2016年普通高等学校招生全国统一考试理科数学试题(浙江)word版
2016年浙江省高考数学理科试题及答案

绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:1. 答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案写在试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4. 填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I卷(共40分)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P=错误!未找到引用源。
,Q=错误!未找到引用源。
,则P错误!未找到引用源。
=A.[2,3]B.(-2,3]C.[1,2)D.错误!未找到引用源。
2.已知互相垂直的平面错误!未找到引用源。
交于直线l,若直线m,n满足错误!未找到引用源。
,则A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域错误!未找到引用源。
中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A.错误!未找到引用源。
B.4C.错误!未找到引用源。
D.64.命题“错误!未找到引用源。
使得错误!未找到引用源。
”的否定形式是A.错误!未找到引用源。
使得错误!未找到引用源。
B.错误!未找到引用源。
使得错误!未找到引用源。
C.错误!未找到引用源。
使得错误!未找到引用源。
2016年浙江卷理科数学高考试卷(原卷 答案)

绝密★启用前2016年普通高等学校招生全国统一考试(浙江卷)理科数学本试卷共20题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(C R Q)=A.[2,3]B.(-2,3]C.[1,2)D.(−∞,−2]∪[1,+∞)2.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则A. m∥lB. m∥nC. n⊥lD. m⊥n3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域{x−2≤0 x+y≥0x−3y+4≥0中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A.2√2B.4C. 3√2D.64.命题“∀x∈R,∃n∈N∗,使得n≥x2”的否定形式是A. ∀x∈R,∃n∈N∗,使得n<x2B. ∀x∈R,∀n∈N∗,使得n<x2C. ∃x∈R,∃n∈N∗,使得n<x2D. ∃x∈R,∀n∈N∗,使得n<x25.设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列{An}、{B n}分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n≠A n+1,n∈N∗,|B n B n+1|=|B n+1B n+2|,B n≠B n+1,n∈N∗.(P≠Q表示点P与Q不重合)若d n=|A n B n|,S n为∆A n B n B n+1的面积,则A.{S n}是等差数列B.{S n2}是等差数列C.{d n}是等差数列D.{d n2}是等差数列7.已知椭圆C1:x2m2+y2=1(m>1)与双曲线C2:x2n2−y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则A.m>n且e1e2>1B.m>n且e1e2<1C.m<n且e1e2>1D.m<n且e1e2<18.已知实数a,b,c.A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a+b2−c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b−c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2−c|≤1,则a2+b2+c2<100二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
16年高考真题——理科数学(浙江卷)

2016年普通高等学校招生全国统一考试(浙江卷)理科数学一.选择题:本大题共8小题,每小题5分,共计40分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.已知集合{}|13P x R x =∈≤≤,{}2|4Q x R x =∈≥,则()R P Q = ð( )(A )[]3,2(B )(]2,3- (C )[)1,2 (D )(][),21,-∞-+∞2.已知互相垂直的平面βα,交于直线l ,若直线n m ,满足α//m ,β⊥n 错误!未找到引用源。
,则( ) (A )l m // (B )n m // (C )l n ⊥ (D )n m ⊥3.在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影,由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线02=-+y x 上的投影构成的线段记为AB ,则=||AB ( ) (A )22 (B )4 (C )23(D )64.命题“R x ∈∀,+∈∃N n ,使得2x n ≥”的否定形式是( ) (A )R x ∈∀,+∈∃N n ,使得2x n <(B )R x ∈∀,+∈∀N n ,使得2x n <(C )R x ∈∃,+∈∃N n ,使得2x n < (D )R x ∈∃,+∈∀N n ,使得2x n < 5.设函数()c x b x x f ++=sin sin 2,则()x f 的最小正周期( ) (A )与b 有关,且与c 有关 (B )与b 有关,但与c 无关 (C )与b 无关,且与c 无关(D )与b 无关,但与c 有关6.如图,点列{}n A 、{}n B 分别在某锐角的两边上,且112||||n n n n A A A A +++=,1n n A A +≠,+∈N n ,112||||n n n n B B B B +++=,1n n B B +≠,+∈N n 。
2016年高考理科数学浙江卷(word版含答案)

