课标高考数学文科试卷带详解

2011年普通高等学校招生全国统一考试文科数学一、选择题1.设集合U ={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =()I ðM N ( )A.{}12,B.{}23,C.{}2,4D.{}1,4【测量目标】集合的基本运算(交集、并集).【考查方式】已知全集和两个集合,求两个集合交集的补集.【参考答案】D【试题解析】{2,3},(){1,4}U M N M N =∴=ðQ I I2.函数0)y x =…的反函数为 ( ) A.2()4x y x =∈R B.2(0)4x y x =… C.24y x =()x ∈R D.24(0)y x x =…【测量目标】反函数.【考查方式】给出函数解析式,求其反函数.【参考答案】B【试题解析】由原函数反解得24y x =,又原函数的值域为0y …,所以函数0)y x =…的反函数为2(0)4x y x =…. 3.设向量a ,b 满足||||1==a b ,12=-a b g ,则2+=a b ( )【测量目标】向量的模,向量的数量积.【考查方式】已知两向量的模及其数量积,求模.【参考答案】B【试题解析】2221|2|||4414()432+=++=+⨯-+=a b a a b b g ,所以2+=a b4.若变量x ,y 满足约束条件6321x y x y x +⎧⎪--⎨⎪⎩………,则=23z x y +的最小值为 ( )A.17B.14C.5D.3【测量目标】二元线性规划求目标函数的最值.【考查方式】给出约束条件,求出目标函数在此区域的最小值.【参考答案】C【试题解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线1x =与332y -=-的交点(1,1)时取得最小值,所以最小值为5.5.下面四个条件中,使a b >成立的充分而不必要的条件是 ( )A.1a b >+B.1a b >-C.22a b >D.33a b >【测量目标】充分、必要条件.【考查方式】结合不等式的性质考查充分、必要条件.【参考答案】A【试题解析】即寻找命题P ,使P a b ⇒>,且a b >推不出P ,逐项验证知可选A.6.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A.8B.7C.6D.5【测量目标】等差数列的前n 项和.【考查方式】已知等差数列的首项、公差和关于前k 项和与前k +2项和的关系,求出k 值.【参考答案】D 【试题解析】解法一:2(2)(1)(1)[(2)12][12]442422k k k k k k S S k k k +++--=+⨯+⨯-⨯+⨯=+=,解得5k =. 解法二:221[1(1)2](12)4424k k k k S S a a k k k +++-=+=++⨯++⨯=+=,解得5k =. 7.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于 ( ) A.13B.3C.6D.9 【测量目标】三角函数图象变换.【考查方式】根据三角函数图象平移后的特点求参数值.【参考答案】C【试题解析】由题意将()y f x =的图像向右平移π3个单位长度后,所得的图像与原图像重合,说明了π3是此函数周期的整数倍,得2ππ()3k k ω⨯=∈Z ,解得6k ω=,又0ω>,令1k =,得min 6ω=.8.已知直二面角l αβ--,点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2,1AB AC BD ===,则CD =( )【测量目标】二面角.【考查方式】通过给出二面角,相关线段的长度,利用线面垂直的性质,求出CD 的长度.【参考答案】C【试题解析】因为l αβ--是直二面角,AC l ⊥,∴AC ⊥平面β,AC BC ∴⊥BC ∴=又BD l ⊥,CD ∴=9. 4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有( )A. 12种B. 24种C. 30种D.36种【测量目标】乘法原理,组合数的应用.【考查方式】根据题目的要求,利用排列与组合,求出其中的不同选法.【参考答案】A【试题解析】解本题分两步进行:第一步选出2人选修课程甲有24C 6=种方法,第二步安排剩余两人从乙、丙中各选1门课程有22A 2=种选法,根据分步计数原理,有6212⨯=种选法.10. 设()f x 是周期为2的奇函数,当01x 剟时,()f x =2(1)x x -,则5()2f -= ( )A.12-B.14- C .14 D.12【测量目标】函数的奇偶性,周期性.【考查方式】已知函数的周期、奇偶性及在某区间的解析式,求另一区间内的函数值.【参考答案】A【试题解析】由()f x 是周期为2的奇函数,利用周期性和奇偶性得:5511111()(2)()()2(1).2222222f f f f -=-+=-=-=-⨯⨯-=-11.设两圆1C 、2C 都和两坐标轴相切,且都过点(4,1),则两圆心的距离12C C = ( )A.4B.【测量目标】圆的方程与两点间的距离公式.【考查方式】给出两圆的位置关系和通过相同的点,计算圆心的距离.【参考答案】C【试题解析】由题意知:圆心在直线y x =上并且在第一象限,设圆心坐标为(,)(0)a a a >,则a =,即210170a a -+=,所以由两点间的距离公式可求出128C C ===.12.已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为 ( )A.7πB.9πC.11πD.13π【测量目标】二面角的概念与球的性质.【考查方式】给出平面与圆的位置关系,圆与圆的位置关系,求出圆的面积.【参考答案】D【试题解析】如图所示,由圆M 的面积为4π知球心O 到圆M 的距离OM =在Rt OMN △中,30OMN ︒∠=, ∴12ON OM ==,故圆N 的半径r ==,∴圆N 的面积为2π13πS r ==.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试卷上作答无效........) 13.10(1)x -的二项展开式中,x 的系数与9x 的系数之差为 .【测量目标】二项式定理.【考查方式】直接给出二项式,利用二项式展开式的通项公式,求出系数的差.【参考答案】0【试题解析】由11010C ()(1)C r r r r r r T x x +=-=-得x 的系数为10-,9x 的系数为910C 10-=-,所以x 的系数与9x 的系数之差为0.14.已知3π(π,)2α∈,tan 2α=,则cos α= . 【测量目标】同角三角函数的基本关系式.【考查方式】已知正切值,在α角范围的条件下,求出余弦值.【参考答案】【试题解析】3π(π,)2α∈,sin tan =2cos ααα==,因为3π(π,)2α∈时,cos α小于零,所以cos α=15.已知正方体1111ABCD A BC D -中,E 为11C D 的中点,则异面直线AE 与BC 所成角的余弦值为 .【测量目标】异面直线所成角.【考查方式】给出正方体,求出在正方体中异面直线所成角的余弦值. 【参考答案】23【试题解析】取11A B 的中点M 连接EM ,AM ,AE ,则AEM ∠就是异面直线AE 与BC所成的角.