2016年普通高等学校招生全国统一考试(浙江卷)理科数学一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P=,Q=,则P=()A.[2,3]B.(-2,3]C.[1,2)D.2.已知互相垂直的平面 , 交于直线l,若直线m,n满足 , ,则()A. B. C. D.3.在平面上,过点作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=()A. B.4 C. D.64.命题“,,使得”的否定形式是()A.,,使得B.,,使得C.,,使得D.,,使得5.设函数,则的最小正周期()A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列、分别在某锐角的两边上,且,,,,,.(表示点P与Q不重合)若,为的面积,则()A.是等差数列B.是等差数列C.是等差数列D.是等差数列7.已知椭圆;与双曲线:的焦点重合,,分别为,的离心率,则()A. 且B. 且C. 且D. 且 8.已知实数 , , . ( )A.若 ,则B.若 ,则C.若 ,则D.若 ,则二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9.若抛物线 上的点M 到焦点的距离为10,则M 到y 轴的距离是 . 10.已知 ,则A= ,b= . 11.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3. 12.已知 ,若, ,则a= ,b= .13.设数列 的前n 项和为 ,若 , , ,则 = , = .14.如图,在 中,AB=BC=2, .若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 .15.已知向量a ,b ,|a|=1,|b|=2,若对任意单位向量e ,均有|a ·e|+|b ·e| ,则a ·b 的最大值是 .三、解答题:本大题共5小题,共74分。
2016年普通高等学校招生全国统一考试数学理试题(浙江卷,正式版解析)

高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2016年高考浙江卷数学(理)试题一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.1. 已知集合{}{}213,4,P x x Q x x =∈≤≤=∈≥R R 则()P Q ⋃=R ð A .[2,3] B .( -2,3 ] C .[1,2) D .(,2][1,)-∞-⋃+∞ 【答案】B【解析】根据补集的运算得.故选B .2. 已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则 A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n 【答案】C3. 在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域200340x x y x y -≤⎧⎪+≥⎨⎪-+≥⎩中的点在直线x +y -2=0上的投影构成的线段记为AB ,则│AB │= A .22B .4C .32D .6 【答案】C【解析】如图∆PQR 为线性区域,区域内的点在直线20x y +-=上的投影构成了线段''R Q ,即AB ,而''=R Q PQ ,由3400-+=⎧⎨+=⎩x y x y 得(1,1)-Q ,由20=⎧⎨+=⎩x x y 得(2,2)-R ,22(12)(12)32==--++=AB QR .故选C .4. 命题“*x n ∀∈∃∈,R N ,使得2n x >”的定义形式是A .*x n ∀∈∃∈,R N ,使得2n x <B .*x n ∀∈∀∈,R N ,使得2n x < C .*x n ∃∈∃∈,R N ,使得2n x < D .*x n ∃∈∀∈,R N ,使得2n x < 【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 5. 设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关【答案】B6. 如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N , 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 若1n n n n n n n d A B S A B B +=,为△的面积,则A .{}n S 是等差数列B .2{}nS 是等差数列 C .{}n d 是等差数列 D .2{}nd 是等差数列 【答案】A【解析】n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .7. 已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1【答案】A【解析】由题意知2211-=+m n ,即222=+m n ,2221222221111()(1)(1)-+=⋅=-+m n e e m n m n,代入222=+m n ,得212,()1>>m n e e .故选A .8. 已知实数a ,b ,cA .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100B .若|a 2+b +c |+|a 2+b –c |≤1,则a 2+b 2+c 2<100C .若|a +b +c 2|+|a +b –c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b +c |+|a +b 2–c |≤1,则a 2+b 2+c 2<100 【答案】D二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9. 若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9【解析】1109M M x x +=⇒=10. 已知2cos 2x +sin 2x =Asin(ωx +φ)+b (A >0),则A =______,b =________. 【答案】2 1【解析】22cos sin 22sin(2)14x x x π+=++,所以2, 1.A b == 11. 某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯= 12. 已知a >b >1.若log a b +log b a =52,a b =b a ,则a = ,b = . 【答案】4 2【解析】设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==13.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= . 【答案】1 12114. 如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD的体积的最大值是 .【答案】12【解析】ABC ∆中,因为2,120AB BC ABC ==∠=o , 所以30BAD BCA ∠==o .由余弦定理可得2222cos AC AB BC AB BC B =+-⋅ 2222222cos12012=+-⨯⨯=o , 所以23AC =设AD x =,则023t <<23DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅o 234x x =-+.故2234BD x x =-+在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得2222222(234)3cos 2PD PB BD x x x BPD PD PB +-+--+∠===⋅,所以30BPD ∠=o .EDCBA P过P 作直线BD 的垂线,垂足为O .设PO d =则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠, 2112342sin 3022x x d x -+=⋅o ,解得2234d x x =-+.而BCD ∆的面积111sin (23)2sin 30(23)222S CD BC BCD x x =⋅∠=-⋅=-o . 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.故四面体PBCD 的体积211111sin (23)33332234BcD BcD BcD V S h S d S d x x x θ∆∆∆=⨯=≤⋅=⨯-⋅-+ 21(23)6234x x x x -=-+.设22234(3)1t x x x =-+=-+,因为023x ≤≤,所以12t ≤≤.则2|3|1x t -=-.(2323x <≤2|331x x t ==- 故231x t -此时,221(31)[23(31)]t t V +--+-=21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=.综上,四面体PBCD 的体积的最大值为12. 15. 已知向量a 、b , |a | =1,|b | =2,若对任意单位向量e ,均有 |a ·e |+|b ·e |≤6 ,则a ·b 的最大值是 . 【答案】12【解析】221|(a b)||a ||b |6|a b |6|a ||b |2a b 6a b 2e e e +⋅≤⋅+⋅≤⇒+≤⇒++⋅≤⇒⋅≤r r r r r r r r r r r r r r r ,即最大值为12三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16. (本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B. (I )证明:A =2B ;(II )若△ABC 的面积2=4a S ,求角A 的大小.【试题分析】(I )由正弦定理及两角和的正弦公式可得()sin sin B =A-B ,再判断A-B 的取值范围,进而可证2A =B ;(II )先由三角形的面积公式及二倍角公式可得sinC cos =B ,再利用三角形的内角和可得角A 的大小.(II )由24a S =得21sin C 24a ab =,故有1sin sin C sin 2sin cos 2B =B =B B ,因sin 0B ≠,得sinC cos =B .又B ,()C 0,π∈,所以C 2π=±B .当C 2πB +=时,2πA =; 当C 2π-B =时,4πA =.综上,2πA =或4πA =.17. (本题满分15分)如图,在三棱台ABC DEF -中,平面BCFE ⊥平面ABC ,=90ACB ∠o ,BE =EF =FC =1,BC =2,AC =3.(I)求证:EF ⊥平面ACFD ;(II)求二面角B -AD -F 的平面角的余弦值.【试题分析】(I )先证F C B ⊥A ,再证F C B ⊥K ,进而可证F B ⊥平面CFD A ;(II )方法一:先找二面角D F B-A -的平面角,再在Rt QF ∆B 中计算,即可得二面角D F B-A -的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面C A K 和平面ABK 的法向量,进而可得二面角D F B-A -的平面角的余弦值.(II )方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B-A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得313FQ =.在Rt QF ∆B 中,313FQ =,F 3B =,得3cos QF ∠B =. 所以,二面角D F B-A -的平面角的余弦值为34.18. (本小题15分)已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax +4a −2},其中min{p ,q }=,>p p q q p q.≤⎧⎨⎩,,(I )求使得等式F (x )=x 2−2ax +4a −2成立的x 的取值范围; (II )(i )求F (x )的最小值m (a ); (ii )求F (x )在区间[0,6]上的最大值M (a ).【试题分析】(I )分别对1x ≤和1x >两种情况讨论()F x ,进而可得使得等式()2F 242x x ax a =-+-成立的x 的取值范围;(II )(i )先求函数()21f x x =-,()2242g x x ax a =-+-的最小值,再根据()F x 的定义可得()F x 的最小值()m a ;(ii )分别对02x ≤≤和26x ≤≤两种情况讨论()F x 的最大值,进而可得()F x 在区间[]0,6上的最大值()a M .(II )(i )设函数()21f x x =-,()2242g x x ax a =-+-,则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,32242,22a m a a a a ⎧≤≤+⎪=⎨-+->⎪⎩(ii )当02x ≤≤时,()()()(){}()F max 0,22F 2x f x f f ≤≤==,当26x ≤≤时,()()()(){}{}()(){}F max 2,6max 2,348max F 2,F 6x g x g g a ≤≤=-=.所以,()348,342,4a a a a -≤<⎧M =⎨≥⎩.19. (本题满分15分)如图,设椭圆2221xya+=(a>1).(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【试题解析】(I)设直线1y kx=+被椭圆截得的线段为AP,由22211y kxxya=+⎧⎪⎨+=⎪⎩得()2222120a k x a kx++=,故1x=,222221a kxa k=-+.因此22212222111a kk x ka kAP=+-=++(II)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足QAP=A.记直线AP,QA的斜率分别为1k,2k,且1k,2k>,12k k≠.20.(本题满分15分)设数列{}n a 满足112n n a a +-≤,n *∈N . (I )证明:()1122n n a a -≥-,n *∈N ; (II )若32n n a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N . 【试题分析】(I )先利用三角形不等式得1112n n a a +-≤,变形为111222n n n n n a a ++-≤,再用累加法可得1122n n a a -<,进而可证()1122n n a a -≥-;(II )由(I )可得11222n m n m n a a --<,进而可得3224mn n a ⎛⎫<+⋅ ⎪⎝⎭,再利用m 的任意性可证2n a ≤.(II )任取n *∈N ,由(I )知,对于任意m n >, 1121112122222222n m n n n n m m n m n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故 11222m n n n m a a -⎛⎫<+⋅ ⎪⎝⎭11132222m n n m -⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦3224mn ⎛⎫=+⋅ ⎪⎝⎭. 从而对于任意m n >,均有。
2016年普通高等学校招生全国统一考试浙江理科数学

1
由
= +
2, =
0,
得
= =
2-2, ,∴D
点坐标为(2,-2).