设正方形的边长为x ,在△AEM 中,222(2)(3)52cos 2233x x x AEM x x +-∠==⨯ . 16.已知1F 、2F 分别为双曲线C : 221927x y -=的左、右焦点,点A C ∈,点M 的坐标为(2,0),AM 为12F AF ∠的平分线.则2||AF = .【测量目标】双曲线的简单几何性质.【考查方式】已知双曲线的方程、点的坐标和角的平分线,通过双曲线的第一定义,求出2||AF 的值.【参考答案】6【试题解析】Q AM 为12F AF ∠的平分线,∴2211||||41||||82AF MF AF MF === ∴12||2||AF AF = 又点A C ∈,由双曲线的第一定义得12222||||2||||||26AF AF AF AF AF a -=-===.三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分l0分)(注意:在试题卷上作答无效.........) 设等比数列{}n a 的前n 项和为n S .已知26,a =13630,a a +=求n a 和n S .【测量目标】等比数列的通项和前n 项的和.【考查方式】直接给出2a 的大小和13a a 和的关系,求出n a 和n s .【试题解析】设{}n a 的公比为q ,由题设得12116630a q a a q =⎧⎨+=⎩解得132a q =⎧⎨=⎩或123a q =⎧⎨=⎩,(步骤1) 当13,2a q ==时,132,3(21)n n n n a S -=⨯=⨯-;(步骤2)当12,3a q ==时,123,31n n n n a S -=⨯=-.(步骤3)18.(本小题满分12分)(注意:在试题卷上作答无效.........) △ABC 的内角A 、B 、C 的对边分别为a b c 、、.已知s i n s 2s i n s i na A c a Cb B +=. (Ⅰ)求B ;(Ⅱ)若75,2,A b ︒==a c 求,.【测量目标】正弦定理和余弦定理.【考查方式】通过给出三角形的边、关于边与角的正弦余弦的等式,求出未知量.【试题解析】(I)由正弦定理得222a c b += (步骤1)由余弦定理得2222cos b a c ac B =+-.故cos B =,因此45B = (步骤2) (II )sin sin(3045)A =+sin 30cos 45cos30sin 45=+= (步骤3) 故sin 1sin A a b B =⨯==sin sin 602sin sin 45C c b B =⨯=⨯=(步骤4) 19.(本小题满分l2分)(注意:在试题卷上作答无效.........) 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(I)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(II)求该地3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【测量目标】独立事件的概率、对立事件的概率、互斥事件的概率及次独立重复试验发生k 次的概率.【考查方式】考查了独立事件、对立事件、互斥事件的的相互关系,以及独立重复试验发生k 次的概率的应用.【试题解析】记A 表示事件:该地的1位车主购买甲种保险;B 表示事件:该地的1位车主购买乙种保险但不购买甲种保险;C 表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;D 表示事件:该地的1位车主甲、乙两种保险都不购买;E 表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(I)()0.5P A =, ()0.3P B =, C A B =+(步骤1)()()()()0.8P C P A B P A P B =+=+= (步骤2)(II)D =C ,P (D )=1-P (C )=1-0.8=0.2, (步骤3)P (E )=123C 0.20.80.384⨯⨯=. (步骤4)20.(本小题满分l2分)(注意:在试题卷上作答无效.........) 如图,四棱锥S ABCD -中,AB P CD ,BC CD ⊥,侧面SAB 为等边三角形.2,1AB BC CD SD ====.(I)证明:SD ⊥平面SAB . (II) 求AB 与平面SBC 所成角的大小.【测量目标】线面垂直的判定和线面角的计算、空间直角坐标系.【考查方式】通过给出四棱锥,利用等边三角形SAB 这个条件,作出有关辅助线.【试题解析】解法一:(Ⅰ)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,2DE CB ==,连结SE ,则SE AB ⊥,SE =又1SD =,故222ED SE SD =+,所以DSE ∠为直角.(步骤1)由AB DE ⊥,AB SE ⊥,DE SE E =I ,得AB ⊥平面SDE ,所以AB SD ⊥.SD 与两条相交直线AB 、SE 都垂直.所以SD ⊥平面SAB .(步骤2)解法二:由已知易求得,1,SD AD =2,SA =于是222SA SD AD +=.可知SD SA ⊥,同理可得SD SB ⊥,又SA SB S =I .所以SD ⊥平面SAB .(步骤3) (Ⅱ)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .作SF DE ⊥,垂足为F ,则SF ⊥平面ABCD ,SD SE SF DE ⨯==. 作FG BC ⊥,垂足为G ,则1FG DC ==.连结SG ,则SG BC ⊥.又,BC FG SG FG G ⊥=I ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG .(步骤4) 作FH SG ⊥,H 为垂足,则FH ⊥平面SBC .SF FG FH SG ⨯==,即F 到平面SBC 的距离为7.由于ED BC P ,所以ED P 平面SBC ,E 到平面SBC 的距离d 也为7.设AB 与平面SBC 所成的角为α,则sin 7d EB α==,arcsin 7α=.(步骤5) 解法二:以C 为原点,射线CD 为x 轴的正半轴,建立如图所示的空间直角坐标系C xyz -. 设(1,0,0)D ,则(2,2,0)A 、(0,2,0)B .又设(,,)S x y z ,则0,0,0x y z >>>.(Ⅰ)(2,2,),(,2,),(1,,)AS x y z BS x y z DS x y z =--=-=-u u r u u r u u u r ,由||||AS BS =u u r u u r 得=故1x =.(步骤1)由||1DS =u u u r 得221y z +=,又由||2BS =u u r 得222(2)4x y z +-+=,即22410y z y +-+=,故1,2y z ==(步骤2)于是1331(1,(1,(1,(0,2222S AS BS DS =--=-=uu r uu r uu u r , 0,0DS AS DS BS ==u u u r u u r u u u r u u r g g .故,DS AS DS BS ⊥⊥,又AS BS S =I ,所以SD ⊥平面SAB . (步骤3)(Ⅱ)设平面SBC 的法向量(,,)m n p =a ,则,,0,0BS CB BS CB ⊥⊥==a a a a u u r u u r u u r u u r g g .