∴|CD|= 9 + 9=3 2,即|AB|=3 2.故选 C. 4.(2016 浙江,理 4)命题“∀x∈R,∃n∈N*,使得 n≥x2”的否定形式是( ) A.∀x∈R,∃n∈N*,使得 n<x2 B.∀x∈R,∀n∈N*,使得 n<x2 C.∃x∈R,∃n∈N*,使得 n<x2 D.∃x∈R,∀n∈N*,使得 n<x2 答案 D 由含量词命题的否定格式,可知首先改写量词,
12.(2016 浙江,理 12)已知 a>b>1,若 logab+logba=52,ab=ba,则 a=
,b=
.
答案 4 2 解析设 logba=t,由 a>b>1,知 t>1 .
由题意,得 t+1 = 52,解得 t=2,则 a=b2.
由 ab=ba,得 b2b= 2,即得 2b=b2,即 b=2,
∴a=4.
13.(2016 浙江,理 13)设数列{an}的前 n 项和为 Sn,若 S2=4,an+1=2Sn+1,n∈N*,则
a1=
,S5=
.
答案 1 121
解析由题意,可得 a1+a2=4,a2=2a1+1,
4
所以 a1=1,a2=3. 再由 an+1=2Sn+1,an=2Sn-1+1(n≥2) , 得 an+1-an=2an,即 an+1=3an(n≥2). 又因为 a2=3a1,所以数列{an}是以 1 为首项,3 为公比的等比数列.
17.
2016年高考理科数学全国1卷Word版(含详细答案)

(A) (B) (C) (D)
(2)设 ,其中 是实数,则
(A) (B) (C) (D)
(3)已知等差数列 前 项的和为 , ,则
(A) (B) (C) (D)
(4)某公司的班车在 , , 发车,小明在 至 之间到达发车站乘
坐班车,且到达发车站的时候是随机的,则他等车时间不超过10分钟的概率是
(21)(本小题满分12分)
已知函数 有两个零点.
(Ⅰ)求 的取值范围;
(Ⅱ)设 是 的两个零点,证明: .
请考生在第(22)、(23)、(24)题中任选一题作答,如果多做,则按所做的第一题计分.
(22)(本小题满分10分)选修4-1:几何证明选讲
如图, 是等腰三角形, .以 为圆心,
为半径作圆.
(Ⅰ)证明:直线 与⊙ 相切;
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。晖军頷损铖榄煬种撵摈賠宽櫬皱鳏趨飩黌埡蕭弳龉鶘鈉縝飆徠賻繭蓟閏贐錳寿袄帐鲍農亏厩壙届线鱿舊赞龅诨銨续呓恽习餓圇权匭姍鋇顓员贺頻轨稅個燜够镍鏽鐘闔鹌兹約侣蜆况脹鍔飯裝饱匮繼谗贱馍党漸啭锴泺媯黄繞橫钫。
(11)平面 过正方体 的顶点 , 平面 , 平面
, 平面 ,则 所成角的正弦值为
(A) (B) (C) (D)
(12)已知函数 , 为 的零点, 为
图像的对称轴,且 在 单调,则 的最大值为
(A)11(B)9(C)7(D)5
第II卷
本卷包括必考题和选考题两部分。第(13)题~第(21)题为必考题,每个试题考生都必须作答。第(22)题~第(24)题为选考题,考生根据要求作答。懾圇贄疗锈鎳沒蚀棧屨惭綻釗滄脓玑鲚窑濘盡湊鏇鷥錠閾胆竞繪锖缨肾糁勱萤哝鹩灤詎資纪緱赢诽麩讥鹰鋪鏑竖囂饨斷壇钶钟睾嬷韫薈殮禄阏铈鉻質铪稱悫惨茔俦牵鈣頃赢痙悫鹤担隱遞訟兴踬讽栈涣瀏锣辫闡綢務盜儉謁骄隊。
2016年高考全国Ⅰ理科数学试题及答案(word解析版)

2016年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2016年全国Ⅰ,理1,5分】设集合{}2|430A x x x =-+<,{}|230B x x =->,则AB =( )(A )33,2⎛⎫-- ⎪⎝⎭ (B )33,2⎛⎫- ⎪⎝⎭ (C )31,2⎛⎫ ⎪⎝⎭(D )3,32⎛⎫⎪⎝⎭【答案】D【解析】{|13}A x x =<<,3{|}2B x x =>,3{|3}2A B x x ∴=<<,故选D .【点评】考察集合运算和简单不等式解法,属于必考题型,难易程度:易. (2)【2016年全国Ⅰ,理2】设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +( )(A )1 (B )2 (C )3 (D )2 【答案】B【解析】由题意知:1x y ==,i =1i 2x y ∴++=,故选B .【点评】察复数相等条件和复数的模,属于必考题型,难易程度:易. (3)【2016年全国Ⅰ,理3,5分】已知等差数列{}n a 前9项的和为27,108a =,则100a =( )(A )100 (B )99 (C )98 (D )97 【答案】C【解析】解法一:199599272a a S a +===,53a ∴= 1051105a a d -∴==-()100101001089098a a d ∴=+-=+=,选C . 解法二:91989272S a d ⨯=+=,即143a d +=,又10198a a d =+=,解得11,1a d =-=,()1001100119998a a d ∴=+-=-+=,故选C . 