又3(1,(0,2,0)2BS CB =-=uu r uu r ,故30,2220m n p n ⎧-+=⎪⎨⎪=⎩(步骤4) 取2p =得(=a ,又(2,0,0),AB =-u u u r所以,cos ,||||AB AB AB <>==a a a uu u r uu u r g uu u r g 故AB 与平面SBC所成的角为arcsin 7. (步骤5) 21.(本小题满分l2分)(注意:在试题卷上作答无效.........). 已知函数()32()3(36)+124f x x ax a x a a =++--∈R(Ⅰ)证明:曲线()y f x =在0x =处的切线过点(2,2);(Ⅱ)若()f x 在0x x =处取得最小值,0(1,3)x ∈,求a 的取值范围.【测量目标】导数的几何意义,利用导数判断参数的范围.【考查方式】直接利用导数的几何意义,求出切线的斜率,然后易写出切线方程.第(II )问是含参问题,对方程()0f x '=的判别式进行分类讨论.【试题解析】解:(I )2()3636f x x ax a '=++-(步骤1)由(0)124,(0)36f a f a '=-=-得曲线()y f x =在0x =处的切线方程为(36)124y a x a =-+-,由此知曲线()y f x =在0x =处的切线过点(2,2)(步骤2)(II )由()0f x '=得22120x ax a ++-=.(i )当11a剟时,()f x 没有极小值;(步骤3)(ii)当1a >或1a <时,由()0f x '=得12x a x a =-=-+故02x x =,由题设知13a <-,(步骤4)当1a >时,不等式13a <-<无解;当1a <时,解不等式13a <-<得512a -<<综合(i)(ii)得a 的取值范围是5(,1)2-.(步骤5) 22.(本小题满分l2分)(注意:在试题卷上作答无效.........).已知O 为坐标原点,F 为椭圆C :2212y x +=在y 轴正半轴上的焦点,过F 且斜率为的直线l 与C 交与A 、B 两点,点P 满足0OA OB OP ++=u u r u u u r u u u r r .(I)证明:点P 在C 上;(II)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【测量目标】椭圆的简单几何性质、点与曲线的位置关系、曲线交点坐标求法及四点共圆的条件.【考查方式】根据给出的椭圆方程与直线方程的关系,平面向量的坐标运算,求出曲线交点坐标和四点共圆的条件.【试题解析】(I)(0,1)F ,l 的方程为1y =+,代入2212y x +=并化简得2410x --=. (步骤1)设112233(,),(,),(,)A x y B x y P x y ,则12x x ==121212)21,x x y y x x +=+=++=(步骤2)由题意得312312()()1,x x x y y y =-+==-+=-所以点P 的坐标为(1)2--.经验证点P 的坐标(1)2--满足方程2212y x +=,故点P 在椭圆C 上(步骤3)(II)由P (1)2--和题设知,Q (2,PQ 的垂直平分线1l 的方程为y x =. ①设AB 的中点为M ,则1)2M ,AB 的垂直平分线2l 的方程为124y x =+. ②由①、②得1l 、2l 的交点为1()88N -.(步骤4)||NP ==21||||2AB x x=-=||4AM=,||MN==,||NA==(步骤5)故||||NP NA=,又||||NP NQ=, ||||NA NB=,所以||||||||NA NP NB NQ===,由此知A、P、B、Q四点在以N为圆心,NA为半径的圆上.(步骤6)(II)法二:22tan11PA PBPA PBk kAPBk k-∠==+214()3x x-==(步骤1)同理22tan11QB QAQA QBk kAQBk k-∠==++214()3x x-==-(步骤2)所以,APB AQB ∠∠互补,因此A 、P 、B 、Q 四点在同一圆上.(步骤3)。
2011年全国高考文科数学试题及答案-山东

2011年普通高等学校招生全国统一考试(山东卷)文科数学本试卷分第I 卷和第II 卷两部分,共4页,满分150分。
考试用时120分钟,考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证证、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按能上能下要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:柱体的体积公式:V Sh =,其中S 是柱体的底面积,h 是柱体的高。
圆柱的侧面积公式:S cl =,其中c 是圆柱的底面周长,l 是圆柱的母线长。
球的体积公式:343V R π=,其中R 是球的半径。
球的表面积公式:24S Rπ=,其中R 是球的半径。
用最小二乘法求线性回归方程系数公式:12241ˆˆ,ni ii ni x y nx ybay bx xnx==-==--∑∑, 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B )第Ⅰ卷(共60分)一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只有一项是满足题目要求的. 1.设集合 M ={x|(x+3)(x-2)<0},N ={x|1≤x ≤3},则M ∩N = A .[1,2) B .[1,2] C .( 2,3] D .[2,3] 2.复数z=22ii-+(i 为虚数单位)在复平面内对应的点所在象限为A .第一象限B .第二象限C .第三象限D .第四象限3.若点(a,9)在函数3xy =的图象上,则tan=6a π的值为A .0 BC .1D4.曲线211y x =+在点P (1,12)处的切线与y 轴交点的纵坐标是A .-9B .-3C .9D .155.已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”,的否命题是 A .若a +b+c≠3,则222a b c ++<3 B .若a+b+c=3,则222a b c ++<3 C .若a +b+c≠3,则222a b c ++≥3D .若222a b c ++≥3,则a+b+c=36.若函数()sin f x x ω= (ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=A .23B .32C .2D .37.设变量x ,y 满足约束条件250200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则目标函数231z x y =++的最大值为A .11B .10C .9D .8.58.某产品的广告费用x 与销售额y 的统计数据如下表广告费用x (万元)4 2 35 销售额y (万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元9.