【点评】考察等差数列的基本性质、前n 项和公式和通项公式,属于必考题型,难易程度:易. (4)【2016年全国Ⅰ,理4,5分】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )(A )13(B )12 (C )23 (D )34【答案】B【解析】小明可以到达车站时长为40分钟,可以等到车的时长为20分钟,则他等车时间不超过10分钟的概率是201402P ==,故选B .【点评】考察几何概型的概率计算,第一次考察,难易程度:易.(5)【2016年全国Ⅰ,理5,5分】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )()1,3- (C )()0,3 (D )()0,3 【答案】A【解析】由题意知:2234m n m n ++-=,解得21m =,1030n n +>⎧∴⎨->⎩,解得13n -<<,故选A .【点评】考察双曲线的简单几何性质,属于了解层次,必考题,难易程度:易. (6)【2016年全国Ⅰ,理6,5分】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )(A )17π (B )18π (C )20π (D )28π 【答案】A【解析】该几何体为球体,从球心挖掉整个球的18(如右图所示),故34728383r ππ=解得2r =,2271431784S r r πππ∴=⋅+⋅=,故选A .【点评】考察三视图还原,球的体积表面积计算,经常考察,难易程度:中等. (7)【2016年全国Ⅰ,理7,5分】函数22xy x e =-在[2,2]-的图像大致为( )(A )(B )(C ) (D )【答案】D【解析】解法1(排除法):2()2xf x x e =-为偶函数,且2(2)887.40.6f e =-≈-=,故选D .解法2:2()2xf x x e =-为偶函数,当0x >时,'()4x f x x e =-,作4y x =与x y e =(如图),故存在实数0(0,1)x ∈,使得'0()0f x =且0(0,)x x ∈时,'0()0f x <,0(,2)x x ∈时, '0()0f x >,()f x ∴在0(0,)x 上递减,在0(,2)x 上递增,故选D .【点评】本题结合导数利用函数奇偶性,综合考察函数解析式与函数图像之间的关系,常规题型,属于必考题,难易程度:中等.这类题型的最佳解法应为结合函数的性质,选取特殊点进行排除.(8)【2016年全国Ⅰ,理8,5分】若101a b c >><<,,则( ) (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C【解析】解法1(特殊值法):令14,22a b c ===,,易知C 正确.解法2:当0α>时,幂函数()f x x α=在(0,)+∞上递增,故A 选项错误;当1a >时,a 越大对数函数()log a f x x =的图像越靠近x 轴,当01c <<时,log log a b c c >,故D 选项错误;c c ab ba <可化为()c a ab b<,由指数函数知,当1a >时,()x f x a =在(0,)+∞上递增,故B 选项错误;log log b a a c b c <可化为11log log abb ac c <,1111abbb b a <<<,故选C .【点评】本题综合考察幂函数、指数函数、对数函数的性质和不等式的性质,属于常考题型,难易程度:中等. 结合函数性质证明不等式是比较麻烦的,最好采用特殊值法验证排除.(9)【2016年全国Ⅰ,理9,5分】执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满足( )(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C【解析】011x y n ===,,时,框图运行如下: 1、012x y n ===,,;2、1232x y n ===,,;3、3632x y n ===,,,故选C .【点评】考察算法中的循环结构,必考题型,难易程度:易. (10)【2016年全国Ⅰ,理10,5分】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C的标准线于D 、E 两点.已知42AB =,25DE =,则C 的焦点到准线的距离为( ) (A )2 (B )4 (C )6 (D )8【答案】B【解析】解法1排除法:当4p =时,不妨令抛物线方程为28y x =,当y =1x =,即A 点坐标为(,所以圆的半径为3r =,此时D 点坐标为(-,符合题意,故B 选项正确.解法2:不妨令抛物线方程为22y px =,D 点坐标为2P ⎛- ⎝,则圆的半径为r =,22834p r -=-,即A 点坐标为⎭,所以22=,解得4p =,故选B . 