设M (0x ,0y )为抛物线C :28x y =上一点,F 为抛物线C 的焦点,以F 为圆心、FM 为半径的圆和抛物线C 的准线相交,则0y 的取值范围是A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)10.函数2sin 2xy x =-的图象大致是11.下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯 视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命 题的个数是 A .3 B .2 C .1 D .012.设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ= (λ∈R ),1412A A A A μ=(μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知点C (c ,o ),D(d ,O ) (c ,d ∈R )调和分割点A (0,0),B (1,0),则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点C .C ,D 可能同时在线段AB 上D .C ,D 不可能同时在线段AB 的延长线上第II 卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽 取40名学生进行调查,应在丙专业抽取的学生人数为 . 14.执行右图所示的程序框图,输入l =2,m=3,n=5,则输出的y 的值是15.已知双曲线22221(0b 0)x y a a b -=>,>和椭圆22x y =1169+有相同的 焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .16.已知函数f x ()=log (0a 1).a x x b a +-≠>,且当2<a <3<b <4时,函数f x ()的零点*0(,1),,n=x n n n N ∈+∈则 .三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A-2cos C 2c-a=cos B b.(I )求sin sin CA的值;(II )若cosB=14,5b ABC 的周长为,求的长. 18.(本小题满分12分)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(I )若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(II )若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.19.(本小题满分12分)如图,在四棱台1111ABCD A B C D -中,1D D ⊥平面ABCD ,底面ABCD 是平行四边形,AB=2AD ,11AD=A B ,BAD=∠60° (Ⅰ)证明:1AA BD ⊥;(Ⅱ)证明:11CC A BD ∥平面.20.(本小题满分12分)等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表的同一列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前2n 项和2n S .21.(本小题满分12分)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元. (Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r .22.(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆22:13x C y +=.如图所示,斜率为(0)k k >且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22m k +的最小值;(Ⅱ)若2OG OD =∙OE ,(i )求证:直线l 过定点;(ii )试问点B ,G 能否关于x 轴对称?若能,求出此时ABG 的外接圆方程;若不能,请说明理由.参考答案一、选择题1——12 ADDCABBBCCAD 二、填空题13.16 14.68 15.22143x y -= 16.2 三、解答题 17.解:(I )由正弦定理,设,sin sin sin a b ck A B C=== 则22sin sin 2sin sin ,sin sin c a k C k A C Ab k B B ---== 所以cos 2cos 2sin sin .cos sin A C C AB B--= 即(cos 2cos )sin (2sin sin )cos A C B C A B -=-, 化简可得sin()2sin().A B B C +=+ 又A B C π++=,所以sin 2sin C A =因此sin 2.sin CA = (II )由sin 2sin CA =得 2.c a =由余弦定得及1cos 4B =得 22222222cos 14444.b ac ac Ba a a a =+-=+-⨯= 所以2.b a = 又5,a bc ++= 从而1,a =因此b=2。
2011年全国高考文科数学试题及答案-北京

2011年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时间长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集U=R,集合P={x ︱x 2≤1},那么A .(-∞, -1]B .[1, +∞)C .[-1,1]D .(-∞,-1] ∪[1,+∞)2.复数212i i -=+ A .i B .-i C .4355i -- D .4355i -+ 3.如果,0log log 2121<<y x 那么A .y< x<1B .x< y<1C .1< x<yD .1<y<x4.若p 是真命题,q 是假命题,则A .p ∧q 是真命题B .p ∨q 是假命题C .﹁p 是真命题D .﹁q 是真命题5.某四棱锥的三视图如图所示,该四棱锥的表面积是A .32B .C .48D .6.执行如图所示的程序框图,若输入A 的值为2,则输入的P 值为A .2B .3C .4D .57.某车间分批生产某种产品,每批的生产准备费用为800元.若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元.为使平均没见产品的生产准备费用与仓储费用之和最小,每批应生产产品 A .60件B .80件 C .100件D .120件8.已知点A (0,2),B (2,0).若点C 在函数y = x 的图像上,则使得ΔABC 的面积为2的点C 的个数为A .4B .3C .2D .1第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.在ABC ∆中.若b=5,4B π∠=,sinA=13,则a=___________________. 10.已知双曲线2221y x b-=(b >0)的一条渐近线的方程为2y x =,则b = . 11.已知向量a=,1),b=(0,-1),c=(k.若a-2b 与c 共线,则k=________________.12.