【点评】考察抛物线和圆的简单性质,必考题型,难易程度:中等. (11)【2016年全国Ⅰ,理11,5分】平面a 过正方体1111ABCD A B C D -的顶点A ,//a 平面11CB D ,a 平面ABCD m =,a 平面11ABA B n =,则m 、n 所成角的正弦值为( )(A (B )2 (C (D )13【答案】A【解析】令平面a 与平面11CB D 重合,则11m B D =,1n CD =,故直线m 、n 所成角为60o ,,故选A . 【点评】考察正方体中线面位置关系和两条直线夹角的计算,必考题型,难易程度:中等.(12)【2016年全国Ⅰ,理12,5分】已知函数()()sin 02f x x +πωϕωϕ⎛⎫=>≤ ⎪⎝⎭,,4x π=-为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫ ⎪⎝⎭,单调,则ω的最大值为( )(A )11 (B )9 (C )7 (D )5 【答案】B【解析】解法1(特殊值验证法)令9ω=,则周期29T π=,区间[]44ππ-,刚为94T ,且在53636ππ⎡⎤⎢⎥⎣⎦,上递减,恰好符合题意,故选B .解法2:由题意知152()24369T πππ≥-=,所以29Tπω=≤,故选B .【点评】综合考察三角函数图像的单调性、对称性、零点、周期等性质,属于必考题型,难易程度:偏难.第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2016年全国Ⅰ,理13,5分】设向量(),1m =a ,()1,2=b ,且222+=+a b a b ,则m = . 【答案】2-【解析】解法一(几何法)由向量加法的几何意义知a b ⊥,故20a b m ⋅=+=,所以2m =-;解法二(代数法)22(1)9114m m ++=+++,解得2m =-.【点评】考察向量运算,必考题型,难易程度:易.(14)【2016年全国Ⅰ,理14,5分】(52x +的展开式中,3x 的系数是 .(用数字填写答案) 【答案】10【解析】()555215522r rrrr rr T Cx C x---+==,令532r-=,解得4r =,454525210C -∴=⨯=. 【点评】考察二项式定理展开式中指定项问题,必考题型,难易程度:中等.(15)【2016年全国Ⅰ,理15,5分】设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a ⋅⋅⋅的最大值为 . 【答案】64【解析】由1310a a +=,245a a +=解得118,2a q ==,14118()()22n n n a --∴==,27321(4)21211()()22n nn n a a a ----+⋅⋅⋅+-∴⋅⋅⋅==,所以当3n =或4时,12n a a a ⋅⋅⋅有最大值64.【点评】考察等比数列的通项公式、等差数列求和及二次函数最值问题,必考题型,难易程度:中等. (16)【2016年全国Ⅰ,理16,5分】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合P=,Q=,则P=A.[2,3]B.(-2,3]C.[1,2)D.2.已知互相垂直的平面交于直线l,若直线m,n满足,则A. B. C. D.3.在平面上,过点P作直线l的垂线所得的垂足称为点P在直线l上的投影,由区域中的点在直线x+y-2=0上的投影构成的线段记为AB,则|AB|=A. B.4 C. D.64.命题“使得”的否定形式是A.使得B.使得C.使得D.使得5.设函数,则的最小正周期A.与b有关,且与c有关B.与b有关,但与c无关C.与b无关,且与c无关D.与b无关,但与c有关6.如图,点列分别在某锐角的两边上,且,,,.(表示点P与Q不重合)若,为的面积,则A.是等差数列B.是等差数列C.是等差数列D.是等差数列7.已知椭圆与双曲线的焦点重合,分别为的离心率,则A.且B.且C.且D.且8.已知实数.A.若则B.若则C.若则D.若则二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
9.若抛物线上的点M 到焦点的距离为10,则M 到y 轴的距离是.10.已知,则A=,b=.11.某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是cm 2,体积是 cm 3. 12.已知,若,则a=,b=.13.设数列的前n 项和为,若,则=,=.14.如图,在中,AB=BC=2,.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是. 15.已知向量a ,b ,|a |=1,|b |=2,若对任意单位向量e ,均有|a ·e |+|b ·e |,则a ·b 的最大值是.三、解答题:本大题共5小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