在等比数列{a n }中,a 1=12,a 4=4,则公比q=______________;a 1+a 2+…+a n = _________________. 13.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是_______14.设A (0,0),B (4,0),C (t+4,3),D (t,3)(t ∈R ).记N (t )为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则N (0)= N (t )的所有可能取值为三、解答题6小题,共80分,解答应写出文字说明,演算步骤或证明过程.15.(本小题共13分)已知函数()4cos sin()16f x x x π=+-. (Ⅰ)求()f x 的最小正周期:(Ⅱ)求()f x 在区间,64ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 16.(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X=8,求乙组同学植树棵树的平均数和方差;(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差],)()()[(1222212x x x ns n -+-+-= 其中为n x x x ,,,21 的平均数) 17.(本小题共14分)如图,在四面体PABC 中,PC ⊥AB ,PA ⊥BC,点D,E,F,G 分别是棱AP,AC,BC,PB 的中点.(Ⅰ)求证:DE ∥平面BCP ;(Ⅱ)求证:四边形DEFG 为矩形; (Ⅲ)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.18.(本小题共13分)已知函数()()xf x x k e =-. (Ⅰ)求()f x 的单调区间;(Ⅱ)求()f x 在区间[0,1]上的最小值.19.(本小题共14分)已知椭圆2222:1(0)x y G a b a b+=>>右焦点为(,0),斜率为I 的直线l 与椭圆G 交与A 、B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2).(I )求椭圆G 的方程;(II )求PAB ∆的面积.20.(本小题共13分)若数列12:,,,(2)n n A a a a n ⋅⋅⋅≥满足11(1,2,,1)k k a a k n +-==⋅⋅⋅-,则称n A 为E 数列,记12()n n S A a a a =++⋅⋅⋅+.(Ⅰ)写出一个E 数列A 5满足130a a ==;(Ⅱ)若112a =,n=2000,证明:E 数列n A 是递增数列的充要条件是n a =2011;(Ⅲ)在14a =的E 数列n A 中,求使得()n S A =0成立得n 的最小值.参考答案一、选择题(共8小题,每小题5分,共40分)(1)D (2)A (3)D (4)D (5)B (6)C (7)B (8)A二、填空题(共6小题,每小题5分,共30分)(9)325 (10)2 (11)1 (12)2 2121--n (13)(0,1) (14)6 6,7,8,三、解答题(共6小题,共80分)(15)(共13分)解:(Ⅰ)因为1)6sin(cos 4)(-+=πx x x f所以)(x f 的最小正周期为π(Ⅱ)因为.32626,46πππππ≤+≤-≤≤-x x 所以于是,当6,262πππ==+x x 即时,)(x f 取得最大值2;当)(,6,662x f x x 时即πππ-=-=+取得最小值—1.(16)(共13分)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为方差为(Ⅱ)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10,分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个,它们是:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4),(A 3,B 1),(A 2,B 2),(A 3,B 3),(A 1,B 4),(A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4), 用C 表示:“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2),故所求概率为.41164)(==C P (17)(共14分)证明:(Ⅰ)因为D ,E 分别为AP ,AC 的中点,所以DE//PC 。
大学文科数学及试题答案

东莞理工学院(本科)清考试卷参考答案2010 2011 学年第二学期《大学文科数学》清考试卷参考答案开课单位:数学教研室 考试形式:闭、开卷,允许带 入场题序得分评卷人一二总分一、选择填空题(共70 分每空2 分)1、设函数f (x )=4-x 2+ln(x -1),则函数f (x )的定义域为(C ) A) (1,2), B) [1,2], C) (1,2], D) [1,2). éù=2、设f (x )=x ,j (x )=cos x ,则lim f ëj (x )û(Bp2x ®2) A) cosp 242, B) 0, C) 1, D) 1. 2éù¢=3、设f (x )=x ,j (x )=sin x ,j ëf (x )û({}C )A) sin 2x, B) 2sin x , C) 2x cos x 2, D) cos x 2. 4、极限limx ®1x2-1=(3x +3x -4B) A) 11, B) , C) 0, D) 1. 2335.极限lim 3x 3-x +1=(B x ®¥2x +x -1A) 1, B) ). 32, C) 0, D) . 236.下列命题中正确的是( A ) 11A) lim x ®¥x sin x =1, B) lim x ®0x sin x =1, 1sin xC) lim x sin =0, D) lim =0. x ®¥x ®0x x =æ+1öx÷,则lim f (x )=(B 7、若函数f (x )ç1) x ®+¥x èø1A) 1, B) e , C) e , D) 0. =æ+1öx÷,则lim f (x )=(A) 8、若函数f (x )ç1x ®0+x èøA) 1, B) e , C) 3x ®0f (x )=2,则9、设f (x )=x +ax +b ,且f (1)=3,lim 1, D) 0. e(D ) A) a =2,b =0, B) a =-2,b =1, C) a =2,b =-1, D) a =0,b =2. 10、设f (x )=1-x,则f ¢(0)=(1+x2A) A) -2, B) -1, C) 0, D) 2. 11、曲线y =-x +1单调上升区间为( A ) A) (-¥,0], B) (-¥,1], C) [0,+¥), D) [1,+¥). 212、曲线y =x 在点(1,1)的切线方程为( C ) A) y -1=-(x -1), B) y 11-=(x -1), 2C) y -1=2(x -1), D) y -1=x -1. 13、若f (x )=x +5x -1,则f5(5)(x )=( D ) A) 0, B) 12, C) 24, D) 120. 14、当x =(3B)时,函数f (x )=x-3x +2取得极大值,该极大值等于4;A) 1, B) -1, C) 0, D) 3. 15.当x =1时,函数f (x )=x -3x +1取得极小值,该极小值等于( B ). 3A) 0, B) -1, C) -2, D) -3. 16、设函数f (x )=ìísin x ,x ³0,pî3x 2,x <0.则òf (x )dx =(C) 0A) 0, B) 1, C) 2, D) 3. 17、设函数f (x )=ìísin x ³2x ,0,则f Cî3x ,x <0.-ò1(x )dx =() A) -1, B) 0, C) 1, D) -2. 18、设函数f (x )=ìísin x ,x ³0,p则Dî2x ,x <0.òf (x )dx =() -1A) 0, B) 1, C) 2, D) 3. 319、积分ò11x 2dx =(B) +A) p 2, B) pp p 3, C) 4, D) 6. 20.p积分ò(2x -cos x )dx =(A) 222A) p , B) p -1, C) p -2, D) p21、积分òx cos xdx =(C) 0A) 0, B) -1, C) -2, D) -3. 1x22、积分òe 2+1dx =(C)2(e 3A) e -1), B) e , C) 1e (e 2-1), D) 1e 3. 22123、若òke x dx =1,则数k =(B)A) 1, B) 1e -1, C) 11e, D) e +1. 2p. 24.曲线y =x ,y =x 围成的平面图形的面积的( C ) A) 1, B) 1, C) 1, D) 1. 223612æ10-1öææ1-10öç÷=-ç÷A B ç÷çç011÷,则AB =ç25、设矩阵=ç011÷,-ç÷çè001øè000øè--1-2öææ0öç11-÷ç1-÷1÷, B) ç011÷, A) ç01ç÷ç÷è000øè002øæ10ç-C) ç11çè0-1æ1ç026. 设矩阵A =ççæ100ö0ö÷ç÷0÷, D) ç110÷. ÷ç÷0øè-21-2øæ1-10öæ0-1öç÷T T =-÷B B ç01ç11÷1÷,则A =ç,÷-ç÷çè001øè00øèAö÷÷ ÷øCö÷÷ ÷øæ1-10öæ1-1-2öç÷ç÷01-1÷01-1÷A) ç, B) ç, 000002èøèøæ1ç-C) çç1è0æ100ö0ö÷ç÷ç÷. 10÷110, D) ÷ç---÷10ø2øè21-112öæç÷=-11÷,当l =(27、设矩阵A ç0ç÷è00l øæ121ö=çç021÷÷÷,则r (A )=(28.设矩阵A çè021øD)时,A =2;A) -2, B) -1, C) 1, D) 2. )A) 0, B) 1, C) 2, D) 3. 29.设A 为三阶方阵,且A =3,则-2A =(D )A) -6, B) 6, C) 24, D) -24. ææx 1öæ0ö1-10öç÷=-çx 2÷÷,b =çç0÷÷. 则当l ¹(1÷,x =ç30.设矩阵A ç0l ç÷ç÷ç÷è002øèx 3øè1øC)时,线性方程组Ax =b 有唯一解 A) -2, B) -1, C) 0, D) 1. D)是线性方程组Ax =b 的解 31、设向量x 1,x 2是线性方程组Ax =b 的两个解,则(A) x 1+x 2, B) x 1-x 2, C) 2x 1+x 2, D) 2x 1-x 2. 32、设向量x 1,x 2是线性方程组Ax =b 的两个解,则(A)是线性方程组Ax =0的解 A) x 1-x 2,B) x 1+x 2,C) 2x 1+x 2,D) 2x 1-x 2.æ110öç÷=-1÷33、设矩阵A çç0l 1-÷,当l ¹(01øè0D)时,矩阵A 可逆;A) -2,B) -1,C) 0,D) 1.112öæ-÷,M =æçA 34、设矩阵M =çè37øèö÷.øææ7-2ö7-3öç÷ç÷,,B) A) è-31øè-21øC) ç7ææ-ö3ö÷,D) ç12÷.è21øè3-7øæ100ö1ç÷-35.设矩阵M =ç020÷,则M =(B ).ç÷è003ø300100æöæöç÷ç÷,0÷A) ç020÷,B) ç01/2ç÷ç÷è001øè001/3ø--ææ00öç100ö÷ç1÷0÷.C) ç0-20÷,D) ç0-1/2--3ø01/3øè00è0二、填空题(共30 分每空3 分)1.设函数f (x )=arctan2.若函数y =5x =5e3.若函数f (x )=e x +1x 1,则函数f (x )的定义域为(x ÎR \{-2}) 2+xx ln x ,则y ¢=5x (1+ln x ) (n )(x ),则f (x )=(e +x 1) 1cos x 1-() 4. 极限lim =2x ®0x 2x +sin x ®+¥x 5. 极限x lim =(1) +æ+ö1ln x =ç1+26.不定积分 òx dx è2(1ln x )C ÷ø7. 定积分ò1-12xdx =(2) 111100A =çA 100=çæöæö÷÷8.设矩阵,则0101èøèø1239.行列式231=(321-12) x x x ìæx 1öæ-1öï1+32-23=0,ç÷=ç÷的通解为çx 2÷c ç1÷10.齐次线性方程组íç÷ç÷ïx x x 2-3=0.îè3øè1ø南京晓庄学院大学文科数学课程考试试卷2010 –2010– 2011 学年度第 2011学年度第一学期院(系)级 共共页教研室主任审核签名:院(系)领导审核签名:院(系)领导审核签名:命题教师:数信院公共教研室数信院公共教研室 校对人:校对人:班级姓名学号得分序号得分阅卷人复核人一二三四总分一、选择题(每小题3分,共15分)1.下列函数为初等函数的是( B )(A).sin x -2(B).y =2-cos xìx 2-1ì1+x x ¹1ï(C).y =ïíx 0-1x 1(D).y =íîx =î2.当x →0时,与sin x 等价的无穷小是( A )x <0x ³0(A)x +x (B)x sin x (C)3tan x (D)2x2f (0)-f (-x )x ®03设f ¢(0)存在,则lim =( D )x (A)-f ¢(0) (B)-2f ¢(0) (C)2f ¢(0) (D)f ¢(0)4.物体在某时刻的瞬时速度,等于物体运动在该时刻的( D 物体在某时刻的瞬时速度,等于物体运动在该时刻的( D ) D )(A)函数值(A)函数值 (B)函数值 (B)极限 (B)极限 (C)极限 (C) 积分 (C)积分 (D)积分 (D)导数 (D)导数导数5.若f (x )的导函数是sin x ,则f (x )有一个原函数为( C 有一个原函数为( C ) C )(A)1+cos x(B)x +sin x (C)x -sin x (D)1-cos x二、填空题(每小题3分,共15分)1.设函数cos x , x <0ì()在x =0点连续,则a =____1_____.f x =í-x a x ,0-³î2.设f (x )=x , 则,则f ¢[f (x )]= ____2x _ ____ .223.lim sin x =x ®+¥x4. 曲线.曲线y =1在点(1,1)在点(1,1)处的法线方程为1,1)处的法线方程为处的法线方程为y =xx5.(1-cos x )dx =x -sin x +c .