16.(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知2cos b c a B += (Ⅰ)证明:2A B =(Ⅱ)若ABC ∆的面积24a S =,求角A 的大小.17.(本题满分15分)如图,在三棱台ABC DEF -中,已知平面BCFE 平面ABC ,90ACB ∠=︒,1BE EF EC ===,2BC =,3AC =,(Ⅰ)求证:ACFD BF ⊥平面 (Ⅱ)求二面角B-AD-C 的余弦值.18. (本题满分15分)设3a ≥,函数2()min{2|1|,242}F x x x ax a =--+-,其中(Ⅰ)求使得等式2()242F x x ax a =-+-成立的x 的取值范围 (Ⅱ)(i )求()F x 的最小值()m a(ii )求()F x 在[0,6]上的最大值()M a19.(本题满分15分)如图,设椭圆C:2221(1)x y a a+=>(Ⅰ)求直线1y kx =+被椭圆截得到的弦长(用a,k 表示)(Ⅱ)若任意以点(0,1)A 为圆心的圆与椭圆至多有三个公共点,求椭圆的离心率的取值范围.20、(本题满分15分)设数列满足1||12n n a a +-≤,(Ⅰ)求证:11||2(||2)(*)n n a a n N -≥-∈(Ⅱ)若3||()2nn a ≤,*n N ∈,证明:||2n a ≤,*n N ∈.浙江数学(理科)试题参考答案一、选择题:本题考查基本知识和基本运算。
每小题5分,满分40分. 1.B 2.C 3.C 4.D 5.B 6.A 7.A 8.D二、填空题:本题考查基本知识和基本运算.多空题每题6分,单空题每题4分,满分16分. 9.9 10.2,1 11.72,32 12.4,2 13.1,121 14.12 15. 12三、解答题:本大题共5小题,共74分。
16.本题主要考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力。
满分14分。
(I )由正弦定理得sin sin C 2sin cos B +=A B ,故()2sin cos sin sin sin sin cos cos sin A B =B+A+B =B+A B+A B , 于是()sin sin B =A-B .又A ,()0,πB∈,故0π<A -B <,所以()πB =-A-B 或B =A -B ,因此πA =(舍去)或2A =B , 所以,2A =B .(II )由24a S =得21sin C 24a ab =,故有1sin sin C sin 2sin cos 2B =B =B B ,因sin 0B ≠,得sin C cos =B .又B ,()C 0,π∈,所以C 2π=±B .当C 2πB +=时,2πA =; 当C 2π-B =时,4πA =.综上,2πA =或4πA =.17.本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力和运算求解能力。
满分15分。
(I )延长D A ,BE ,CF 相交于一点K ,如图所示. 因为平面CF B E ⊥平面C AB ,且C C A ⊥B ,所以, C A ⊥平面C B K ,因此, F C B ⊥A .又因为F//C E B ,F FC 1BE =E ==,C 2B =,所以C ∆B K 为等边三角形,且F 为C K 的中点,则 F C B ⊥K .所以F B ⊥平面CFD A .(II )方法一:过点F 作FQ ⊥AK ,连结Q B .因为F B ⊥平面C A K ,所以F B ⊥AK ,则AK ⊥平面QF B ,所以Q B ⊥AK . 所以,QF ∠B 是二面角D F B -A -的平面角.在Rt C ∆A K 中,C 3A =,C 2K =,得313FQ 13=. 在Rt QF ∆B 中,313FQ 13=,F 3B =,得3cos QF 4∠B =. 所以,二面角D F B -A -的平面角的余弦值为34. 方法二:如图,延长D A ,BE ,CF 相交于一点K ,则C ∆B K 为等边三角形.取C B 的中点O ,则C KO ⊥B ,又平面CF B E ⊥平面C AB ,所以,KO ⊥平面C AB . 以点O 为原点,分别以射线OB ,OK 的方向为x ,z 的正方向, 建立空间直角坐标系xyz O . 由题意得()1,0,0B ,()C 1,0,0-,()0,0,3K ,()1,3,0A --,13,0,22⎛⎫E ⎪ ⎪⎝⎭,13F ,0,22⎛⎫- ⎪ ⎪⎝⎭. 因此,()C 0,3,0A = ,()1,3,3AK = ,()2,3,0AB =.设平面C A K 的法向量为()111,,m x y z = ,平面ABK 的法向量为()222,,n x y z =.由C 00m m ⎧A ⋅=⎪⎨AK ⋅=⎪⎩ ,得111130330y x y z =⎧⎪⎨++=⎪⎩,取()3,0,1m =- ;由00n n ⎧AB⋅=⎪⎨AK ⋅=⎪⎩ ,得22222230330x y x y z +=⎧⎪⎨++=⎪⎩,取()3,2,3n =- .于是,3cos ,4m n m n m n ⋅==⋅.所以,二面角D F B -A -的平面角的余弦值为34.18.本题主要考查函数的单调性与最值、分段函数、不等式性质等基础知识。