ò三、计算题(每小题5分,共40分)1.求函数f (x )=ln(2x -1)+219-x 2的定义域.解:9-x >0且2x -1>0,所以函数f (x )=ln(2x -1)+2.设y =ln(2-x ),求其反函数19-x 2的定义域:1<x <32y y x 解:由e =2-x 得x =2+e 所以函数y =ln(2-x )的反函数是:y =2+e ,x Î(-¥,+¥)x (e x -1)3.求极限limx ®0sin 2xx (e x -1)lim x lim e x -11lim e x 1解:lim ==×=x ®0sin 2x x ®0sin x x ®0x ®01x 4.求极限limtan x -xx ®0x 3tan x -x=解:sec 2x -1limx ®0limx ®0x 323x =1-cos 2xx ®022x ®0sin 2x21=32lim3x cos x =lim 3x 5.已知y =ln(x +1)-ln x ,求dy解:因为y ¢x 2-12x1d x =2-所以dy =2x x x +1x(+1)6求y =e 2x cos x 的微分y ¢y x x 2x 解:¢=2e cos x -e sin x =e (2cos x -sin x )-1x7.求不定积分òx 2dx 22-é-ù=1x 11dx 解:=òx 2òêx 2x údx ûeë8.求定积分x 2ln xdxò1e1x x =d d ---ln x +Còx 2òx x 11解:ò1e é3ù-x 1ú =1(2e 3+1)x 2ln xdx =êx 3ln x9û19ë3四、综合应用题(每小题10分,共30分)1.证明方程x ×2-1=0至少有一个小于1的正实数根.x 解:令f (x )=x ×2-1,f (0)=-1<0 ,f (1)=1>0,f (x )闭区间[0,1]上连续,x 由根的存在性定理,有x Î(0,1),使得f (x )=0 ,即x ×2-1=0至少有一个小于1的正实数根2.欲做一个体积为72立方厘米的带盖箱子,其底面长方形的两边成一比二的关系,怎样做法所用的材料最省?解:设底面长方形的两边的边长为x 厘米,2x 厘米,则高为表面积S =(x .2x ).2+(x .求导,x7236=2厘米x .2x x 36362162x x ).2(2.).24+=+x x 2x 2216S =8x -x 2=0所以在区间(0,+¥)上只有唯一的驻点x =3又因为在实际问题中存在最值,所以驻点x =3就是所求的最值点。
2011年高考全国卷文科数学解析版

2011年高考(全国卷)文科数学解析版第Ⅰ卷一、选择题(1)设集合{}1,2,3,4U =,{}1,2,3M =,{}2,3,4N =。
则()=U C M N(A ){}1,2 (B ){}2,3 (C ){}2,4 (D ){}1,4 [答案](D )[解析]依题意知答集中的元素不在集合M N 中,2M N ∈ ,∴排出(A )、(B )、(C ),故选(D )。
(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2()4x y x =≥0 (C )()24y x x R =∈ (D )24()y x x =≥0[答案](B )[解析]依题意知原函数的值域不会是负数,即反函数的定义域是x ≥0,∴排出(A )、(C ),又点()1,2在原函数上,∴点()2,1必在反函数上,再排出(D ),故选(B )(3)设向量a 、b 满足1a b == ,12a b ⋅=- ,则2a b +=(A(B(C(D[答案](B )[解析]运用公式得:()22222222()(2)2244a b a ba b a b a b a b +=+=++⋅=++⋅1423=+-=2a b ∴+=,故选(B )(4)若变量x 、y 满足约束条件6321x y x y x +≤⎧⎪-≤-⎨⎪≥⎩,则23z x y =+的最小值为(A )17 (B )14 (C )5 (D )3[答案](C )[解析](如图)显然当目标函数23z x y =+过直线1x =与32x y -=-的交点(1,1) 时取得最小值5,故选(C )(5)下面四个条件中,使a >b 成立的充分而不必要的条件是(A )1a b >+ (B )1a b >- (C )22a b > (D )33a b >[答案](A )[解析] 1a b b a b >+>⇒> ,而反之不成立,故选(A )(6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )5[答案](D )[解析] 21211242422241112115k k k k k k S S a a a a k k +++++-=⇒+=⇒+=⇒=⇒+=⇒=故选(D )(7)设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,则ω的最小值等于(A )13(B )3 (C )6 (D )9 [答案](C )[解析]因为,()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合 所以,函数()cos (0)f x x ωω=>的周期的整数倍是3π即,2()63k k Z k ππωω⋅=∈⇒=,又0ω>,1k ∴=时,ω取得最小值6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.7 积分应用 1. 由直线 x=a, x=b (a<b), x 轴 与曲线 y=f (x)>0(<0),围成的曲 边梯形D的面积
(1)设直线 设直线
y = f ( x)
D
O a x x + dx
b x
xHale Waihona Puke 与曲线所围曲边梯形的面积为A, 所围曲边梯形的面积为 ,则
b
dA = f (x) dx ⇒ A = ∫a f (x)dx.
a a b b
D
y = g(x)
O a
x x + dx
= ∫ [ f (x) −g(x) ]dx.
a
b
b x
如右图所示。 如右图所示。
上页
下页
返回
结束
1.7 积分应用
不成立,则将x 轴向下平移充分大的k (2)若 g ( x) ≥ 0 不成立,则将 轴向下平移充分大的 个单位 轴上方,如下图所示。 至 x 1 ,使得图形 位于 x1轴上方,如下图所示。于是 轴 使得图形D
o
y2 = x
y = x−2
1
(1, −1)
2
4
x
f ( x ) = x , x ∈ [0,4], − x , x ∈ [0,1] 围成, 围成, g ( x) = x − 2, x ∈ [1,4]
上页
下页
返回
结束
1.7 积分应用
y
因此由公式1.7.1,有 , 因此由公式
y =x
2
(4 , 2)
第一章微积分
1.7积分应用
1.7 积分应用
主要教学内容: 变化率的反问题(不讲) *变化率的反问题(不讲) 用定积分计算面积 定积分一般应用举例(不讲) *定积分一般应用举例(不讲) 可分离变量的微分方程(不讲) *可分离变量的微分方程(不讲) 几种数学模型(不讲) *几种数学模型(不讲)
上页
下页
上页
下页
返回
结束
1.7 积分应用
(2)设直线 设直线
x轴与曲线
b
所围曲边梯形D 的面积为A, 所围曲边梯形 的面积为 ,则 于是由( ) 于是由(1)有
y = − f ( x)
A = ∫ − f (x)dx
a
=−∫ f (x)dx.