同时考查推理论证能力,分析问题和解决问题的能力。
满分15分。
(I )由于3a ≥,故当1x ≤时,()()()22242212120x ax a x x a x -+---=+-->, 当1x >时,()()()22422122x ax a x x x a -+---=--.所以,使得等式()2F 242x x ax a =-+-成立的x 的取值范围为[]2,2a .(II )(i )设函数()21f x x =-,()2242g x x ax a =-+-,则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,32242,22a m a a a a ⎧≤≤+⎪=⎨-+->+⎪⎩.(ii )当02x ≤≤时,()()()(){}()F max 0,22F 2x f x f f ≤≤==,当26x ≤≤时,()()()(){}{}()(){}F max 2,6max 2,348max F 2,F 6x g x g g a ≤≤=-=.所以,()348,342,4a a a a -≤<⎧M =⎨≥⎩. 19.本题主要考查椭圆的几何性质、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力。
满分15分。
(I )设直线1y kx =+被椭圆截得的线段为AP ,由22211y kx x y a=+⎧⎪⎨+=⎪⎩得 ()2222120a k xa kx ++=,故10x =,222221a kx a k =-+. 因此22212222111a k k x x k a kAP =+-=⋅++. (II )假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足Q AP =A .记直线AP ,Q A 的斜率分别为1k ,2k ,且1k ,20k >,12k k ≠. 由(I )知,2211221211a k k a k +AP =+,222222221Q 1a k k a k +A =+, 故22221122222212212111a k k a k k a k a k ++=++, 所以()()22222222121212120k k k k a a k k ⎡⎤-+++-=⎣⎦.由于12k k ≠,1k ,20k >得()2222221212120k k a a k k +++-=,因此()222212111112a a k k ⎛⎫⎛⎫++=+- ⎪⎪⎝⎭⎝⎭, ① 因为①式关于1k ,2k 的方程有解的充要条件是()22121a a +->,所以2a >.因此,任意以点()0,1A 为圆心的圆与椭圆至多有3个公共点的充要条件为12a <≤,由21c a e a a-==得,所求离心率的取值范围为202e <≤.20.本题主要考查数列的递推关系与单调性、不等式性质等基础知识,同时考查推理论证能力、分析问题和解决问题的能力。
满分15分。
(I )由112n n a a +-≤得1112n n a a +-≤,故111222n n n n n a a ++-≤,n *∈N , 所以11223111223122222222nn n n n n a a a a a a a a --⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121111222n -≤++⋅⋅⋅+ 1<,因此()1122n n a a -≥-.(II )任取n *∈N ,由(I )知,对于任意m n >,1121112122222222n mn n n n m m nm n n n n m m a a a a a a a a +++-+++-⎛⎫⎛⎫⎛⎫-=-+-+⋅⋅⋅+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11111222n n m +-≤++⋅⋅⋅+ 112n -<, 故11222m nn n m a a -⎛⎫<+⋅ ⎪⎝⎭11132222mn n m-⎡⎤⎛⎫≤+⋅⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 3224mn ⎛⎫=+⋅ ⎪⎝⎭.从而对于任意m n >,均有3224mn n a ⎛⎫<+⋅ ⎪⎝⎭.由m 的任意性得2n a ≤. ①否则,存在0n *∈N ,有02n a >,取正整数000342log 2n n a m ->且00m n >,则003402log 23322244n n a m m n n a -⎛⎫⎛⎫⋅<⋅=- ⎪⎪⎝⎭⎝⎭,与①式矛盾.综上,对于任意n *∈N ,均有2n a ≤.。