a
b
O
a
利用图形关于x 轴的对称性,即得结果。) ( 利用图形关于 轴的对称性,即得结果。)
0 1
1
x
2 3 x3 1 1 = ( x2 − ) = . 3 3 0 3
上页
下页
返回
结束
1.7 积分应用
所围图形的面积 例3. 计算抛物线 y2 = x与直线 y = x − 2 所围图形的面积 . y 解法一: 作为积分变量, 解法一:选取 x 作为积分变量,由 (4 , 2) 得交点 (1, −1) , (4, 2) , 将图形看成由 x = 0, x = 4 与
y = x−2
A=
∫ =∫ [ = 2∫
0 1 0
4
[ f ( x ) − g ( x )] dx x − ( − x )] dx + x dx +
o
1
(1, −1)
2
4
x
∫
4
1
[ x − ( x − 2)]dx
1
0
∫
4
1
[ x − x ] dx + 6
2 3 1 2 3 4 x2 4 9 2 2 = 2⋅ x + x − +6 = . 0 3 1 3 2 1 2
上页
下页
返回
结束
1.7 积分应用
解法二: 作为积分变量, 解法二:选取 y 作为积分变量,图形 2 是由 x = y 2与x = y + 2 围成, 于是 围成, 由公式1.7.2 有 由公式
A = ∫ [( y + 2) − y 2 ]dy
−1 2
y
x= y
( 4 , 2)
2
x = y+2
o
-1
D
y = f ( x)
bx
上页
下页
返回
结束
1.7 积分应用 2. 由直线 x=a, x=b (a<b)与曲线y=f (x), y=g (x), f ( x) ≥ g ( x) 围成图形D的面积 A
y = f ( x)
(1)若 g ( x ) ≥ 0 ,则
A = ∫ f (x) dx − ∫ g(x) dx
(1, −1)
2
x
2 y3 2 9 y2 2 = + 2y − = . −1 3 −1 2 2 −1
上述两种解法哪个更简便? 上述两种解法哪个更简便?
上页
下页
返回
结束
1.7 积分应用
小结. 计算平面图形面积的步骤: 小结 计算平面图形面积的步骤 (1)作图,写出边界线的方程,并求出边界线彼此的交点坐标; )作图,写出边界线的方程,并求出边界线彼此的交点坐标; (2)考察图形是否具有对称性,以简化计算,必要时分割图形; )考察图形是否具有对称性,以简化计算,必要时分割图形; 计算, (3)对分割出的每块图形按照公式 )对分割出的每块图形按照公式1.7.1或1.7.2计算,最后总合。 或 计算 最后总合。
返回
结束
1.7 积分应用
§1.7.1 用定积分计算面积
1. 由直线 x=a, x=b (a<b), x 轴与曲线 y=f (x)>0(<0), 围成的曲边梯形D的面积 2. 由直线 x=a, x=b (a<b)与曲线y=f (x), y=g (x) ( f ( x) ≥ g ( x) ) 围成图形D的面积 3. 由直线y=c, y=d与曲线 x = ϕ ( y ), x = ψ ( y ) 围成图形 D的面积 4. 一般图形D的面积的计算
围成,因此由公式 围成,因此由公式1.7.1有 有
a
2
o xx +d x
a x
π 令 =asint x x2 4b a 2 2 A = 4∫ b 1− 2 d x = ∫ a − x d x = 4ab∫ 2 cost dsin t 0 0 a a 0
= 2ab∫ (1+ cos 2t) dt = 2ab( + 0) = π ab. 2 特别地, 特别地,当a=b 时,即得圆的面积公式 A = π a 2。
O
D2
D1
D3
a b c x
上页
下页
返回
结束
1.7 积分应用
例1. 求椭圆 所围图形的面积 .
y
A = π a2
b
y
由对称性, 解: 由对称性,椭圆的面积是第一象限 图形面积的4 而这部分图形可看成 图形面积的4倍, 而这部分图形可看成
x 由 x = 0, x = a与 y = 0, y = b 1 − 2 a
d
x = ψ ( y)
ψ 公式1.7.2 A = ∫c [ϕ ( y ) − ( y)] d y 公式
c
注:此时积分变量为y 。 此时积分变量为
O
d
D
x = ϕ ( y)
x
上页
下页
返回
结束
1.7 积分应用 4. 一般图形D的面积的计算
一般图形的面积计算可以通过与 x 轴或y 轴平行的直线分割D成前面 轴或 轴平行的直线分割 成前面 所列的图形,然后再进行计算总和。 所列的图形,然后再进行计算总和。 右图用x=a,x=b和x=c将整个图形 和 右图用 将整个图形 分为三个部分 D1 , D2 , D3 。 如果用与x 轴平行的直线分割D 如果用与 轴平行的直线分割 , 情形怎么样? 情形怎么样?
上页
下页
返回
结束
上页
下页
返回
结束
本节结束
谢谢!
A = ∫ [ f (x) − g(x)]dx.
a b
y = f ( x)
D
b
公式1.7.1 A = ∫a [ f ( x) − g( x)] dx. 公式 注:此时积分变量为x。 此时积分变量为 。
O a
y = g(x)
b x
x1
-k
上页
下页
返回
结束
1.7 积分应用 3. 由直线y=c, y=d与曲线 x = ϕ( y) , x =ψ ( y) 围成图形D 的面积 A
2 0
上页 下页 返回 结束
π
π
1.7 积分应用
例2. 计算两条抛物线 的面积。 的面积。 解: 由 在第一象限所围图形
y
y = x2
(1,1 )
y2 = x
) 得交点 (0, 0) , (1, 1
1
图形可看成由
o
围成,于是,由公式 围成,于是,由公式1.7.1有 有
A = ∫ ( x − x2 ) dx